
HAL Id: hal-01985969
https://hal.science/hal-01985969

Submitted on 18 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ON COMPACT ANISOTROPIC WEINGARTEN
HYPERSURFACES IN EUCLIDEAN SPACE

Julien Roth, Abhitosh Upadhyay

To cite this version:
Julien Roth, Abhitosh Upadhyay. ON COMPACT ANISOTROPIC WEINGARTEN HYPER-
SURFACES IN EUCLIDEAN SPACE. Archiv der Mathematik, 2019, 113 (2), pp.213-224.
�10.1007/s00013-019-01315-8�. �hal-01985969�

https://hal.science/hal-01985969
https://hal.archives-ouvertes.fr


ON COMPACT ANISOTROPIC WEINGARTEN

HYPERSURFACES IN EUCLIDEAN SPACE

JULIEN ROTH AND ABHITOSH UPADHYAY

Abstract. We show that, up to homotheties and translations, the Wulff shape

WF is the only compact embedded hypersurface of the Euclidean space satis-
fying HF

r = aHF + b with a > 0, b > 0, where HF and HF
r are respectively

the anisotropic mean curvature and anisotropic r-th mean curvature associ-

ated with the function F : Sn −→ R∗
+. Further, we show that if the L2-norm

of HF
r − aHF − b is sufficiently close to 0 then the hypersurface is close to the

Wulff shape for the W 2,2-norm.

1. Introduction

The classical Alexandrov theorem [1] says that a closed embedded hypersurface of
the Euclidean space must be a round sphere. The hypothesis, that the hypersurface
should be embedded, is crucial as proved by the counter examples of Wente [15],
Kapouleas [9] or Hsiang-Teng-Yu [7]. Further, this result has been extended to
scalar curvature and then higher order mean curvatures by Ros [11, 12] as well as
for any concave function of the principal curvatures by Korevaar [10]. For higher
order mean curvatures, the necessity of the embedding is still an open question.

Very recently, de Lima [2] proved a comparable result for the so called linear
Weingarten hypersurfaces satisfying Hr = aH + b for two real constants a > 0 and
b > 0, where H and Hr are respectively the mean curvature and the r-th mean
curvature of the hypersurfaces. The hypersurfaces are supposed to be embedded in
this result too.

In the present paper, we extend this result to higher order anisotropic mean
curvatures and then, we study its stability.

Let F : Sn −→ R∗+ be a smooth function satisfying the following convexity
assumption

(1) AF = (∇dF + F Id |TxSn)x > 0,

for all x ∈ Sn, where ∇dF is the Hessian of F and > 0 means positive definite in
the sense of quadratic forms. Now, we consider the following map

φ : Sn −→ Rn+1

x 7−→ F (x)x+ (grad|SnF )x.

The image WF = φ(Sn) is called the Wulff shape of F and is a smooth convex
hypersurface of Rn+1 due to condition (1). It is to note that if F = 1, then the
Wulff shape is the sphere Sn.

Let X : (Mn, g) −→ Rn+1 be an isometric immersion of n-dimensional closed,
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connected and oriented Riemannian manifold M into Rn+1. We denote by ν a
normal unit vector field globally defined on M , that is, we have ν : M −→ Sn. We
set SF = −AF ◦ dν, where AF is defined in (1). The operator SF is called the
F -Weingarten operator or anisotropic shape operator. In this anisotropic setting,
we can define all the corresponding extrinsic quantities like anisotropic principal
curvatures, anisotropic mean curvature and higher order mean curvatures (see the
preliminaries section for the precise definitions).

All the above mentioned results by Alexandrov and Ros have analogues for
anisotropic mean curvatures with the Wulff shape replacing the sphere (see [6]).

The first result of this paper is an isotropic version of the result of de Lima for
linear Weingerten hypersurfaces. Namely, we have the following.

