T. M. Alves, Submarine slide blocks and associated soft-sediment deformation in deep-water 992 basins: A review. Marine and Petroleum Geology, vol.67, 2015.

T. M. Alves, K. Kurtev, G. F. Moore, and M. Strasser, Assessing the internal character, reservoir 995 potential, and seal competence of mass-transport deposits using seismic texture: A geophysical 996 and petrophysical approach, Bulletin, vol.98, issue.4, pp.793-824, 2014.

É. F. Araújo, C. G. Silva, A. T. Reis, R. Perovano, C. Gorini et al., Movimentos de massa multiescala na bacia da foz do Amazonas -margem 999 equatorial brasileira, Rev. Bras. Geof, vol.27, issue.3, pp.485-508, 2009.

J. A. Bondy and U. S. Murty, Graph theory, 2008.

J. Bourget, S. Zaragosi, N. Ellouz-zimermann, N. Mouchot, T. Garlan et al.,

&. Lallemant, S. Bull, S. Cartwright, J. Huuse, and M. , Turbidite system architecture and sedimentary processes along 1003 topographically complex slopes: The Makran convergent margin, Sedimentology, vol.58, issue.2, pp.1132-1151, 1004.

R. Merris, Graph theory, 2001.

J. Mienert, Methane Hydrate and Submarine Slides, Encyclopedia of Ocean Sciences, pp.1082-790, 2009.

L. Moscardelli and L. Wood, New classification system for mass transport complexes in offshore 1084, 2008.

;. Trinidad, R. Mourgues, and P. R. Cobbold, Sandbox experiments on gravitational spreading and gliding in 1086 the presence of fluid overpressures, Journal of Structural Geology, vol.20, issue.1, pp.887-901, 1087.

R. Mourgues, A. Lacoste, and C. Garibaldi, The Coulomb critical taper theory applied to 1089 gravitational instabilities, J. Geophys. Res. Solid Earth, vol.119, issue.1, 2014.

R. Mourgues, E. Lecomte, B. Vendeville, and S. Raillard, An experimental investigation of 1092 gravity-driven shale tectonics in progradational delta, Tectonophysics, vol.474, issue.3-4, pp.643-656, 1093.

T. Mulder and J. Alexander, Abrupt change in slope causes variation in the deposit thickness of 1095 concentrated particle-driven density currents, Marine Geology, vol.175, issue.1-4, pp.221-235, 1096.

T. Mulder and J. Alexander, The physical character of subaqueous sedimentary density flows 1098 and their deposits, Sedimentology, vol.48, issue.2, pp.269-299, 2001.

C. H. Nelson, C. Escutia, J. E. Damuth, and D. C. Twichell, , 2011.

, Turbidite-System Deposits in Different Active Tectonic and Passive Continental Margin Settings: 1103 External and Local Controlling Factors, p.1105

, Tulsa (Okla.)

O. Ogiesoba and U. Hammes, Seismic interpretation of mass-transport deposits within the upper 1107, 2012.

, Oligocene Frio Formation, Texas Gulf Coast. Bulletin, vol.96, issue.5, pp.845-868, 1108.

K. O. Omosanya and T. M. Alves, Ramps and flats of mass-transport deposits (MTDs) as markers 1110 of seafloor strain on the flanks of rising diapirs, Marine Geology, vol.340, pp.82-97, 1111.

A. Ortiz-karpf, D. M. Hodgson, C. A. Jackson, -. Mccaffrey, and W. D. , Mass-transport complexes 1113 as markers of deep-water fold-and-thrust belt evolution: Insights from the southern Magdalena 1114 fan, offshore Colombia, Basin Res, vol.57, issue.4, 2016.

M. Owen, S. Day, M. Maslin, H. W. Posamentier, and O. J. Martinsen, The Character and Genesis of Submarine Mass-Transport 1118 Deposits: Insights from Outcrop and 3D Seismic Data, Mass-transport deposits in deepwater 1119 settings, vol.26, pp.7-38, 2007.

O. Pouliquen, J. Delour, and S. B. Savage, Fingering in granular flows, Nature, vol.386, issue.6627, pp.816-1122, 1997.

A. T. Reis, E. Araujo, C. G. Silva, A. M. Cruz, C. Gorini et al., Effects of a regional décollement level for gravity tectonics on late Neogene-1125, 2016.

, Quaternary large-scale slope instabilities in the Foz do Amazonas Basin, Brazil. Marine and 1126 Petroleum Geology, vol.75, pp.29-52

A. T. Reis, R. Perovano, C. G. Silva, B. C. Vendeville, E. Araujo et al., Two-1128 scale gravitational collapse in the Amazon Fan: A coupled system of gravity tectonics and mass-1129 transport processes, Journal of the Geological Society, vol.167, issue.3, pp.593-604, 2010.

F. Reitsma, J. Laxton, S. Ballard, W. Kuhn, and A. Abdelmoty, Semantics, ontologies and 1132 eScience for the geosciences, Computers & Geosciences, vol.35, issue.4, pp.706-709, 1133.

S. E. Richardson, R. J. Davies, M. B. Allen, and S. F. Grant, Structure and evolution of mass 1135 transport deposits in the South Caspian Basin, vol.23, pp.702-719, 1136.

