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Random walk in a stratified independent

random environment

Julien Brémont

Université Paris-Est Créteil, février 2019

Abstract

We study Markov chains on a lattice in a codimension-one stratified independent random
environment, exploiting results established in [2]. The random walk is first shown to be
transient in dimension at least three. Focusing on dimension two, we provide sharp sufficient
conditions for both recurrence and transience. The critical scale of the local drift in the
direction of the stratification corresponding to the frontier between the two regimes is shown
to be very small.

1 Introduction

A very first and important question concerning the asymptotic behaviour of a Markov chain on
a lattice in inhomogeneous environment is the question of its recurrence/transience. We consider in
the present paper the situation where the environment is stratified, continuing the line of research
initiated by Matheron and de Marsily [13] in the early 1980’. Such a model of random motion
was initially motivated by hydrology and the diffusion of pollutants in the ground. The latter is
porous and stratified for geologic reasons, with some heterogeneity among the strata. In 2003, a
simplified discrete version was introduced by Campanino and Petritis [3], principally inspired by
physical considerations about the study of discrete gauge theories.

Let us detail the model studied in [2], an extension of the one originally introduced in [3].
Fixing d ≥ 1, we consider a Markov chain (Sn)n≥0 in Zd × Z, with S0 = 0. Quantities relative
to the first (resp. second) coordinate in Zd (resp. Z) are declared “horizontal” (resp. “vertical”).
In this article, we assume that the transition laws only depend on the vertical coordinate, i.e. are
constant on each affine hyperplane Zd × {n}, n ∈ Z.

Write Bd(a, r) for the Euclidean ball in Zd of center a and radius r. Any x ∈ Zd is written in
column, with transpose xt. For each vertical n ∈ Z, suppose to be given positive reals pn, qn, rn,
with pn + qn + rn = 1, and a probability measure µn with support in Zd, satisfying :

Hypothesis 1.1 Let d ≥ 1. There exists η > 0 such that for all vertical n ∈ Z :

– min{pn, qn, rn} ≥ η,
– Supp(µn) ⊂ Bd(0, 1/η),
– the spectrum of the real symmetric matrix

∑
k∈Zd kktµn(k) is included in [η,+∞). When

d = 1, this condition is replaced by µn(0) ≤ 1− η.

In [2], there was a priori no link between the strata. The second condition was replaced by a weaker
one (a uniform in n moment condition), but for the sake of simplicity, we restrict here to the above
setting. The transition laws are now defined, for all (m,n) ∈ Zd × Z and k ∈ Zd, by :

(m,n)
pn−→ (m,n+ 1), (m,n)

qn−→ (m,n− 1), (m,n)
rnµn(k)−→ (m+ k, n).

With a picture :
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The vertically flat model corresponds to the symmetry assumption pn = qn, n ∈ Z. The expectation
of µn, or “local horizontal drift along the stratum n ∈ Z”, is defined as εn :=

∑
k∈Zd kµn(k). Let

us now present former results concerning recurrence/transience for this model.

Considering first the vertically flat case, the Campanino-Petritis model [3] consists in taking
d = 1, with pn = qn = rn = 1/3 and µn = δαn , fixing some (αn)n∈Z ∈ {±1}Z and where δx is Dirac
measure at x. It is shown in [3] that the random walk is recurrent when αn = (−1)n and transient
when αn = 1n≥1 − 1n≤0 or when (αn) are typical realizations of independent and identically
distributed (i.i.d for the sequel) random variables with P(αn = ±1) = 1/2. Many works followed,
close to this setting. Guillotin-Plantard and Le Ny [9] have shown transience results when the (αn)
are independent with marginals described by some dynamical system. Pene [15] proved transience
when the (αn) are stationary, under a decorrelation condition. Castell, Guillotin-Plantard, Pene
and Schapira [5] quantified transience when the (αn) are i.i.d., studying the tail of the annealed
return time to 0. Still under the condition pn = qn, n ∈ Z, Devulder and Pene [7] consider an
extension of the model in [3] and establish transience when the (rn) are i.i.d. non-constant and
µn = δαn

, with arbitrary (αn). In [4], Campanino and Petritis, still considering their initial model,
study a random perturbation of a periodic (αn).

In [1] (Theorem 1.2), for the general vertically flat case with d = 1, a complete recurrence criterion
was given. In this situation, the asymptotics of the random walk is governed by a cocycle related to
the local horizontal drift, namely (r0ε0/p0 + · · ·+ rn−1εn−1/pn−1) when n ≥ 1, and more precisely
by the properties of a two-variables function Φ(a, b), for vertical a < b, built with this cocycle.
The latter function measures horizontal dispersion between vertical levels a and b. The form of the
criterion in [1], a priori a little abstract, in fact directly comes from the computation of a Poisson
kernel in a half-plane. Such a kernel appears in the recurrence criterion for i.i.d. random walks
on Zd (see Spitzer [19] or Ornstein [14]), an essential ingredient in the proof in [1]. The quantity
deciding for the recurrence/transience of (Sn) quantifies some “capacity of dispersion to infinity”
of the environment. It is interesting to notice that it involves the level lines of the function Φ(a, b)
and some notion of curvature at infinity of these lines. A priori a geometric point of view of the
recurrence criterion has to be developed.

