M. Aizenman, J. Chayes, L. Chayes, and C. Newman, Discontinuity of the Magnetization in the One-Dimensional 1/ | x ? y | 2 Percolation, Ising and Potts Models, J. Stat. Phys, vol.50, issue.2, pp.1-40, 1988.

R. Bissacot and L. Cioletti, Phase transition in ferromagnetic Ising models with non-uniform external fields, J. Stat. Phys, vol.139, pp.598-617, 2010.

R. Bissacot, M. Cassandro, L. Cioletti, and E. Presutti, Phase transition in ferromagnetic Ising models with spatially dependent magnetic fields, Comm. Math. Phys, vol.337, pp.41-53, 2015.

R. Bissacot, E. O. Endo, and A. C. Van-enter, Stability of the phase transition of criticalfield Ising model on Cayley trees under inhomogeneous external fields

R. Bissacot, E. O. Endo, A. C. Van-enter, B. Kimura, and W. M. , Phase transition of long-range Dyson models in inhomogeneous fields

J. Bricmont, J. Lebowitz, and C. Pfister, On the Equivalence of Boundary Conditions, J. Stat. Phys, vol.21, pp.573-582, 1979.

M. Cassandro, P. A. Ferrari, I. Merola, and E. Presutti, Geometry of Contours and Peierls Estimates in d = 1 Ising Models with Long Range Interactions, J. Math. Phys, vol.46, issue.5, p.533305, 2005.

M. Cassandro and E. Olivieri, Renormalization group and analyticity in one dimension: A proof of Dobrushin's theorem, Comm. Math. Phys, vol.80, pp.255-269, 1981.

M. Cassandro, E. Orlandi, and P. Picco, Phase Transition in the 1D Random Field Ising Model with Long Range Interaction, Comm. Math. Phys, vol.288, pp.731-744, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00275312

L. Cioletti and R. Vila, Graphical representations for Ising and Potts models in general external fields, J. Stat. Phys, vol.162, pp.81-122, 2016.

R. L. Dobrushin, The Description of a Random Field by Means of Conditional Probabilities and Conditions of its Regularity, Theo. Proba. Appl, vol.13, pp.197-224, 1968.

E. B. Dynkin, Sufficient statistics and extreme points, Ann. Proba, vol.6, issue.5, pp.705-730, 1978.

F. J. Dyson, Existence of a Phase Transition in a One-Dimensional Ising Ferromagnet, Comm. Math. Phys, vol.12, pp.91-107, 1969.

F. J. Dyson, An Ising ferromagnet with discontinuous long-range order, Comm. Math. Phys, vol.21, pp.269-283, 1971.

A. C. Van-enter, R. Fernández, and A. D. Sokal, Regularity Properties and Pathologies of Position-Space R.G. Transformations: Scope and Limitations of Gibbsian Theory, J. Stat. Phys, vol.72, pp.879-1167, 1993.

A. C. Van-enter and C. Külske, Two connections between random systems and nonGibbsian measures, J. Stat. Phys, vol.126, pp.1007-1024, 2007.

A. C. Van-enter and A. L. Ny, Decimation of the Dyson-Ising Ferromagnet, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01290716

R. Fernández, Gibbsianness and non-Gibbsianness in Lattice random fields, Mathematical Statistical Physics. Proceedings of the 83rd Les Houches Summer School, 2005.

R. Fernández and C. Pfister, Global specifications and non-quasilocality of projections of Gibbs measures, Ann. Proba, vol.25, pp.1284-315, 1997.

H. Föllmer, Phase Transition and Martin Boundary, Séminaires de Probabilités IX, vol.465, pp.305-317, 1975.

H. Föllmer, On the Global Markov Property, Quantum fields: Algebras, Processes, pp.293-302, 1980.

C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation Inequalities on some Partially Ordered Sets, Comm. Math. Phys, vol.22, pp.89-103, 1971.

J. Fröhlich, R. B. Israel, E. H. Lieb, and B. Simon, Phase Transitions and Reflection Positivity. I. General Theory and Long Range Lattice Models, Comm. Math. Phys, vol.62, pp.1-34, 1978.

J. Fröhlich and T. Spencer, The Phase Transition in the One-Dimensional Ising Model with 1/r 2 interaction energy, Comm. Math. Phys, vol.84, pp.87-101, 1982.

