/. Good-divisors-d1, , p.2

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, Q := Decomposition(F,Zeros(Kx!q

, K<b>:=ResidueClassField(Q)

, degree of Q is, Degree(Q

. //-n,

, D1 := RandomIrreduciblePolynomial, vol.16, p.1

, D1 a

, D1:=Decomposition(F,Zeros(Kx!D1

, D1:=1*D1

, D2:=RandomIrreduciblePolynomial(F16, p.1

, D2 := x^14 + x^2 + a*x + 1

, D2:=Decomposition(F,Zeros(Kx!D2

, D2:=1*D2

, D1-Q is special ?, Check D1 and D2 are suitable

. //-n, D2-Q is special ?

, Is D1 equivalent to D2 ?

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, LD1, vol.1, p.=RiemannRochSpace

, LD2, vol.2, p.=RiemannRochSpace

H. Ld1d2 and . Riemannrochspace, , vol.1

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, Construction of E1=Evalf(Q) and set a

, E1:=Transpose(Matrix(L))

, BasisLD1 := Matrix(F,1,n,BD1)*Matrix(F, pp.1-1

. //basisld1,

, Construction of E2=Evalf(Q) and set a

, E2:=Transpose(Matrix(L))

, BasisLD2 := Matrix(F,1,n,BD2)*Matrix(F, pp.2-3

. //basisld2,

, L2 := ElementToSequence, vol.2

, addition

, b^5 * (1 + a^2*b^3 + b^4) = b^9 + a^2*b^8 + b^5 X2 := Matrix

, Y2 := Matrix(F16,n,1,ElementToSequence(1 + a^2*b^3 + b^4

, *b + b^2 + a*b^4) * (a*b + b^2 + a*b^4) = a^2*b^8 + b^4 + a^2*b^2 X3 := Matrix, vol.3

, Y3 := Matrix(F16,n,1,ElementToSequence(a*b + b^2 + a*b^4

, Y4 := Matrix(F16,n,1,ElementToSequence(a*b + b^2 + a*b^4

, A

/. ,

, F4<a>:=GF(4)

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, Kx<x> := FunctionField(F4)

, Kxy<y> := PolynomialRing(Kx

, =y^2 + y + x/(x^3 + x +, vol.1

, F<c> := FunctionField(f)

, // 10 degree 1 places LP2:=Places

/. Good-divisors-d1, , p.2

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, Q := Decomposition(F,Zeros(Kx!q

, K<b>:=ResidueClassField(Q)

, degree of Q is, Degree(Q

. //-n,

, D1 := RandomIrreduciblePolynomial, vol.4, p.1

, D1 := x^6 + a*x^4 + a*x^2 + x + a^2

, D1:=Decomposition(F,Zeros(Kx!D1

, D1:=1*D1

, D2:=RandomIrreduciblePolynomial(F4, p.1

, D2 := x^6 + a*x^3 + a^2*x^2 + a^2

, D2:=Decomposition(F,Zeros(Kx!D2

, D2:=1*D2

, D1-Q is special ?, Check D1 and D2 are suitable

. //-n, D2-Q is special ?

, Is D1 equivalent to D2 ?

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, LD1, vol.1, p.=RiemannRochSpace

, LD2, vol.2, p.=RiemannRochSpace

H. Ld1d2 and . Riemannrochspace, , vol.1

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, Construction of E1=Evalf(Q) and set a

, E1:=Transpose(Matrix(L))

, BasisLD1 := Matrix(F,1,n,BD1)*Matrix(F, pp.1-1

. //basisld1,

, Construction of E2=Evalf(Q) and set a

, E2:=Transpose(Matrix(L))

, BasisLD2 := Matrix(F,1,n,BD2)*Matrix(F, pp.2-3

. //basisld2,

, L2 := ElementToSequence, vol.2

, addition

, TT := Matrix

. Basisld1d2,

, BLD1D2 := ExtendBasis

, Vectors of BLD1D2 are independent ?