Still for the general vertically flat model when d = 1, after the principal result of [1], some (little)
extra work is required to treat concrete examples. This was done at the end of [1], giving rather
fine recurrent quasi-periodic examples ([1], Prop. 1.5; cf also [2], Prop. 7.1). It is also shown that
in this family of models, simple random walk in the plane is in some sense the most recurrent
one and, as is well known it is hardly recurrent. For instance a growth condition like (log n)1+δ

on (r0ε0/p0 + · · · + rn−1εn−1/pn−1) is sufficient for transience. This explains to some extent the
prevalence of transience results in the litterature.

In order to try to enlarge the recurrence domain, it is natural to focus on the general model
introduced above. A recurrence criterion was shown in [2] (Theorem 2.4) with exactly the same
form as in [1], coming from a Poisson kernel. The function Φ(a, b), defined below, is just a little more
complicated. The criterion highlights that the environment (i.e. the set of transition laws) defines
a new metrization of Zd+1. The random walk (Sn) has some kind of “product structure” and a key
observation (appearing in [3]), following from the invariance of the environment under horizontal
translations, is that restricting (Sn) to vertical jumps, the vertical components form a Markov
chain. This is not true in general for an inhomogeneous Markov chain, when the environment is
not stratified. We call this Markov chain the “vertical random walk”. Its transition laws on Z are :

n
pn/(pn+qn)−→ n+ 1, n

qn/(pn+qn)−→ n− 1.
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In the vertically flat case, this is simple random walk on Z, but for the general model it can be an
arbitrary nearest-neighbour random walk on Z. For instance it can be chosen positive recurrent.
In this case, (Sn) is strongly pushed towards Zd × {0} and in fact behaves as if it were in Zd; see
section 7.3 on the “half-pipe” in [2]. Several examples of recurrent and transient random walks
were given in [2], in dimensions both 2 and 3 (d = 1 or 2). In dimension ≥ 4 (d ≥ 3), the random
walk is always transient.

The purpose of the present article is to extend the applications of [2], studying in detail the
general model in the important case when the stratifications of the environment are random and
independent, with a quenched point of view. On such a model, mention a result by Kochler
in his doctoral thesis [12], concerning the case when P(µn = δ1) = P(µn = δ−1) = 1/2 (hence
P(εn = ±1) = 1/2), with rn/pn = c (a constant independent on n) and (pn/qn, µm)(n,m)∈Z2

independent. Transience is established, after a long and delicate analysis (80 pages) of the Brownian
path. Our goal is to recover such a result and to try to touch the frontier between recurrence and
transience for the present model. The results probably have some flavour of what should happen
for more general models of random walks in independent environments.

2 Independent setting, notations and results

We first recall the situation in the independent setting, including the vertically flat case. For the
rest of the article, we assume that (pn, qn, rn)n∈Z are random variables such that (pn/qn)n∈Z are
i.i.d., with arbitrary or random µn, verifying Hypothesis 1.1, a.-s.. Recall that εn =

∑
k∈Zd kµn(k).

In the sequel, randomness is always for the environment. We never enter the mechanism of the
random walk itself.

Proposition 2.1
If either d ≥ 2 or E(log(p0/q0)) 6= 0, then for a.-e. realization, (Sn) is transient.

It is classical that the condition E(log(p0/q0)) 6= 0 implies that the vertical random walk is transient;
see Solomon [18]. This hence implies the transience of (Sn). For d ≥ 3, as said above, this is a
general result ([2], Prop. 2.5, 1)i)). The remaining case d = 2 with E(log(p0/q0)) = 0, which
includes the case when p0 = q0, a.-s., will be proved in section 3.2. Recall here in passing the
related conjecture that any random walk in i.i.d. random environment in Z3 is transient, supposing
ellipticity conditions on the data; see Kalikow [11] and Sabot [16].

From now on, d = 1 and E(log(p0/q0)) = 0. When p0/q0 = 1, a.-s., (notice then that rn =
1− 2pn) i.e. for the vertically flat case, by [1] Prop. 1.4 i), then (Sn) is recurrent whenever :∣∣∣∣∣∣

∑
−n≤k≤0

rkεk/pk

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

0≤k≤n

rkεk/pk

∣∣∣∣∣∣ = O((log n)1/2).

In the other direction, if the (rnεn/pn)n are independent random variables, with for some δ > 0 :

lim inf
1

N

N∑
n=1

P

∣∣∣∣∣∣
∑

0≤k≤n

rkεk/pk

∣∣∣∣∣∣ ≥ (log n)1+δ

 > 0,

then, for a.-e. realization, (Sn) is transient; cf [1] Prop. 1.6. This is an extension in the elliptic
setting of former results of [3] and [7]. When the (rnεn/pn)n are independent, the critical growth
for
∑

0≤k<n rkεk/pk with respect to recurrence/transience is expected to be log n, thus somehow
corresponding to εn having order 1/n.

We turn next to the case when P(p0/q0 = 1) < 1. The vertical random walk is now Sinäı’s
random walk [17], very different from simple random walk and with a typical scale of (log n)2 at
time n. We need to introduce some notations, the first ones concerning the exponential of the
traditional potential governing the behaviour of Sinäı’s random walk.
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Definition 2.2
Set an = qn/pn, n ∈ Z, and :

ρn =

 a1 · · · an, n ≥ 1,
1, n = 0,

(an+1 · · · a−1a0)−1 n ≤ −1.

For n ≥ 0, introduce the quantities :

v+(n) =
∑

0≤k≤n

ρk and v−(n) = a0
∑

−n−1≤k≤−1

ρk.

In the same way, let for n ≥ 0 :

w+(n) =
∑

0≤k≤n

1/ρk and w−(n) = (1/a0)
∑

−n−1≤k≤−1

1/ρk.

