G. Wang, B. Rister, and J. R. Cavallaro, WorkloadAnalysis and Efficient OpenCL-basedImplementation of SIFT Algorithm on a Smartphone, GlobalSIP, 2013.

R. G. Adrian, . Harwood, J. Alistair, and . Revell, Parallelisation of an interactive lattice-Boltzmann method on an Android-powered mobile device, Advances in Engineering Software, vol.104, pp.38-50, 2017.

M. De-marsico, C. Galdi, M. Nappi, and D. Riccio, FIRME: Face and Iris Recognition for Mobile Engagement, Image and Vision Computing, vol.32, pp.1161-1172, 2014.

W. Wu, Q. He, Y. Wang, Y. Hu, B. Li et al., An Improved Method of Vibe for Motion Detection Based on Android System, 2013.

J. Dash and . Nilamanibhoi, A thresholding based technique to extractretinalblood vessels from funds image, Future Computing and Informatics Journal, pp.1-7, 2017.

, A new supervised retinal vessels segmentation method based on robust hybrid features, Biomedical Signal Processing and Control, vol.30, pp.1-12, 2016.

Z. Jiang and J. Yepez, Fast, accurate and robust retinal vessels segmentation system, biocybernatics and biomedicine engineering, pp.1-10, 2017.

S. Wang, Y. Yin, G. Cao, B. Wei, and Y. Yang, Hierarchical retinal blood vessel segmentation based on feature and ensemble learning, Neurocomputing, pp.1-10, 2014.

Z. Chengzhang, . Zou-beiji, C. Yao, W. U. Jinkai, and . Hui, An Ensemble Retinal Vessel Segmentation Based on Supervised Learning in Fundus Images, Chinese Journal of Electronics, pp.503-511, 2016.

D. D. Sohiniroychowdhury, . Koozekanani, K. Keshab, and . Parhi, Iterative Vessel Segmentation of Fundus Images, IEEE Transactions on Biomedical Engineering, pp.1-12, 2015.

. Sudeshnasilkar, P. Santi, and . Maity, Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy, Computer Methods and Programs in Biomedicine, pp.1-22, 2016.

D. D. Sohiniroychowdhury, K. Koozekanani, and . Parh, Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Sub-Image Classification, IEEE Journal of Biomedical and Health Informatics, pp.1-11, 2014.

A. Ali, W. M. Ainihussain, W. Diyana, and . Zaki, vessel extraction in retinal image using automatic thresholding and GABOR WAVELET, Engineering in Medicine and Biology Society (EMBC), pp.1-4, 2017.

M. Elahehimani and H. Pourreza, Improvement of Retinal Blood Vessel Detection Using Morphological Component Analysis, Computer Methods and Programs in Biomedicine, pp.1-23, 2015.

I. Soares, M. Castelo-branco, and A. M. Pinheiro, Optic Disc Localization in Retinal Imagesbased on Cumulative Sum Fields, IEEE Journal of Biomedical and Health Informatics, pp.574-585, 2016.

A. García-floriano, A machine learning approach to medical image classification: Detecting age-related macular degeneration in fundus images, Computers & Electrical Engineering, pp.1-12, 2017.