A. Paul-dubois-taine and D. Amsallem, An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models, International Journal for Numerical Methods in Engineering, vol.102, issue.5, pp.1262-1292, 2015.

P. Xu, Truncated SVD methods for discrete linear ill-posed problems, Geophysical Journal International, vol.135, pp.505-514, 1998.

C. Farhat, T. Chapman, and P. Avery, Structure-preserving, stability, and accuracy properties of the Energy-Conserving Sampling and Weighting (ECSW) method for the hyper reduction of nonlinear finite element dynamic models, International Journal for Numerical Methods in Engineering, vol.102, issue.5, pp.1077-1110, 2015.

C. Soize and C. Farhat, A nonparametric probabilistic approach for quantifying uncertainties in low-and highdimensional nonlinear models, International Journal for Numerical Methods in Engineering, vol.109, issue.6, pp.837-888, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01353194

C. Farhat, A. Bos, P. Avery, and C. Soize, Modeling and quantification of model-form uncertainties in eigenvalue computations using a stochastic reduced model, AIAA Journal, vol.56, pp.1198-1210, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01625205

C. Farhat, P. Avery, T. Chapman, and J. Cortial, Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, International Journal for Numerical Methods in Engineering, vol.98, issue.9, pp.625-662, 2014.

K. Carlberg, C. Bou-mosleh, and C. Farhat, Efficient nonlinear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, International Journal for Numerical Methods in Engineering, vol.86, pp.155-181, 2011.

K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, Journal of Computational Physics, vol.242, pp.623-647, 2013.

A. Gupta, P. Seiler, and B. Danowsky, Ground vibration tests on a flexible flying wing aircraft, AIAA SciTech, 2016.

C. Farhat, A. Bos, R. Tezaur, T. Chapman, P. Avery et al., A stochastic projection-based hyperreduced order model for model-form uncertainties in vibration analysis, AIAA SciTech, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01685246

C. Soize and R. Ghanem, Data-driven probability concentration and sampling on manifold, Journal of Computational Physics, vol.321, pp.242-258, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01283842

C. Soize and R. Ghanem, Polynomial chaos representation of databases on manifolds, Journal of Computational Physics, vol.335, pp.201-221, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01448413

R. Ghanem and C. Soize, Probabilistic nonconvex constrained optimization with fixed number of function evaluations, International Journal for Numerical Methods in Engineering, vol.113, issue.4, pp.719-741, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01576263

J. C. Spall, Introduction to Stochastic Search and Optimization, 2003.

R. J. Serfling, Approximation Theorems of Mathematical Statistics, 2002.

C. Soize, Uncertainty Quantification. An Accelerated Course with Advanced Applications in Computational Engineering, Interdisciplinary Applied Mathematics, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00826082

J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, Journal of Machine Learning Research, vol.13, pp.281-305, 2012.

J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian optimization of machine learning algorithms, Advances in Neural Information Processing Systems, vol.25, pp.2960-2968, 2012.

D. E. Goldberg, Genetic Algorithms in Search. Optimization & Machine Learning, 1989.

Y. Bengio, Gradient-based optimization of hyperparameters, Neural Computation, vol.12, issue.8, pp.1889-1900, 2000.

R. H. Byrd, M. E. Hribar, and J. Nocedal, An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, vol.9, issue.4, pp.877-900, 1999.

A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, 1997.

D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition, 2015.

M. A. Hopcroft, What is the Young's modulus of silicon, Journal of Microelectromechanical systems, vol.19, issue.2, pp.229-238, 2010.

R. Ohayon and C. Soize, Structural Acoustics and Vibration, Prepared using nmeauth.cls, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00770412