Notice for the sequel that ρn+1/ρn = an+1 ∈ [η, 1/η]. If E(log(p0/q0)) = 0, then almost-surely,
v+(n) and v−(n) increasingly tend to +∞, as n → +∞. Indeed, log ρn is an i.i.d. random walk
with integrable and centered step, hence is recurrent, so ρn does not go to 0.

We also require notations for functions having comparable orders and for inverse functions. Let
us first set N = {0, 1, · · · }.

Definition 2.3
i) Let f, g : N → R+. We write f � g or f(n) � g(n) if there exists C > 0 so that for large n,
(1/C)f(n) ≤ g(n) ≤ Cf(n). Set g � f or g(n) � f(n) if g(n) ≤ Cf(n) for large n.

ii) Let f : N→ R+ be increasing with lim f(n) = +∞. For large x ∈ R+, let :

f−1(x) = max{n ∈ N | f(n) ≤ x},

convening that max ø = 0. Notice that f(f−1(x)) ≤ x < f(f−1(x) + 1), for large x ∈ R+. Also
f−1(f(n)) = n, for large n ∈ N.

The average horizontal macrodispersion of the environment is described by the following func-
tions, introduced in [2].

Definition 2.4
i) The structure function, depending only on the vertical, is defined for n ≥ 0 by :

Φstr(n) =

n ∑
−v−1
− (n)≤k≤v−1

+ (n)

1

ρk


1/2

.

2) For d = 1 and m,n ≥ 0, introduce :

Φ(−m,n) =

 ∑
−v−1
− (m)≤k≤`≤v−1

+ (n)

ρkρ`

 1

ρ2k
+

1

ρ2`
+

(∑̀
s=k

rsεs
psρs

)2



1/2

.

For n ≥ 0, set :

Φ(n) = Φ(−n, n) and Φ+(n) =
√

Φ2(−n, 0) + Φ2(0, n).

3) For d = 1 and n ≥ 0, set :

C(n) =
∑

−v−1
− (n)≤k≤v−1

+ (n)

εk
ρk
.
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We are now in position for stating the main result of this paper in the remaining situation when
d = 1, E(log(p0/q0)) = 0 and P(p0/q0 = 1) < 1.

Theorem 2.5
Let d = 1, with E(log(p0/q0)) = 0 and P(p0/q0 = 1) < 1.

i) For a.-e. realization, (Sn) is recurrent, whenever (µn)n∈Z is a deterministic sequence verifying :∑
n∈Z

|εn|
ρn

< +∞. (1)

This condition holds if for some δ > 0, εn = O(exp(−|n|1/2+δ)), as |n| → +∞.

ii) For a.-e. realization, (Sn) is transient, whenever (µn)n∈Z is a deterministic sequence verifying
εn ≥ 0 for large n ∈ Z, with :∑

n∈Z

εn
ρn

= +∞ and
∑
n≥N0

1

nC(n)
< +∞, (2)

where N0 ≥ 0 is such that C(n) > 0, for n ≥ N0. These conditions hold if for some δ > 0 and for
large enough n ∈ Z, εn ≥ exp(−|n|1/2−δ).

iii) Let the (εn)n∈Z be independent random variables, independent from the (pn, qn, rn)n∈Z, such
that there exists 1/2 > δ > 0, so that for large n ∈ N, the support of εn is a finite set {αi,n}1≤i≤Ln ⊂
[−1/η, 1/η], with Ln ≥ 2, verifying for all 1 ≤ i 6= j ≤ Ln :

|αi,n − αj,n| ≥ exp(−n1/2−δ) and P(εn 6= αi,n) ≥ n−δ/5. (3)

Then for a.-e. realization, (Sn) is transient.

Remark. — In i), the condition
∑
n∈Z |εn|/ρn < +∞ for recurrence can be interpreted as a

condition of “finite dispersion to infinity”. It is of different nature than
∑
n∈Z 1/ρn < +∞, of

“finite channel capacity”, defining the half-pipe of [2] (section 7.3). This last condition, not true
here (as ρn does not go to 0, as |n| → +∞), implied that (Sn) is transient if and only if :∑

s∈Z

rsεs
psρs

6= 0. (4)

Cf [2], Prop. 7.4, when d = 1. In the present situation, assuming
∑
n∈Z |εn|/ρn < +∞, then for

any value of
∑
s∈Z rsεs/(psρs), the random walk is recurrent.

Remark. — Concerning iii), the conditions easily cover the situation considered in [12], where
P(µn = δ1) = P(µn = δ−1) = 1/2 and rn/pn = c. When P(p0 = q0) < 1, the rough critical scale for
εn with respect to recurrence/transience is exp(−|n|1/2), hence much smaller than for the vertically
flat case. Remembering that the vertical random walk is Sinäı’s random walk, the intuition for this
is easy. Indeed, the landscape for (Sn) somehow looks like a succession of horizontally invariant
canyons, with transversal profile described by the potential of the vertical random walk. Then (Sn)
stays confined for a long time at the bottom of the canyons. Just a little bit of horizontal flow is
enough to make the random walk transient. The previous theorem quantifies this.

