M. G. Soto and H. Adeli, Tuned mass dampers, Archives of Computational, Methods in Engineering, vol.20, issue.4, pp.419-431, 2013.

V. G. Veselago, The electrodynamics of substances with simultaneously negative values of and ?, Soviet Physics, vol.10, pp.509-514, 1968.

S. Li and X. L. Gao, Handbook of Micromechanics and Nanomechanics, 2013.

D. Vescovo and I. Giorgio, Dynamic problems for metamaterials: Review of existing models and ideas for further research, International Journal of Engineering Science, vol.80, pp.153-172, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00947477

D. R. Smith and N. Kroll, Negative refractive index in left-handed materials, Physical Review Letters, vol.85, pp.2933-2936, 2000.

Y. Ding, Z. Liu, C. Qiu, and J. Shi, Metamaterial with simultaneously negative bulk modulus and mass density, Physical Review Letters, vol.99, p.93904, 2007.

P. Sheng, J. Mei, Z. Liu, and W. Wen, Dynamic mass density and acoustic metamaterials, Physica B, vol.394, pp.256-261, 2007.

Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, Membrane-type acoustic metamaterial with negative dynamic mass, Physical Review Letters, vol.101, issue.20, p.204301, 2008.

S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, Acoustic metamaterial with negative density, Physics Letters A, vol.373, pp.4464-4469, 2009.

X. N. Liu, G. K. Hu, G. L. Huang, and C. T. Sun, An elastic metamaterial with simultaneously negative mass density and bulk modulus, Applied Physics Letters, vol.98, p.251907, 2011.

X. Wang, Dynamic behaviour of a metamaterial system with negative mass and modulus, International Journal of Solids and Structures, vol.51, pp.1534-1541, 2014.

H. Chen and C. T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Applied Physics Letters, vol.91, p.183518, 2007.

X. Zhou and G. Hu, Analytic model of elastic metamaterials with local resonances, Physical Review B, vol.79, p.195109, 2009.

M. I. Hussein and M. J. Frazize, Metadamping: an emergent phenomenon in dissipative metamaterials, Journal of Sound and Vibration, vol.332, pp.4767-4774, 2013.

R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, A chiral elastic metamaterial beam for broadband vibration suppression, Journal of Sound and Vibration, vol.333, pp.2759-2773, 2014.

Z. Yang, H. M. Dai, N. H. Chan, G. C. Ma, and P. Sheng, Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime, Applied Physics Letters, vol.96, p.41906, 2010.

J. Auriault and C. Boutin, Long wavelength inner-resonance cut-off frequencies in elastic composite materials, International Journal of Solids and Structures, vol.49, pp.3269-3281, 2012.

Y. Xiao, J. Wen, and X. Wen, Sound transmission loss of metamaterialbased thin plates with multiple subwavelength arrays of attached resonators, Journal of Sound and Vibration, vol.331, pp.5408-5423, 2012.

S. Varanasi, J. S. Bolton, T. H. Siegmund, and R. J. Cipra, The low frequency performance of metamaterial barriers based on cellular structures, Applied Acoustics, vol.74, pp.485-495, 2013.

X. Wang, H. Zhao, X. Luo, and Z. Huang, Membrane-constrained acoustic metamaterials for low frequency sound insulation, Applied Physics Letters, vol.108, issue.4, p.41905, 2016.

R. E. Roberson, Synthesis of a nonlinear dynamic vibration absorber, Portions of a dissertation submitted to the Department of Applied Mechanics, Washington University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, pp.205-220, 1952.

R. Bouc, The power-spectral density of response for a strongly nonlinear random oscillator, Journal of Sound and Vibration, vol.175, pp.317-331, 1999.

C. Soize, Stochastic linearization method with random parameters for SDOF nonlinear dynamical systems: Prediction and identification procedures, Probabilistic Engineering Mechanics, vol.10, issue.3, pp.143-152, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00770288

S. Bellizzi and R. Bouc, Analysis of multi-degree of freedom strongly nonlinear systems with random input, Probabilistic Engineering Mechanics, vol.14, pp.245-256, 1999.

P. D. Spanos, I. A. Kougioumtzoglou, and C. Soize, On the determination of the power spectrum of randomly excited oscillators via stochastic averaging: An alternative perspective, Probabilistic Engineering Mechanics, vol.26, pp.10-15, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00699350

C. Soize, Vibration damping in low-frequency range due to structural complexity. A model based on the theory of fuzzy structures and model parameters estimation, Computers and Structures, vol.58, pp.901-915, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00770275

O. Gendelman, L. I. Manevitch, A. F. Vakakis, and R. Closkey, Energy pumping in nonlinear mechanical oscillators: part I-dynamics of the underlying hamiltonian systems, Journal of Applied Mechanics, vol.68, pp.34-41, 2001.

A. F. Vakakis and O. Gendelman, Energy pumping in nonlinear mechanical oscillators: part II-resonance capture, Journal of Applied Mechanics, vol.68, pp.42-48, 2001.

A. F. Vakakis, Shock isolation through the use of nonlinear energy sinks, Journal of Vibration and Control, vol.9, pp.79-93, 2003.

A. Carrella, M. J. Brennan, and T. P. Waters, Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic, Journal of Sound and Vibration, vol.301, pp.678-689, 2007.

N. A. Alexander and F. Schilder, Exploring the performance of a nonlinear tuned mass damper, Journal of Sound and Vibration, vol.319, pp.445-462, 2009.

J. C. Ji and N. Zhang, Suppression of super-harmonic resonance response using a linear vibration absorber, Mechanics Research Communications, vol.38, pp.411-416, 2011.

J. C. Ji, Design of a nonlinear vibration absorber using three-to-one internal resonances, Mechanical Systems and Signal Processing, vol.42, pp.236-246, 2014.

L. D. Viet and N. B. Nghi, On a nonlinear single-mass two-frequency pendulum tuned mass damper to reduce horizontal vibration, Engineering Structures, vol.81, pp.175-180, 2014.

L. Cveticanin, M. Kalamiyazdi, H. Askari, and Z. Saadatnia, Vibration of a two-mass system with non-integer order nonlinear connection, Mechanics Research Communications, vol.43, pp.22-28, 2011.

D. Lavazec, G. Cumunel, D. Duhamel, and C. Soize, Attenuation of mechanical vibrations at low frequencies by a nonlinear dynamical absorber, 23ème Congrès Français de Mécanique, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01585746

B. D. Coleman and W. Noll, Foundations of Linear Viscoelasticity, vol.33, pp.239-249, 1961.

C. Desceliers and C. Soize, Non-linear viscoelastodynamic equations of three-dimensional rotating structures in finite displacement and finite element discretization, International Journal of Non-Linear Mechanics, vol.39, pp.343-368, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00686206

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, 2008.

A. Papoulis, Probability, Random Variables and Stochastic Processes, 1965.

L. Guikhman and A. V. Skorokhod, The Theory of Stochastic Processes, 1979.

M. B. Priestley, Spectral Analysis and Time Series, 1981.

M. Shinozuka, Simulation of multivariate and multidimensional random processes, Journal of the Acoustical Society America, vol.49, pp.357-367, 1971.

F. Poirion and C. Soize, Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous Gaussian vector fields, Probabilistic Methods in Applied Physics, pp.17-53, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00770416

L. Verlet, Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, vol.159, issue.1, pp.98-103, 1967.

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the Störmer/Verlet method, Acta Numerica, vol.12, pp.399-450, 2003.

C. Soize and I. E. Poloskov, Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation, Computers and Mathematics with Applications, vol.64, issue.11, pp.3594-3612, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00746280