M. Biskup and R. Koteck´ykoteck´y, Phase coexistence of gradient Gibbs states, Probab. Theory Relat. Fields, vol.139, issue.1-2, pp.1-39, 2007.

R. Bissacot, E. O. Endo, and A. C. Van-enter, Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields, Stoch. Process. Appl, vol.127, issue.12, pp.4126-4138, 2017.

A. Bovier and C. Külske, A rigorous renormalization group method for interfaces in random media, Rev. Math. Phys, vol.6, issue.3, pp.413-496, 1994.

A. Bovier and C. Külske, There are no nice interfaces in 2 + 1 dimensional SOS-models in random media, J. Stat. Phys, vol.83, pp.751-759, 1996.

C. Cotar and C. Külske, Existence of random gradient states, Ann. Appl. Probab, vol.22, issue.4, pp.1650-1692, 2012.

C. Cotar and C. Külske, Uniqueness of gradient Gibbs measures with disorder, Probab. Theory Relat. Fields, vol.162, issue.3, pp.587-635, 2015.

J. T. Cox, Entrance laws for Markov chains, Ann. Probab, vol.5, issue.3, pp.533-549, 1977.

A. C. Van-enter and C. Külske, Non-existence of random gradient Gibbs measures in continuous interface models in d = 2, Ann. Appl. Probab, vol.18, pp.109-119, 2008.

T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landau ?? interface model, Comm. Math. Phys, vol.185, 1997.

H. O. Georgii, Gibbs Measures and Phase Transitions, vol.9, 2011.

F. P. Kelly, Stochastic models of computer communication systems. With discussion, J. Roy. Stat. Soc. Ser. B, vol.47, pp.415-428, 1985.

C. Külske and U. A. Rozikov, Extremality of translation-invariant phases for a three-state SOS-model on the binary tree, J. Stat. Phys, vol.160, issue.3, pp.659-680, 2015.

C. Külske and P. Schriever, Gradient Gibbs measures and fuzzy transformations on trees, Markov Process. Relat. Fields, vol.23, pp.553-590, 2017.

A. E. Mazel and Y. M. Suhov, Random surfaces with two-sided constraints: an application of the theory of dominant ground states, J. Stat. Phys, vol.64, pp.111-134, 1991.

V. V. Prasolov, . Polynomials, and . Spinger, , 2004.

K. Ramanan, A. Sengupta, I. Ziedins, and P. Mitra, Markov random field models of multicasting in tree networks, Adv. Appl. Probab, vol.34, pp.58-84, 2002.

U. A. Rozikov and Y. M. Suhov, Gibbs measures for SOS model on a Cayley tree, Infin. Dimens. Anal. Quantum Probab. Relat. Top, vol.9, issue.3, pp.471-488, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02037877

U. A. Rozikov and S. A. Shoyusupov, Gibbs measures for the SOS model with four states on a Cayley tree, Theor. Math. Phys, vol.149, issue.1, pp.1312-1323, 2006.

U. A. Rozikov, Gibbs measures on Cayley trees, World Sci. Publ. Singapore, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01591298

U. A. Rozikov, A contour method on Cayley tree, J. Stat. Phys, vol.130, pp.801-813, 2008.

S. Zachary, Countable state space Markov random fields and Markov chains on trees, Ann. Probab, vol.11, issue.4, pp.894-903, 1983.

S. Zachary, Bounded, attractive and repulsive Markov specifications on trees and on the onedimensional lattice, Stoch. Process. Appl, vol.20, pp.559-581, 1985.