3 Proof of the results

3.1 Preliminary remarks

1) Comparison of Φstr, Φ+ and Φ. One has Φstr � Φ+ � Φ and more precisely :

Φ+(n) � Φstr(n) +

 ∑
−v−1
− (n)≤k≤`≤0 or 0≤k≤`≤v−1

+ (n)

ρkρ`

(∑̀
s=k

rsεs
psρs

)2


1/2

, (5)
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as well as :

Φ(n) � Φstr(n) +

 ∑
−v−1
− (n)≤k≤`≤v−1

+ (n)

ρkρ`

(∑̀
s=k

rsεs
psρs

)2


1/2

. (6)

Indeed, observe first that for n ≥ 0:

∑
0≤k≤`≤v−1

+ (n)

ρkρ`
(
1/ρ2k + 1/ρ2`

)
=

∑
0≤k≤`≤v−1

+ (n)

(ρk/ρ` + ρ`/ρk)

�
∑

0≤k≤v−1
+ (n)

ρk
∑

0≤`≤v−1
+ (n)

1/ρ`.

Observe that
∑

0≤k≤v−1
+ (n) ρk = v+(v−1+ (n)) ≤ n and :

n ≤ v+(v−1+ (n) + 1) = v+(v−1+ (n)) + ρv−1
+ (n)+1

≤ (1 + 1/η)v+(v−1+ (n)) ≤ (1 + 1/η)n.

Hence v+(v−1+ (n)) � n and we obtain :∑
0≤k≤`≤v−1

+ (n)

ρkρ`
(
1/ρ2k + 1/ρ2`

)
� n

∑
0≤k≤v−1

+ (n)

1/ρk.

Proceeding in the same way for
∑
−v−1
− (n)≤k≤`≤0 and summing, we get :

∑
−v−1
− (n)≤k≤`≤0 or 0≤k≤`≤v−1

+ (n)

ρkρ`
(
1/ρ2k + 1/ρ2`

)
� n

∑
−v−1
− (n)≤k≤v−1

+ (n)

1/ρk = Φ2
str(n).

This furnishes (5). In a very similar fashion :

∑
−v−1
− (n)≤k≤`≤v−1

+ (n)

ρkρ`
(
1/ρ2k + 1/ρ2`

)
�

∑
−v−1
− (n)≤k≤v−1

+ (n)

ρk
∑

−v−1
− (n≤`≤v−1

+ (n)

1/ρ`

� n
∑

−v−1
− (n)≤`≤v−1

+ (n)

1/ρ` � Φ2
str(n).

This leads to (6).

2) The functions Φ−1str, Φ−1+ and Φ−1 check dominated variation. This property, coming from
the structure of the main result in [2] (Theorem 2.4), considerably simplifies the study of the
convergence of series. Recall that a non-decreasing function f : R+ → R+ satisfies dominated
variation if there exists a constant C > 0 so that for large x > 0 :

f(2x) ≤ Cf(x). (7)

This directly implies that for any A > 0, for x > 0 large enough, f(Ax) � f(x). Dominated
variation is obvious for Φ−1str, because Φstr(n) =

√
nψ(n), with some non-decreasing ψ. This is

a little less clear for Φ−1+ and Φ−1 and is shown in Lemma 6.2 in [2] (with the notations of [2],
Φ+ = Gu,+ and Φ = Gu, with u = 1 when d = 1; the functions Gu and G are defined in Definition
6.1 and the involved T lk(u) appears in Definition 5.1; also in the present situation ηuk = rkεk/pk).
Notice on the contrary that, although well-defined, the function v−1+ (n) does not always check
dominated variation in the non vertically flat case.
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3.2 Proof of Proposition 2.1.

As explained after the statement of the proposition, it remains to check transience when d = 2
and E(log(p0/q0)) = 0. Using [2], Prop. 2.5 1)ii), it is enough to verify that for some δ > 0 :

Φstr(n) ≥
√
n(log n)1/2+δ. (8)

When P(p0 = q0) = 1, we have Φstr(n) � n, so remains the case when P(p0 = q0) < 1. Notice that
Var(log(p0/q0)) > 0. We shall repeatedly use that if (Yn)n≥1 is an i.i.d. sequence of non-constant
random variables with E(Y 2

1 ) < +∞ and E(Y1) = 0, then, a.-s., for any ε > 0, for large n :

n1/2−ε ≤ max
1≤k≤n

(Y1 + · · ·+ Yk) ≤ n1/2+ε. (9)

This may be seen for example as a consequence of classical results relative to the law of the Iterated
Logarithm; see Chung [6], chap. 7 for instance.

Consider log ρn =
∑n
k=1 log(qk/pk), n ≥ 1. We obtain that a.-s., for any ε > 0, for n large

enough, v+(n) ≤ n exp(n1/2+ε) ≤ exp(n1/2+2ε). Hence, using 1/(1/2 + 2ε) ≥ 2(1− 4ε) :

v−1+ (n) ≥ (log n)2−9ε. (10)

As a result, using (9) for minima (i.e. with − log(qk/pk)) :∑
0≤k≤v−1

+ (n)

1/ρk ≥ exp(log(2−9ε)(1/2−ε) n) ≥ exp(log1−7ε n). (11)

We obtain that a.-s., ∀ε > 0, for n large enough, Φstr(n) �
√
n exp(log1−ε n). Therefore (8) is also

verified and this completes the proof of the proposition.
�

Remark. — For the rest of the article, d = 1. Also, for all the proofs of Theorem 2.5, we fix an
integer K > 2(1 + 1/η)2.

3.3 Proof of Theorem 2.5 i)

Consider point i) and (εn)n∈Z verifying (1). Observe first that this condition holds if εn =
O(exp(−|n|1/2+δ)), δ > 0. Indeed, using (9), εn/ρn = O(exp(−|n|1/2+δ/2)) in this case.