Theorem 1.1. Let n > 2 be an integer, F : Sn −→ R∗+ a smooth function satis-
fying the convexity assumption (1) and let M be a closed, connected and embedded
hypersurface of Rn+1. Assume that the higher order anisotropic mean curvature
HF
r , r ∈ {2, · · ·n} never vanishes and satisfies HF

r = aHF + b for some real con-
stants a > 0 and b > 0. Then, up to translations and homotheties, M is the Wulff
shape WF .

Here, a natural question arises related to the stability of the characterization in
Theorem 1.1. We can ask, if HF

r is almost equal to aHF + b (in some sense to be
precise), then the hypersurface will be close to the Wulff shape WF or not ?

In order to give an answer to this question, we introduce the following convenient
notation. For three positive real numbers r0, h1 and h2, we define M(r0, h1, h2) as
the set of all closed, connected and embedded hypersurface of Rn+1 so that the
extrinsic radius, that is, the radius of the smallest closed ball containing M , is
smaller than r0 whereas the first and second order anisotropic mean curvatures HF

and HF
2 satisfy

‖HF ‖∞ 6 h1 and inf(HF
2 ) > h2.

Now, we can prove the following result.

Theorem 1.2. Let n > 2 be an integer, F : Sn −→ R∗+ a smooth function satisfying
the convexity assumption (1) and let M ∈ M(r0, h1, h2). Assume that the second
order anisotropic mean curvature HF

2 never vanishes and satisfies HF
2 = aHF+b+ε

for some real constants a > 0, b > 0 and ε a smooth function. Set ρ =
(
V (M)
V (WF )

) 1
n

.

Then there exists a smooth parametrisation ψ : WρF −→ M , a vector c0 ∈ Rn+1

and an explicit constant K depending on n, F , r0, h1 and h2 so that

‖ψ − Id− c0‖W 2,2(WρF ) 6 K‖ε‖2.

Here WρF = ρWF is just the image of WF by the homothety of center 0 and
ratio ρ.

This result is an improvement of the result obtained by the first author in [13]
and [14] for almost constant mean curvature and scalar curvature in the L2-sense.
In particular, if F is constant, we get the following corollary for the anisotropic
case.

Corollary 1.3. Let n > 2 be an integer and assume that M ∈ M(r0, h1, h2).
Assume that the second order anisotropic mean curvature H2 never vanishes and
satisfies H2 = aH + b+ ε for some constants a > 0, b > 0 and ε a smooth function.
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Set ρ =
(
V (M)
V (Sn)

) 1
n

. Then there exist a smooth parametrisation ψ : Sn(ρ) −→M , a

vector c0 ∈ Rn+1 and a constant K ′ depending on n, r0, h1 and h2 so that

‖ψ − Id− c0‖W 2,2(Sn(ρ)) 6 K
′‖ε‖2.

This result has also to be compared with the results of [13] and [14]. In particular
for a = 0, this gives a stability result associated with the Alexandrov theorem for
H2.

2. Preliminaries

Here, we recall the basics of anisotropic mean curvatures. These facts are clas-
sical, hence, we will not write their proofs. First, let F : Sn −→ R∗+ be a smooth
function satisfying the following convexity assumption (1)

AF = (∇dF + F Id TxSn)x > 0

at any point x ∈ Sn, in the sense of quadratic forms and where ∇dF is the Hessian
of F . Now, we consider the following map

φ : Sn −→ Rn+1

x 7−→ F (x)x+ (gradSnF )x.

The image WF = φ(Sn), which is also a smooth hypersurface of Rn+1, is called
the Wulff shape of F . Moreover, from the convexity condition (1), WF is convex.
Note that if F is a positive constant c, the Wulff shape WF is just the sphere of
radius c.

Let (Mn, g) be a closed, connected, oriented Riemannian manifold isometrically
immersed into Rn+1 by X and denote by ν its Gauss map. The (real-valued) second
fundamental form B of the immersion is defined by

B(Y,Z) =
〈
∇Y ν, Z

〉
,

for any Y,Z ∈ Γ(TM), where 〈·, ·〉 and ∇ are respectively the Riemannian metric
and the Riemannian connection of Rn+1. We also denote by S the Weingarten
operator, which is the (1, 1)-tensor associated with B via the metric g.