, Basis of BLD1D2

:. Stemp and . St,

, place such that the 11x11-matrix T has rank 11 numPlace:=0

, ST1:=Append

, Matrix(2*n+g-1,2*n+g-1, ST

, Rank(T) eq 11 then numPlace:=j; break; end if

, num of the chosen 2 degree place : ", numPlace

, TI := T^-1

/. @parameter, VarY are the coordinates in a canonical basis // of the elements of (F4)^n to multipliate // @return : the result of VarX * VarY in the canonical basis of (F4)^n mult := function

, Matrix, vol.4

, TFX:=T*fx

, TFY:=T*fy

*. Kk!,

, mp:=ElementToSequence(mb,F4)

, E_Q(TI(u)) : T^-1 then evaluation in Q uu:=Matrix(F,TI*u)

, Evaluate(Matrix(1,2*n+g-1,BasisLD1D2)*uu,Q)

, Y1 := Matrix(F4,n,1,ElementToSequence(1+a*b+a*b^2

, Y2 := Matrix(F4,n,1,ElementToSequence(1 + a^2*b^3 + b^4

, X3 := Matrix(F4,n,1,ElementToSequence(a*b + b^2 + a*b^4

, Y3 := Matrix(F4,n,1,ElementToSequence(a*b + b^2 + a*b^4

, F2:=GF

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, Kx<x> := FunctionField, vol.2

, Kxy<y> := PolynomialRing(Kx

, F<c> := FunctionField(f)

, // 3 degree 1 places LP2:=Places

/. Good-divisors-d1, , p.2

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, x^5 + x^3 + 1

, Q := Decomposition(F,Zeros(Kx!q

, K<b>:=ResidueClassField(Q)

, D1 := RandomIrreduciblePolynomial, vol.2, p.1

, D1 := x^6 + x^5 + x^4 + x + 1

, D1:=Decomposition(F,Zeros(Kx!D1

, D1:=1*D1

, D2:=RandomIrreduciblePolynomial(F2, p.1

, D2 := x^6 + x^5 + x^2 + x + 1

, D2:=Decomposition(F,Zeros(Kx!D2

, D2:=1*D2

, D1-Q is special ?, Check D1 and D2 are suitable

. //-n, D2-Q is special ?

, Is D1 equivalent to D2 ?

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, LD1, vol.1, p.=RiemannRochSpace

, LD2, vol.2, p.=RiemannRochSpace

H. Ld1d2 and . Riemannrochspace, , vol.1

/. %%%%%%%%%%%%%%%%%%%%%%%%%%%,

, Construction of E1 : E1=Evalf(Q) and set a

, E1:=Transpose(Matrix(L))

, BasisLD1 := Matrix(F,1,n,BD1)*Matrix(F, pp.1-1

. //basisld1,

, Construction of E2 : E2=Evalf(Q) and set a

, E2:=Transpose(Matrix(L))

, BasisLD2 := Matrix(F,1,n,BD2)*Matrix(F, pp.2-3

. //basisld2,

, L2 := ElementToSequence, vol.2

, addition

, TT := Matrix

. Basisld1d2,

, BLD1D2 := ExtendBasis

, Vectors of BLD1D2 are independent ?

, Basis of BLD1D2

, ST2:=Append

, ST4:=Append

, ST4:=Append

, ST4:=Append

, Matrix(2*n+g-1,2*n+g-1, ST

, Rank of T

, TI := T^-1

/. @parameter, VarY are the coordinates in a canonic basis // of the elements of (F4)^n to multiply // @return : the result of VarX * VarY in the canonic basis of (F2)^n mult := function

, Matrix, vol.2

, TFX:=T*fx

. Tfy:=t*fy,

*. Kk!,

, mp:=ElementToSequence(mb,F2)

*. Kk4!,

, mp:=ElementToSequence(mb,F2)

, = mp, vol.9

, = mp, vol.10

, E_Q(TI(u)) : T^-1 then evaluation in Q uu:=Matrix(F,TI*u)

, Evaluate(Matrix(1,2*n+g-1,BasisLD1D2)*uu,Q)

, Y1 := Matrix

, b^4*(b^2+b^3) = b^20 X2 := Matrix, vol.2

, Y2 := Matrix

, Y3 := Matrix(F2,n,1,ElementToSequence

N. Arnaud, Évaluation Dérivées, Multiplication dans les Corps Finis et Codes Correcteurs, 2006.

K. Atighehchi, S. Ballet, A. Bonnecaze, and R. Rolland, On Chudnovsky-Based Arithmetic Algorithms in Finite Fields. Mathematics of Computation

S. Ballet, A. Bonnecaze, and M. Tukumuli, On the construction of elliptic Chudnovsky-type algorithms for multiplication in large extensions of finite fields, Journal of Algebra and Its Applications, vol.15, issue.1, p.1650005, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01222951

S. Ballet, Curves with many points and multiplication complexity in any extension of Fq. Finite Fields and their Applications, vol.5, pp.364-377, 1999.