Now, condition (1) implies that
∑l
u=k(rsεs)/(psρs) is bounded in (k, l), k ≤ l, since η ≤ rs/ps ≤

1/η. Using that (obtained as for getting (6)) :∑
−v−1
− (n)≤k≤`≤v−1

+ (n)

ρkρ` � n2,

it then follows from (6) that Φ2(n) � Φ2
str(n) +n2 and so Φ(n) � Φstr(n) +n. As a result, because

Φ−1, Φ−1str and n 7−→ n check dominated variation :

Φ−1(n) � min{Φ−1str(n), n}.

We shall also use that Φ−1+ (n) � Φ−1str(n), coming from the general relation Φ+(n) � Φstr(n) and

dominated variation for Φ−1+ and Φ−1str.

In view of [2], Theorem 2.4, the recurrence of (Sn) is equivalent to :∑
n≥1

1

n2
(Φ−1(n))2

Φ−1+ (n)
= +∞.

Given the previous remarks, it is sufficient to show the divergence of :
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∑
n≥1

1

n2
(min{Φ−1str(n), n})2

Φ−1str(n)
=
∑
n≥1

1

n
min

{
Φ−1str(n)

n
,

n

Φ−1str(n)

}
.

Splitting the sum according to the intervals [Kn,Kn+1), n ≥ 1, and using that Φ−1str verifies
dominated variation, the previous condition is equivalent to checking that :

∑
n≥1

min

{
Φ−1str(K

n)

Kn
,

Kn

Φ−1str(K
n)

}
= +∞. (12)

We prove below that the general term in the above series does not go to 0.

Lemma 3.1

Almost-surely, lim sup
n→+∞

w+(n)

v+(n)
= +∞ and lim sup

n→+∞
min

{
v+(n)

w+(n)
,
v−(n)

v+(n)
,
w+(n)

w−(n)

}
= +∞.

Proof of the lemma :
Let us consider the second point. Fix an increasing sequence (kn) with kn/k

2
n−1 → +∞. For n ∈ Z,

let Rn = log ρn. Let :

Un = max
k∈[−kn,−kn−1)

(Rk −R−kn−1), Vn = max
k∈(kn−1,kn]

(Rk −Rkn−1
).

In the same way, introduce :

Wn = min
k∈(kn−1,kn]

(Rk −Rkn−1
), Xn = min

k∈[−kn,−kn−1)
(Rk −R−kn−1

).

Let σ > 0 be such that σ2 = Var(log(q0/p0)). Let c = 2 + 2| log(1/η)| and notice that |Rk| ≤ c|k|,
k ∈ Z. Using functional convergence to standard Brownian motion (Bt)t∈[−1,1] :

P

(
Un

σ
√
kn − kn−1

≥ 1 +
Vn

σ
√
kn − kn−1

≥ 2− Wn

σ
√
kn − kn−1

≥ 3− Xn

σ
√
kn − kn−1

)

−→n→+∞ P
(

max
t∈[−1,0]

Bt ≥ 1 + max
t∈[0,1]

Bt ≥ 2− min
t∈[0,1]

Bt ≥ 3− min
t∈[−1,0]

Bt

)
=: α > 0.

Using independence and the second Borel-Cantelli lemma, almost-surely the event appearing in
the first probability is realized for infinitely many n. For such a n, we have :

v+(kn) ≥ exp(−ckn−1 + max
k∈(kn−1,kn]

(Rk −Rkn−1
))

≥ exp(−ckn−1 + σ
√
kn − kn−1 − min

k∈(kn−1,kn]
(Rk −Rkn−1

))

≥ exp(−3ckn−1 + σ
√
kn − kn−1 − min

k∈[1,kn]
Rk)

≥ w+(kn)

kn
exp(−3ckn−1 + σ

√
kn − kn−1).

If n is large, v+(kn)/w+(kn) ≥ exp(σ
√
kn/2), going to +∞. Similar lower bounds are proved,

with the same n, for v−(kn)/v+(kn) and w+(kn)/w−(kn). The first property stated in the lemma,
namely lim supn→+∞ w+(n)/v+(n) = +∞, is proved in a similar (simpler) way.

�

We complete the proof of i). Using the first point of the previous lemma, a.-s., for any A > 0,
infinitely often, w+(n) ≥ Av+(n), i.e. w+(v−1+ (v+(n))) ≥ Av+(n). Taking ` ∈ N so that ` ≤
v+(n) < `+ 1, we obtain :

Φstr(`+ 1) ≥
√
`+ 1

√
A` ≥ `

√
A.
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Hence Φ−1str(`
√
A) ≤ `+ 1. This implies that, a.-s., lim inf Φ−1str(n)/n = 0.

Using now the second point of the previous lemma, a.-s., for any A > 1, for infinitely many n ∈ N,
we have v−(n) ≥ v+(n) ≥ Aw+(n) and w+(n) ≥ w−(n). For such a n, v−1− (v+(n)) ≤ n and :

v+(n)∑
−v−1
− (v+(n))≤k≤v−1

+ (v+(n)) 1/ρk
≥ v+(n)∑

−n≤k≤n 1/ρk
≥ v+(n)

a0w−(n) + w+(n)

≥ v+(n)

w+(n)
(1 + a0)−1 ≥ A

1 + a0
.

Choosing ` ∈ N such that ` ≤ v+(n) < `+ 1, we obtain :

`+ 1

Φ2
str(`)/`

≥ A

1 + a0
, or Φstr(`) ≤

√
1 + a0√
A

(`+ 1).

Hence Φ−1str(
√

1 + a0(`+ 1)/
√
A) ≥ `. Hence, a.-s., lim sup Φ−1str(n)/n = +∞.