We consider NF = φ(ν) : M −→ WF , the anisotropic Gauss map of M . We set
SF = −dNF = −AF ◦ dν = AF ◦ S which is the anisotropic shape operator, also
called F -Weingarten operator and its eigenvalues κ1, · · · , κn are the anisotropic
principal curvatures. Now let us recall that the anisotropic higher order mean
curvatures HF

r are defined by

HF
r =

1(
n
r

)σr(SF ),

where σr(SF ) is the r-th elementary symmetric polyniomial with n variables com-
puted for anisotropic principal cruvatures κ1, · · · , κn.

We denote simply by HF the anisotropic mean curvature HF
1 . Moreover, for

convenience, we set HF
0 = 1 and HF

n+1 = 0 by convention. For the Wulff shapeWF ,
κ1 = κ2 = · · · = κn are nonzero constants. Moreover, if κ1 = κ2 = · · · = κn, then
the hypersurface has to be the Wulff shape (up to homotheties and translations).

Lemma 2.1. Let r ∈ {1, · · ·n− 1}. If Hr+1 > 0 then

(1) HF
j > 0 for all j ∈ {1, · · · , r},
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(2)
(
HF
r

) 1
r 6

(
HF
r−1
) 1
r−1 6 · · · 6

(
HF

2

) 1
2 6 HF . Moreover, in any of these

inequalities, equality occurs at a point p if and only if all the anisotropic
principal curvatures at p are equal. Hence, equality occurs everywhere if
and only if M is the Wulff shape WF , up to translations and homotheties.

We want to point out that the error term in the inequality
(
HF

2

) 1
2 6 HF is well

known and easy to compute since we have

(2) n(n− 1)
((
HF
)2 −HF

2

)
= ||τF ||2,

where τF = SF −HF Id is the anisotropic umbilicity tensor.

We also recall the anisotropic analogue of the classical Hsiung-Minkowski formu-
las [8]. The proof can be found in [5] for instance.

Lemma 2.2. Let r ∈ {0, · · ·n− 1}. Then, we have∫
M

(
F (ν)HF

r +HF
r+1〈X, ν〉

)
dvg = 0.

Note that for the particular case r = 0, we get the following

(3)

∫
M

HF 〈X, ν〉dvg = −
∫
M

F (ν)dvg.

For more convenience, we will denote VF (M) =

∫
M

F (ν)dvg.

Finally, we recall these two useful results in the case of hypersurfaces which are
embedded and so, bound some domain in Rn+1. First, we have this classical identity
obtained directly by the divergence formula

(4)

∫
M

〈X, ν〉dvg = −(n+ 1)V (Ω),

where V (Ω) is the volume of the domain Ω bounded by M . Secondly, we have the
anisotropic analogue of the well-known Heintze-Karcher inequality.

Lemma 2.3 ([5]). If M is embedded (so bounds a domain Ω) and HF is everywe-
here positive, then the following inequality holds∫

M

F (ν)

HF
dvg > (n+ 1)V (Ω),

with equality if and only if M is the Wulff shape WF (up to translations and ho-
motheties).

Finally, we add that we use the following convention for the Lp-norms. For a
smooth function f defined on M , the Lp-norm of f is defined by

‖f‖p =

(∫
M
|f |pdvg
V (M)

) 1
p

.
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3. Proof of Theorem 1.1

Since M is compact and embedded, it bounds a domain in Rn+1. We denote this
domain by Ω. Moreover, always by compactness, M has at least an elliptic point.
Since HF

r never vanishes, we can assume by connectedness and the positivity of AF
that HF

r is positive everywhere (by choosing ν as the inner normal unit vector).
Now, from the anisotropic Hsiung-Minkowski formula, we have

0 =

∫
M

(
HF
r−1F (ν) +HF

r 〈X, ν〉
)
dvg

=

∫
M

(
HF
r−1F (ν) + aHF 〈X, ν〉+ b〈X, ν〉

)
dvg,(5)

by the assumption HF
r = aHF + b. Moreover, by the Hsiung-Minkowski formula

again for HF and the divergence theorem, we get that∫
M

HF 〈X, ν〉dvg = −VF (M), and

∫
M

〈X, ν〉dvg = −(n+ 1)V (Ω),

which gives after substitution in (5)

(6)

∫
M

HF
r−1F (ν)dvg − aVF (M)− b(n+ 1)V (Ω) = 0.