S. Friedli and Y. Velenik, Equilibrium Statistical Mechanics : a Concrete Mathematical Introduction

H. O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, vol.9, 1988.

S. Goldstein, Remarks on the Global Markov Property, Comm. Math. Phys, vol.74, pp.223-234, 1980.

R. B. Griffiths, Peierls Proof of Spontaneous Magnetization in a Two-Dimensional Ising Ferromagnet, Phys. Rev, vol.2, pp.437-439, 1964.

K. Haller and T. Kennedy, Absence of renormalization pathologies near the critical temperature. Two examples, J.Stat. Phys, vol.85, pp.607-637, 1996.

P. Hulse, On the Ergodic Properties of Gibbs States for Attractive Specifications, J. London Math. Soc, vol.43, issue.2, pp.119-124, 1991.

J. Imbrie, Decay of Correlations in One-Dimensional Ising Model with J ij =| i ? j | ?2, Comm. Math. Phys, vol.85, pp.491-515, 1982.

J. Imbrie and C. M. Newman, An Intermediate Phase with Slow Decay of Correlations in One-Dimensional 1/ | x ? y | 2 Percolation, Ising and Potts Models, Comm. Math. Phys, vol.118, pp.303-336, 1988.

K. Johansson, Condensation of a One-Dimensional Lattice Gas, Comm. Math. Phys, vol.141, pp.41-61, 1991.

M. Kac and C. J. Thompson, Critical behaviour of several lattice models with long-range interaction, 1968.

A. Kerimov, A block effect of external field in the one-dimensional ferromagnetic Ising model with long-range interaction, J.Phys. A: Math. Theor, vol.40, pp.40407-40414, 2007.

O. Kozlov, Gibbs Description of a System of Random Variables, Problems Inform. Transmission, vol.10, pp.258-265, 1974.

O. E. Lanford and D. Ruelle, Observables at Infinity and States with Short Range Correlations in Statistical Mechanics, Comm. Math. Phys, vol.13, pp.194-215, 1969.

J. L. Lebowitz, Coexistence of Phases for Ising Ferromagnet, J. Stat. Phys, vol.16, pp.463-476, 1977.

J. L. Lebowitz, Thermodynamic Limit of the Free Energy and Correlation Functions of Spins Systems, Acta Phys. Austr, pp.201-220, 1976.

J. L. Lebowitz and O. Penrose, Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuum systems, Comm. Math. Phys, vol.11, p.99124, 1968.

T. D. Lee and C. Yang, Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model, Physical Review, vol.87, pp.410-419, 1952.

A. L. Ny, Introduction to Generalized Gibbs measures, Ensaios Matemáticos, vol.15, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00194866

A. L. Ny, Almost Gibbsianness and Parsimonious Description of the Decimated 2d-Ising model, J. Stat. Phys, vol.152, issue.2, pp.305-335, 2013.

J. Littin and P. Picco, Quasiadditive estimates on the Hamiltonian for the One-dimensional Long-Range Ising Model, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01583433

C. Maes, F. Redig, S. Shlosman, and A. Van-moffaert, Percolation, Path Large deviations and Weak Gibbsianity, Comm. Math. Phys, vol.209, pp.517-545, 1999.

F. Redig and F. Wang, Transformations of One-Dimensional Gibbs Measures with Infinite Range Interaction, Markov Proc. Relat. Fields, vol.16, issue.4, 2010.

D. Ruelle, Statistical Mechanics of a One Dimensional Lattice Gas, Comm. Math. Phys, vol.9, pp.267-278, 1968.

D. Ruelle, On the use of "small external fields" in the problem of symmetry breakdown in statistical mechanics, Ann. Phys, vol.69, pp.364-374, 1972.

G. Rushbrooke and H. Ursell, On one-dimensional regular assemblies, Proc. Cambridge Phil. Soc, vol.44, 1948.

B. Simon and A. D. Sokal, Rigorous Entropy-Energy Arguments, J. Stat. Phys, vol.25, pp.679-694, 1981.

A. D. Sokal, Existence of Compatible Families of Proper Regular Conditional Probabilities, Z. Wahrsch. verw. Geb, vol.56, pp.537-548, 1981.

W. G. Sullivan, Potentials for Almost Markovian Random Fields, Comm. Math. Phys, vol.33, pp.61-74, 1976.