Let finally bn = Φ−1str(K
n)/Kn. Because Φ−1str checks dominated variation (7), a.-s., the previous

results give lim inf bn = 0 and lim sup bn = +∞. Dominated variation also implies that, a.-s. for
a constant H > 1, for all n, we have bn/bn+1 ∈ [1/H,H]. Thus bn ∈ [1, H] for infinitely many n.
For such a n, min{bn, 1/bn} = 1/bn ≥ 1/H. This shows (12) and completes the proof of i).

�

3.4 Proof of Theorem 2.5 ii)

Assume here that the εn are non-negative for large n ∈ Z and verify (2). The monotonicity of
C(n) for large n, hence of nC(n), implies that the condition

∑
n≥N0

1/(nC(n)) < +∞ is equivalent
to
∑
n≥N1

1/C(Kn) < +∞, for another N1 > 0.

We first observe that
∑
n≥N1

1/C(Kn) < +∞, for some N1 > 0, in the case when there exists

δ > 0 so that εn ≥ exp(−|n|1/2−δ), for large n ∈ Z.

Indeed, using (9), a.-s., for any ε > 0 and large n, exp(n1/2−ε) ≤ v+(n) ≤ exp(n1/2+ε). Therefore
a.-s., for any ε > 0 and large n, (log n)2+ε ≥ v−1+ (n) ≥ (log n)2−ε. Via again (9), a.-s., for any
ε > 0, for n large enough :

min
0≤k≤v−1

+ (n)
ρk ≤ exp(− log1−ε n).

Let un be the first point in [0, v−1+ (n)] realizing the minimum of ρk on this interval. Necessarily,

un → +∞. Hence, a.-s., ∀ε > 0, for large n, using that un ≤ v−1+ (n) ≤ (log n)2+ε, we obtain :

εun
/ρun

≥ exp(−u1/2−δn ) exp(log1−ε n) ≥ exp(log1−2ε n).

Hence, a.-s., ∀ε > 0, for large n, C(n) ≥ (1/2)εun/ρun ≥ exp(log1−ε n). Hence, a.-s., ∀ε > 0, for
large n, C(Kn) ≥ exp(n1−ε), giving

∑
n≥N1

1/C(Kn) < +∞.

We now prove transience for (Sn), assuming the conditions of Theorem 2.5 ii). Reformulating
[2], Prop. 2.5 1), a sufficient condition for transience is

∑
n≥1 1/Φ(n) < +∞ or

∑
n≥1K

n/Φ(Kn) <
+∞, as Φ is increasing.

Let n0 ≥ 0 be such that εs ≥ 0 whenever s ≥ v−1+ (n0) or s ≤ −v−1− (n0). For large n and

k ≤ −v−1− (Kn−1) and ` ≥ V −1+ (Kn−1), using also that η ≤ rs/ps ≤ 1/η, we have :
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∑
k≤s≤`

rsεs
psρs

≥
∑

−v−1
− (Kn−1)≤s≤v−1

+ (Kn−1)

rsεs
psρs

≥
∑

s∈[−v−1
− (Kn−1),v−1

+ (Kn−1)]\[−v−1
− (n0),v

−1
+ (n0)]

rsεs
psρs

+
∑

s∈[−v−1
− (n0),v

−1
+ (n0)]

rsεs
psρs

≥ η
∑

s∈[−v−1
− (Kn−1),v−1

+ (Kn−1)]\[−v−1
− (n0),v

−1
+ (n0)]

εs
ρs

+
∑

s∈[−v−1
− (n0),v

−1
+ (n0)]

rsεs
psρs

≥ (η/2)
∑

s∈[−v−1
− (Kn−1),v−1

+ (Kn−1)]

εs
ρs

= (η/2)C(Kn−1) > 0.

We obtain that for large n ≥ 0 :

Φ2(Kn) ≥
∑

−v
−1
− (Kn)≤k<−v

−1
− (Kn−1)

v−1
+ (Kn−1)<`≤v−1

+ (Kn)

ρkρ`

 ∑
k≤s≤`

rsεs
psρs

2

� (C(Kn−1))2
∑

−v
−1
− (Kn)≤k<−v

−1
− (Kn−1)

v−1
+ (Kn−1)<`≤v−1

+ (Kn)

ρkρ`.

Next
∑v−1

+ (Kn)

k=v−1
+ (Kn−1)+1

ρk = v+(v−1+ (Kn))− v+(v−1+ (Kn−1)) ≤ v+(v−1+ (Kn)) ≤ Kn. Also :

v+(v−1+ (Kn))− v+(v−1+ (Kn−1)) ≥ Kn

1 + 1/η
−Kn−1 ≥ Kn

2(1 + 1/η)
,

using that K > 2(1 + 1/η). In the same way :

∑
−v−1
− (Kn)≤k<−v−1

− (Kn−1)

ρk = (1/a0)[v−(v−1− (Kn)− 1)− v−(v−1− (Kn−1)− 1)]

≤ 1

η
v−(v−1− (Kn)) ≤ Kn

η
. (13)

On the other hand, because v−(p) ≥ v−(p+ 1)/(1 + 1/η), the left-hand side is :

≥ η

(
v−(v−1− (Kn) + 1)

(1 + 1/η)2
−Kn−1

)
≥ η

(
Kn

(1 + 1/η)2
−Kn−1

)
≥ η Kn

2(1 + 1/η)2
. (14)

Consequently, Φ(Kn) � KnC(Kn−1). The hypothesis
∑
n≥N1

1/C(Kn) < +∞ therefore implies
that

∑
n≥1K

n/Φ(Kn) < +∞. This completes the proof of point ii).
�

3.5 Proof of Theorem 2.5 iii)

Here the (εn)∈Z are independent random variables, independent from the (pn, qn, rn)n∈Z, under
the conditions of point iii) of the theorem.