M. Rodger, A marine geophysical study of the Amazon continental margin, 1138.

A. Roy, A. S. Romero-peláez, T. J. Kwiatkowski, and K. J. Marfurt, Generative topographic 1140 mapping for seismic facies estimation of a carbonate wash, 2014.

, , vol.2, pp.31-47

D. E. Sawyer, P. B. Flemings, J. Buttles, and D. Mohrig, Mudflow transport behavior and deposit 1143 morphology: Role of shear stress to yield strength ratio in subaqueous experiments. Marine 1144 Geology, pp.28-39, 2012.

B. Schauberger, S. Rolinski, and C. Müller, A network-based approach for semi-quantitative 1146 knowledge mining and its application to yield variability, Environ. Res. Lett, vol.11, issue.12, 2016.

R. C. Shipp, P. Weimer, and H. W. Posamentier, Mass-Transport Deposits in Deepwater Settings: 1149 An Introduction, Mass-transport deposits in deepwater settings, pp.3-6, 2011.

C. C. Silva, A. T. Reis, R. J. Perovano, M. A. Gorini, M. V. Santos et al., Multiple Megaslide Complexes and Their Significance for the Miocene 1153 Stratigraphic Evolution of the Offshore Amazon Basin, Submarine Mass Movements and their 1154 Consequences, p.1155, 2016.

L. Moscardelli, C. Mueller, I. Pecher, and &. S. Woelz, , pp.49-60, 1156.

C. G. Silva, E. Araújo, A. T. Reis, R. Perovano, C. Gorini et al., , p.1158, 2010.

, Megaslides in the Foz do Amazonas Basin, Brazilian Equatorial Margin, Submarine Mass 1159

, Movements and Their Consequences, pp.581-591

Q. Sun, T. Alves, X. Xie, J. He, W. Li et al., Free gas accumulations in basal shear zones of 1162 mass-transport deposits, An important geohazard on 1163 continental slope basins. Marine and Petroleum Geology, vol.81, pp.17-32, 1164.

J. P. Sutton and R. M. Mitchum, Upper Quaternary Seafloor Mass-Transport Deposits at the Base 1166 of Slope, Mass-Transport Deposits in, 1167.

. Settings, SEPM (Society for 1168 Sedimentary Geology), pp.85-110

P. J. Talling, D. G. Masson, E. J. Sumner, G. Magesini, R. Urgeles et al., Submarine landslides of the Mediterranean Sea: Trigger 1173 mechanisms, dynamics, and frequency-magnitude distribution, J. Geophys. Res. Earth Surf, vol.59, issue.7, pp.2600-2618, 2012.

M. Urlaub, P. J. Talling, and D. G. Masson, Timing and frequency of large submarine landslides: 1176 Implications for understanding triggers and future geohazard, Quaternary Science Reviews, vol.72, pp.1177-63, 2013.

M. Vanneste, N. Sultan, S. Garziglia, C. F. Forsberg, and J. Heureux, Seafloor instabilities 1179 and sediment deformation processes: The need for integrated, 2014.

, Marine Geology, vol.352, pp.183-214

D. J. Varnes, Landslide Types and Processes. Landslides and engineering practice, vol.24, pp.20-47, 1958.

P. Verney, Interprétation géologique de données sismiques par une méthode supervisée basée 1183 sur la vision cognitive, Informatique, 2009.

C. Wang, X. Ma, and J. Chen, Ontology-driven data integration and visualization for exploring 1185 regional geologic time and paleontological information, Computers & Geosciences, vol.115, pp.12-19, 1186.

A. B. Watts, M. Rodger, C. Peirce, C. J. Greenroyd, and R. W. Hobbs, Seismic structure, gravity 1188 anomalies, and flexure of the Amazon continental margin, NE Brazil, J. Geophys. Res, vol.114, issue.B7, 2009.

M. J. Woodhouse, A. R. Thornton, C. G. Johnson, B. P. Kokelaar, and J. M. Gray, Segregation-1191 induced fingering instabilities in granular free-surface flows, J. Fluid Mech, vol.709, pp.543-580, 1192.

S. Wu, Z. Qin, D. Wang, X. Peng, Z. Wang et al., Dots are nodes, colored according 1199 to their category (environmental controls, mass movement (MM) properties or mass transport 1200 deposit (MTD) descriptors); lines/arrows are undirected/directed edges. Interpretation of MTD 1201 descriptor 2 yields nodes C and E as direct potential impacting processes, then nodes A and B; node 3 1202 is only related to node 2. (b) Representation of a sub-part of the global knowledge base, with nodes 1203 mentioned in the proposed application (section 4), The Amapá and Pará-Maranhão Megaslides (ALC-AUC / PMM) were studied by, vol.54, pp.1056-1068, 1209.

, Amapá, is mapped in blue

. Reis, 18 1213 Figure 3. 3D view of the five MTDs highlighted in the studied data. MTDs D and E are separated by 1214 the brown dashed line. Colored surfaces are upslope scarps. Grey sections are seismic sections from 1215 the seismic cube, Amapá Upper Complex (AUC), more recent, is mapped in orange, after 1211, 1216.