Since HF
r is positive everywhere, by Lemma 2.1, HF

r−1 is also positive everywhere

and
(
HF
r−1
) 1
r−1 >

(
HF
r

) 1
r with equality if and only if the point is anisotropically

umbilical. Hence, we get

aVF (M) + b(n+ 1)V (Ω) >
∫
M

F (ν)
(
HF
r

) r−1
r dvg.

Writing
(
HF
r

) r−1
r = HF

r

(
HF
r

)−1
r and using HF

r = aHF + b again, we obtain

aVF (M) + b(n+ 1)V (Ω) > a
∫
M

F (ν)HF
(
HF
r

)− 1
r dvg + b

∫
M

F (ν)
(
HF
r

)− 1
r dvg.

Since a, b are nonnegative numbers and F is a positive function, we get, from(
HF
r

) 1
r 6 HF , the following

aVF (M) + b(n+ 1)V (Ω) > aVF (M) + b

∫
M

F (ν)

HF
dvg.

Finally, we use the anisotropic version of the Heintze-Karcher inequality∫
M

F (ν)

HF
dvg > (n+ 1)V (Ω)

to get

aVF (M) + b(n+ 1)V (Ω) > aVF (M) + b(n+ 1)V (Ω),

which means that all the previous inequalities are in fact equalities. In particular,

we have
(
HF
r−1
) 1
r−1 =

(
HF
r

) 1
r at every point and so M is totally anisotropically

umblical. Hence, up to homotheties and translations, M is the Wulff shape WF .
This concludes the proof. �
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4. Proof of Theorem 1.2

For the sake of clarity, we first proof the following lemma.

Lemma 4.1. Let n > 2 be an integer, F : Sn −→ R∗+ be a smooth function satis-
fying the convexity assumption (1) and let M be a closed connected and embedded
hypersurface of Rn+1. Assume that the second order anisotropic mean curvature
HF

2 never vanishes and satisfies HF
2 = aHF + b+ ε for some real constants a > 0,

b > 0 and ε a smooth function. Then we have

‖τF ‖22 6 2n(n− 1)

 sup(F (ν))

inf
((
HF

2

)) 1
2

+R

 ‖HF ‖∞
inf(F (ν))

‖ε‖22

where R is the extrinsic radius of M .

Proof: By the Hsiung-Minkowski formula for HF
2 and HF

(7)

∫
M

(
F (ν)HF

1 + 〈X, ν〉
)
dvg = 0

and using the assumption HF
2 = aHF + b+ ε, we have

0 =

∫
M

(
F (ν)HF + aHF 〈X, ν〉+ b〈X, ν〉+ ε〈X, ν〉

)
dvg

=

∫
M

F (ν)HF dvg − aVF (M)− b(n+ 1)V (Ω) +

∫
M

ε〈X, ν〉dvg,(8)

where we have used both relations (3) and (4).
Now, from (2), we have

HF =
(
HF

2

) 1
2 +

‖τF ‖2

n(n− 1)
(
HF +

(
HF

2

) 1
2

) .
Using this in (8) gives

0 =

∫
M

(
HF

2

) 1
2 F (ν)dvg +

1

n(n− 1)

∫
M

F (ν)‖τF ‖2

HF +
(
HF

2

) 1
2

dvg

−aVF (M)− b(n+ 1)V (Ω) +

∫
M

ε〈X, ν〉dvg.(9)