First of all, as for getting (13) and (14) for instance :∑
v−1
+ (Kn−1)<`≤v−1

+ (Kn)

ρ` � Kn and
∑

−v−1
− (Kn)≤k≤−1

ρk � Kn.
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In order to control the proportion of (k, l) in the definition of Φ(Kn) such that
∑
k≤s≤l(rsεs/(psρs))

is large, we introduce the following probability measure on Z2 :

νn =
1

Zn

∑
−v−1
− (Kn)≤k≤−1,v−1

+ (Kn−1)<`≤v−1
+ (Kn)

ρkρ`δ(k,`),

where the normalizing constant Zn thus verifies Zn � K2n.

It follows from (9) that, a.-s., for all ε > 0, for large n, (log n)2−ε ≤ v−1+ (n) ≤ (log n)2+ε. Hence,

a.-s., for all ε > 0, for large n, n2−ε ≤ v−1+ (Kn) ≤ n2+ε. Let now un ∈ [0, v−1+ (Kn−1)] be the first
minimum of ρk on this interval. Then, from (9), a.-s., ∀ε > 0, ∀ε′ > 0 :

exp(u1/2+ε
′

n ) ≥ max
0≤k≤un

1

ρk
≥ 1

ρun

≥ exp(n1−ε).

Hence, a.-s., ∀ε > 0, for large n, n2+ε ≥ v−1+ (Kn−1) ≥ un ≥ n2−ε.

Let δ/2 > γ > 2δ/5. We next assume that ε > 0 is small enough so that γ + (2 + ε)(1/2− δ) ≤
1− 3ε and (2 + ε)δ/5 < γ < δ/2.

Recall that, a.-s., εn ∈ [−1/η, 1/η]. Let C0 = 2/η + 1 and l(n) = nγ . Starting from un,0 = un
and going left, we shall choose recursively in a decreasing order in the interval [0, un], points
un,0 > un,1 > · · · > un,l(n) > 0, with increasing ρun,0

< · · · < ρun,l(n)
. For 0 ≤ l < l(n), let un,l+1

be the closest point on the left side of un,l with :(
1

4

C0/η
2

ρun,l

>

)
1

4

exp(−u1/2−δn,l )

ρun,l

≥ C0/η
2

ρun,l+1

≥ 1

4K

exp(−u1/2−δn,l )

ρun,l

. (15)

Recall first for this that ρk/ρk+1 ∈ [1/K,K], for k ∈ Z. Recursively notice that for 0 ≤ l < l(n),
un,l+1 is a well-defined point in (0, un,l), since we require :

ρun,l+1
≤ (4C0K/η

2)ρun,l
exp(u

1/2−δ
n,l ) ≤ (4C0K/η

2)l(n)ρun,0 exp(l(n)u
1/2−δ
n,0 )

≤ exp(nγ log(4C0K/η
2)− n1−ε + nγn(2+ε)(1/2−δ))

≤ exp(−n1−2ε),

for large n. The last upper-bound is uniform in 0 ≤ l < l(n). In particular, for large n :

ρun,l(n)
≤ exp(−n1−2ε). (16)

Since un,l(n) > 0, this implies that un,l(n) → +∞. Remark also that conditions (15) imply that
ρun,l+1

≥ 4ρun,l
, for 0 ≤ l < l(n).

We now reason conditionally to the (pn, qn, rn)n∈Z and make a measurable construction. The
probability conditional to the (pn, qn, rn)n∈Z and relative only to the (εn)n∈Z, is written as P′, with
corresponding expectation E′. Consider the event An, where (εi)i∈Z ∈ An if :

νn

(k, l) ∈ Z2,

∣∣∣∣∣∣
∑
k≤u≤l

ruεu
puρu

∣∣∣∣∣∣ ≤ C0

ηρun,l(n)

 ≥ 3/4. (17)

Let us write :

P′(An) = E′
(
E′(1(εk)k∈Z∈An

| (εl)l 6=un,s,0≤s<l(n))
)
. (18)

Fixing (εl)l 6=un,s,0≤s<l(n), suppose that there exists (εun,s
)0≤s<l(n) with ε = (εi)i∈Z ∈ An. Take

next any (ε′un,s
)0≤s<l(n) 6= (εun,s

)0≤s<l(n) and call ε′ the point obtained from ε by replacing
(εun,s

)0≤s<l(n) by (ε′un,s
)0≤s<l(n), without changing the other coordinates.
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We claim that ε′ 6∈ An. Indeed, let 0 ≤ p < l(n) be the smallest index so that :

ε′un,p
6= εun,p

.