S. Ballet, Quasi-optimal algorithms for multiplication in the extensions of F 16 of degree 13, 14 and 15, Journal of Pure and Applied Algebra, vol.171, issue.2-3, pp.149-164, 2002.

S. Ballet and D. L. Brigand, On the existence of non special divisor of degree g and g ? 1 in algebraic function fields over Fq, Journal of Number Theory, vol.116, pp.293-310, 2006.

S. Ballet and J. Pieltant, On the tensor rank of multiplication in any extension of F 2, Journal of Complexity, vol.27, pp.230-245, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00828053

S. Ballet and R. Rolland, Multiplication algorithm in a finite field and tensor rank of the multiplication, Journal of Algebra, vol.272, issue.1, pp.173-185, 2004.

S. Ballet and R. Rolland, Families of curves over any finite field attaining the generalized Drinfeld-Vladut bound, Actes de la Conférence "Théorie des Nombres et Applications, pp.5-18, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01079406

S. Ballet, D. L. Brigand, and R. Rolland, On an application of the definition field descent of a tower of function fields. Arithmetics, geometry, and coding theory, pp.187-203, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01086197

S. Ballet, J. Chaumine, and J. , Pieltant Shimura modular curves and asymptotic symmetric tensor rank of multiplication in any finite field, Proceedings of the Conference Algebraic informatics, vol.8080, pp.160-172, 2013.

S. Ballet, J. Pieltant, M. Rambaud, and J. Sisjling, On some bounds for symmetric tensor rank of multiplication in finite fields, Arithmetic, geometry, cryptography and coding theory, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01318315

S. Ballet, C. Ritzenthaler, and R. Rolland, On the existence of dimension zero divisors in algebraic function fields defined over Fq Acta Arithmetica, vol.143, pp.377-392, 2010.

U. Baum and M. A. Shokrollahi, An optimal algorithm for multiplication in F 256 /F 4 . Applicable Algebra in Engineering, vol.2, pp.15-20, 1991.

W. Bosma, J. Cannon, and C. Playoust, The Magma Algebra System I. The user language, Journal of Symbolic Computation, vol.24, pp.235-265, 1957.

N. H. Bshouty, Multinlinear complexity is equivalent to optimal tester size, Electronic Colloquium on Computational Complexity, 2013.

M. Cenk and F. Özbudak, On multiplication in finite fields, Journal of Complexity, vol.26, pp.172-186, 2010.

D. V. and G. V. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, Journal of Complexity, vol.4, pp.285-316, 1988.

Y. Ihara, Some remarks on the number of rational points of algebraic curves, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.28, pp.721-724, 1981.

R. Lidl and H. , Niederreiter Finite fields. Encyclopedia of Mathematics and Its applications, vol.20, 2000.

J. Pieltant, Tours de corps de fonctions algébriques et rang de tenseur de la multiplication dans les corps finis, 2012.

J. Pieltant and H. Randriambololona, New uniform and asymptotic upper bounds on the tensor rank of multiplication in extensions of finite fields. Mathematics of Computation, vol.84, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00828153

H. Randriambololona, Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method, Journal of Complexity, vol.28, pp.489-517, 2012.

J. Serre, Sur le nombre de points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris, Sér. I Math, vol.296, pp.397-402, 1983.

G. V. Shabat, Curves with many points, 2001.

I. Shparlinski, M. Tsfasman, and S. Vladut, Curves with many points and multiplication in finite fields, Coding Theory and Algebraic Geometry, number 1518 in Lectures Notes in Mathematics, pp.145-169, 1991.

H. Stichtenoth, Algebraic Function Fields and Codes, 1993.

S. Winograd, On Multiplication in Algebraic Extension Fields, Theoretical Computer Science, vol.8, pp.359-377, 1979.