Now, we consider the first term of the right hand side. We have∫
M

(
HF

2

) 1
2 F (ν)dvg =

∫
M

HF
2

(
HF

2

)− 1
2 F (ν)dvg

= a

∫
M

F (ν)HF
(
HF

2

)− 1
2 dvg + b

∫
M

F (ν)
(
HF

2

)− 1
2 dvg

+

∫
M

εF (ν)
(
HF

2

)− 1
2 dvg

> aVF (M) + b

∫
M

F (ν)

HF
dvg +

∫
M

εF (ν)
(
HF

2

)− 1
2 dvg

> aVF (M) + b(n+ 1)V (Ω) +

∫
M

εF (ν)
(
HF

2

)− 1
2 dvg(10)
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where we have used successively the assumption HF
2 = aHF + b+ ε, the fact that(

HF
2

)− 1
2 > 1

HF
and the Heintze-Karcher inequality.

Thus, from (9) and (10), we get

1

n(n− 1)

∫
M

F (ν)‖τF ‖2

HF +
(
HF

2

) 1
2

dvg 6 −
∫
M

εF (ν)
(
HF

2

)− 1
2 dvg −

∫
M

ε〈X, ν〉dvg

6

 sup(F (ν))

inf(
(
HF

2 )
) 1

2

+R

V (M)‖ε‖22(11)

where R is the extrinsic radius of M , that is, the radius of the smallest closed ball
containing M .

Moreover, using again the fact that
(
HF

2

) 1
2 6 HF , we obtain the following

‖τF ‖22 6 2n(n− 1)

 sup(F (ν))

inf
((
HF

2

)) 1
2

+R

 ‖HF ‖∞
inf(F (ν))

‖ε‖22,(12)

which achieves the proof of the lemma. �

Now, we will combine Lemma 4.1 with the following result of de Rosa and Gioffrè
to prove Theorem 1.2.

Theorem 4.2 (De Rosa-Gioffrè [3, 4]). Let n > 2, p ∈ (1,+∞) and F : Sn −→ R∗+
satisfying the convexity assumption (1). There exist a constant δ0 = δ0(n, p, F ) > 0
such that if M is closed hypersurface into Rn+1 satisfying

V ol(M) = V (WF ) and

∫
M

‖τF ‖pdvg 6 δ0

then there exist a smooth parametrisation ψ : WF −→ M , a vector c0 ∈ Rn+1 and
a constant C depending on n, p and F so that

‖ψ − Id− c0‖W 2,p(WF ) 6 C‖τF ‖p.

Moreover, if p ∈ (1, n], then the condition
∫
M
‖τF ‖pdvg 6 δ0 can be dropped.

Here, it is important to mention that the volume of M is supposed to be equal to
V (WF ). If we do not assume this, the same holds replacing WF by the homothetic

of WF of volume equal to V (M), that is for WρF for ρ =
(
V (M)
V (WF )

) 1
n

. The authors

first prove this result for convex hypersurfaces in [3] and then explain how to remove
convexity in [4].

5. One last result

We finish this paper by proving a final result in the same spirit of Theorem 1.2.
It is well known that a closed connected immersed hypersurface of the Euclidean
space, with constant mean curvature, is a round sphere if the scalar product 〈X, ν〉
between the position vector and the normal vector has fixed sign. Of course, the
hypersurface is not supposed to be embedded because in this case, the assumption
〈X, ν〉 has fixed sign is superfluous. An anisotropic version of this result has also
been proved in [5]. We prove stability result for this characterization. Before
stating the result, we introduceM′(r0, r1, h1) as the set of all closed, connected and
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embedded hypersurface of Rn+1 so that the support function satisfies inf |〈X, ν〉| >
r0, the extrinsic radius is smaller than r1 and the L∞ norm of the anisotropic mean
curvature is smaller than h1. Namely, we have:

Theorem 5.1. Let n > 2 be an integer, F : Sn −→ R∗+ a smooth function satisfying
the convexity assumption (1) and let M ∈M′(r0, r1, h1) . Assume that the support
function 〈X, ν〉 has fixed sign and there exist a non-zero constant h0 and a smooth

function ε so that HF = h0 + ε. Set ρ =
(
V (M)
V (WF )

) 1
n

. Then there exist a smooth

parametrisation ψ : WρF −→ M , a vector c0 ∈ Rn+1 and an explicit constant
K1depending on n, r0, r1, h1, F so that

‖ψ − Id− c0‖W 2,2(WρF ) 6 K1‖ε‖
1
2
1 .