Take any (k, l) in the set involved in (17) and notice that k < 0 and v−1+ (Kn−1) < l. Using the
hypothesis on the laws of the εn, that η ≤ ru/pu ≤ 1/η, u ∈ Z, and the conditions in (15) :

∣∣∣∣∣∣
∑
k≤u≤l

ruε
′
u

puρu

∣∣∣∣∣∣ =

∣∣∣∣∣∣ run,p

pun,p

ε′un,p
− εun,p

ρun,p

+
∑

p<q<l(n)

run,q

pun,q

ε′un,q
− εun,q

ρun,q

+
∑
k≤u≤l

ru
pu

εu
ρu

∣∣∣∣∣∣
≥ η

exp(−u1/2−δn,p )

ρun,p

−
∑

p<q<l(n)

C0

ηρun,q

− C0

ηρun,l(n)

≥ 4
C0

ηρun,p+1

− C0

ηρun,p+1

∑
r≥0

4−r ≥ 2
C0

ηρun,p+1

≥ 2
C0

ηρun,l(n)

. (19)

This being true for any (k, l) appearing in the set in (17), this furnishes :

νn

(k, l) ∈ Z2,

∣∣∣∣∣∣
∑
k≤u≤l

ruε
′
u

puρu

∣∣∣∣∣∣ ≤ C0

ηρun,l(n)

 ≤ 1/4. (20)

Hence ε′ 6∈ An. As a result, for large n, using (3), independence, un ≤ n2+ε and at the end
1− x ≤ e−x, x ∈ R :

E′(1(εk)k∈Z∈An
| (εl)l 6=un,s,0≤s<l(n)) ≤ (1− u−δ/5n,0 ) · · · (1− u−δ/5n,l(n)−1)

≤ (1− u−δ/5n )l(n) ≤ exp(−nγ−(2+ε)δ/5).

By (18), we deduce that P′(An) ≤ exp(−nγ−(2+ε)δ/5). Now γ − (2 + ε)δ/5 > 0, leading to∑
P′(An) <∞. By (17) and the first Borel-Cantelli lemma, for P′-almost-all (εi)i∈Z, for large n :

νn

(k, l) ∈ Z2,

∣∣∣∣∣∣
∑
k≤u≤l

ruεu
puρu

∣∣∣∣∣∣ ≥ C0

ηρun,l(n)

 ≥ 1/4. (21)

We now conclude the argument. First, we shall write En(f(X,Y )) for
∑

(k,l)∈Z2 f(k, l)dνn(k, l).

Using [2], Prop. 2.5 1), the random walk (Sn) is transient whenever
∑
n≥1 1/Φ(n) < +∞, or

equivalently
∑
n≥1K

n/Φ(Kn) < +∞, as Φ(n) is increasing.

As a result, from (21), P′-a.-s., there exists N0 ≥ 0, so that for n ≥ N0 :

En


 ∑
X≤u≤Y

ruεu
puρu

2
 ≥ 1

4

C2
0

η2ρ2un,l(n)

.

This then furnishes :
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∑
n≥N0

Kn

Φ(Kn)
≤

∑
n≥N0

Kn

 ∑
−v−1
− (Kn)≤k≤`≤v−1

+ (Kn)

ρkρ`

 ∑
k≤u≤`

ruεu
puρu

2

−1/2

≤
∑
n≥N0

Kn

 ∑
−v−1
− (Kn)≤k≤−1,v−1

+ (Kn−1)<`≤v−1
+ (Kn)

ρkρ`

 ∑
k≤u≤`

ruεu
puρu

2

−1/2

≤
∑
n≥N0

Kn

(Zn)1/2

En

 ∑
X≤u≤Y

ruεu
puρu

2


−1/2

≤
∑
n≥N0

Kn

(Zn)1/2
2ηρun,l(n)

C0
�
∑
n≥N0

ρun,l(n)
< +∞,

as from (16), we have ρun,l(n)
≤ exp(−n1−2ε). Hence

∑
n≥1K

n/Φ(Kn) < +∞ and the proof of
point iii) of the theorem is complete.

�

We conclude this article with a remark on the expected normalization for (Sn), taking d = 1 and
the context of Theorem 2.5. Introduce as in [1, 2] the random times 0 = σ0 < τ0 < σ1 < τ1 < · · · ,
where τk = min{n > σk | Sn 6∈ Z × {0}} and σk+1 = {n > τk | Sn ∈ Z × {0}}. Setting
Dn = Sσn

− Sσn−1
, the stratification of the environment implies that the (Dn)n≥1 are i.i.d..

Standardly (cf Gnedenko-Kolmogorov [8]), the correct normalization for D1 + · · · + Dn can be
read on the behaviour at the origin of the characteristic function χD1

(t) = E(eitD1), t ∈ R. More
precisely, if mN is the empirical mean and d2N the empirical variance of (D1 + · · · + Dn)1≤n≤N ,
then dN and |mN | + dN are respectively related to 1 − Re(χD(t)) and |1 − χD(t)|, as t → 0. By
[2], Prop. 6.5 and Prop. 6.8, one may informally guess that dN is like Φ+(N) and |mN |+ dN like
Φ(N). Taking the special case εn = 1, the correct normalization for σn should be Φ̃(n), with :

Φ̃(n) �

 ∑
−v−1
− (n)≤k≤`≤v−1

+ (n)

ρkρ`

(∑̀
s=k

1

ρs

)2


1/2

.

Noticing that Φ̃−1(n) � Ψ−1(n), where Ψ(n) = n
∑
−v−1
− (n)≤k≤v−1

+ (n) 1/ρk, a natural conjecture

for the normalization for Sn is then :

(Φ ◦Ψ−1(n),Ψ−1(n)).

Since Ψ−1(n) has rough order (log n)2, one recovers in the second coordinate the scaling of Sinäı’s
random walk [17]. Recall that in the vertically flat case and when the (rnεn/pn)n∈Z are i.i.d.
centered and non-constant, then Φ(n) � n3/2 and Ψ(n) � n2. From these informal considerations,
one recovers that the correct normalization for Sn in this case is (n3/4,

√
n); see [7] and [10].
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Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris-Est, Faculté des
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