Moreover, if ‖ε‖∞ 6 αh0 for some α ∈ (0, 1), then, there exist another explicit
constant K2 depending on n, r0, F so that

‖ψ − Id− c0‖W 2,2(WρF ) 6 K2‖ε‖
1
2∞.

Remark 5.2. This last theorem says that if the support function has constant sign,
and HF is almost constant, then the hypersurface is W 2,2-close to the Wulff shape
and either the L1 or L∞-norm of the error term ε quantify this closeness. But
for a control by the L1-norm of the error, the counterpart is that the constant K1

depends on more geometric quantities as for a control by the L∞-norm.

Proof: First, we compute∫
M

〈X, ν〉
((
HF
)2 −HF

2

)
dvg = h0

∫
M

HF 〈X, ν〉dvg +

∫
M

εHF 〈X, ν〉dvg −
∫
M

HF
2 〈X, ν〉dvg

= −h0VF (M) +

∫
M

F (ν)HF dvg +

∫
M

εHF 〈X, ν〉dvg

where we have used the first and second Hsiung-Minkowski formulas. Replacing
HF by h0 + ε in the second term of the right hand side, we get∫
M

〈X, ν〉
((
HF
)2 −HF

2

)
dvg = −h0VF (M) + h0VF (M) +

∫
M

εF (ν)dvg +

∫
M

εHF 〈X, ν〉dvg

=

∫
M

εF (ν)dvg +

∫
M

εHF 〈X, ν〉dvg.

Since
(
HF
)2 − HF

2 =
1

n(n− 1)
‖τF ‖2 and from the assumptions that 〈X, ν〉 has

fixed sign and inf |〈X, ν〉| > r0, we obtain

r0
n(n− 1)

∫
M

‖τF ‖2dvg 6
∫
M

εF (ν)dvg +

∫
M

εHF 〈X, ν〉dvg.(13)

First, we deduce

‖τF ‖22 6
n(n− 1)

r0

(
supF (ν) +R‖HF ‖∞

)
‖ε‖1,(14)

where we have used that |〈X, ν〉| 6 R. Combining (14) with the result of de Rosa
and Gioffrè, we get the first point of the theorem by setting

K1 = C

[
n(n− 1)

r0

(
supF (ν) +R‖HF ‖∞

)] 1
2

,
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where C is the constant of de Rosa and Gioffrè’s result which depends only on n
and F , since here p = 2. Second, from (13), we get

‖τF ‖22V (M) 6
n(n− 1)

r0

(∫
M

εF (ν)dvg +

∫
M

εHF 〈X, ν〉dvg
)

6
n(n− 1)

r0

(
supF (ν)V (M) +

∫
M

|HF 〈X, ν〉|dvg
)
‖ε‖∞.(15)

Moreover, if there exist α ∈ (0, 1) so that ‖ε‖∞ 6 αh0, there |HF | > (1−α)|h0| > 0.
Hence, since both HF and 〈X, ν〉 have fixed sign, we have∫

M

|HF 〈X, ν〉|dvg =

∣∣∣∣∫
M

HF 〈X, ν〉dvg
∣∣∣∣ =

∫
M

F (ν)dvg

by the first Hsiung-Minkowski formula.
From this and (15), we obtain

‖τF ‖22 6
2n(n− 1) supF (ν)

r0
||ε||∞

and we conclude again by the result of de Rosa and Gioffrè by setting

K2 = C

[
2n(n− 1) supF (ν)

r0

]
.

Note that K2 depends only on n, F and r0. �
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