A. Singh, S. Bajpai, S. Karanam, A. Choubey, and T. Raviteja, Malignant brain tumor detection, International Journal of Computer Theory and Engineering, vol.4, issue.6, p.1002, 2012.

T. Logeswari and . Karnan, An improved implementation of brain tumor detection using segmentation based on soft computing, Journal of Cancer Research and Experimental Oncology, vol.2, issue.1, pp.6-014, 2009.

C. Eric and . Holland, Progenitor cells and glioma formation, Current opinion in neurology, vol.14, issue.6, pp.683-688, 2001.

L. Bangiyev, M. Espagnet, R. Young, T. Shepherd, E. Knopp et al., Adult brain tumor imaging: state of the art, Seminars in roentgenology, vol.49, pp.39-52, 2014.

J. Stephanie, X. T. Chiu, P. Li, C. A. Nicholas, J. A. Toth et al., Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation, Optics express, vol.18, issue.18, pp.19413-19428, 2010.

V. Dill, A. R. Franco, and M. Pinho, Automated methods for hippocampus segmentation: the evolution and a review of the state of the art, Neuroinformatics, vol.13, issue.2, pp.133-150, 2015.

L. Shen, H. A. Firpi, A. J. Saykin, and J. West, Parametric surface modeling and registration for comparison of manual and automated segmentation of the hippocampus, Hippocampus, vol.19, issue.6, pp.588-595, 2009.

A. Bjoern-h-menze, S. Jakab, J. Bauer, K. Kalpathy-cramer, J. Farahani et al., The multimodal brain tumor image segmentation benchmark (brats), IEEE transactions on medical imaging, vol.34, issue.10, pp.1993-2024, 2015.

M. Prastawa, E. Bullitt, S. Ho, and G. Gerig, A brain tumor segmentation framework based on outlier detection, Medical image analysis, vol.8, issue.3, pp.275-283, 2004.

D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, C. Demiralp et al., Decision forests for tissue-specific segmentation of 23
DOI : 10.1007/978-3-642-33454-2_46

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-642-33454-2_46.pdf

, high-grade gliomas in multi-channel mr, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.369-376, 2012.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, pp.1097-1105, 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

D. Matthew, R. Zeiler, and . Fergus, Visualizing and understanding convolutional networks, European conference on computer vision, pp.818-833, 2014.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1-9, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, pp.779-788, 2016.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.580-587, 2014.

R. Girshick and . Fast-r-cnn, Proceedings of the IEEE International Conference on Computer Vision, volume 2015 International Conference on Computer Vision, ICCV 2015, pp.1440-1448, 2015.

K. Shaoqing-ren, R. He, J. Girshick, and . Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, 2015.

A. Stadlbauer, E. Moser, S. Gruber, R. Buslei, C. Nimsky et al., Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1h-mrsi metabolites in gliomas, Neuroimage, vol.23, issue.2, pp.454-461, 2004.

P. Gibbs, L. David, . Buckley, J. Stephen, A. Blackband et al., Tumour volume determination from mr images by morphological segmentation, Physics in Medicine & Biology, vol.41, issue.11, p.2437, 1996.

. Michael-r-kaus, K. Simon, A. Warfield, . Nabavi, M. Peter et al., Automated segmentation of mr images of brain tumors, Radiology, vol.218, issue.2, pp.586-591, 2001.

J. E. Cates, R. T. Whitaker, and G. M. Jones, Case study: an evaluation of user-assisted hierarchical watershed segmentation, Medical Image Analysis, vol.9, issue.6, pp.566-578, 2005.

M. J. Marloes, O. F. Letteboer, E. B. Olsen, . Dam, W. A. Peter et al., Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm1, Academic Radiology, vol.11, issue.10, pp.1125-1138, 2004.

V. Caselles, F. Catté, T. Coll, and F. Dibos, A geometric model for active contours in image processing, Numerische mathematik, vol.66, issue.1, pp.1-31, 1993.

J. E. Cates, A. E. Lefohn, and R. Whitaker, Gist: an interactive, gpu-based level set segmentation tool for 3d medical images, Medical image analysis, vol.8, issue.3, pp.217-231, 2004.

J. E. Aaron-e-lefohn, R. Cates, and . Whitaker, Interactive, gpu-based level sets for 3d segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.564-572, 2003.

K. Bjoern-h-menze, D. Van-leemput, M. Lashkari, N. Weber, P. Ayache et al., A generative model for brain tumor segmentation in multi-modal images, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.151-159, 2010.

N. Moon, E. Bullitt, K. Van-leemput, and G. Gerig, Model-based brain and tumor segmentation, Proceedings. 16th International Conference on, vol.1, pp.528-531, 2002.

M. Prastawa, E. Bullitt, N. Moon, K. Van-leemput, and G. Gerig, Automatic brain tumor segmentation by subject specific modification of atlas priors1, Academic radiology, vol.10, issue.12, pp.1341-1348, 2003.

E. Geremia, O. Clatz, H. Bjoern, E. Menze, A. Konukoglu et al., Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images, NeuroImage, vol.57, issue.2, pp.378-390, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00616194

M. Ozkan, M. Benoit, R. Dawant, and . Maciunas, Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study, IEEE transactions on Medical Imaging, vol.12, issue.3, pp.534-544, 1993.

C. Matthew, L. O. Clark, . Hall, B. Dmitry, R. Goldgof et al.,

M. S. Silbiger, Automatic tumor segmentation using knowledge-based techniques, IEEE transactions on medical imaging, vol.17, issue.2, pp.187-201, 1998.

. Lynn-m-fletcher-heath, O. Lawrence, . Hall, B. Dmitry, F. Goldgof et al., Automatic segmentation of non-enhancing brain tumors in magnetic resonance images, Artificial intelligence in medicine, vol.21, issue.1-3, pp.43-63, 2001.

D. Zikic, Y. Ioannou, M. Brown, and A. Criminisi, Segmentation of brain tumor tissues with convolutional neural networks, Proceedings MICCAI-BRATS, pp.36-39, 2014.

G. Urban, . Bendszus, J. Hamprecht, and . Kleesiek, Multi-modal brain tumor segmentation using deep convolutional neural networks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winning contribution, pp.31-35, 2014.

D. Axel, H. Mohammad, W. David, B. Antoine, T. Lam et al., Pal Chris, and Bengio Yoshua. Brain tumor segmentation with deep neural networks, Proceedings MICCAI-BRATS, pp.1-05, 2014.

S. Pereira, A. Pinto, V. Alves, and C. Silva, Deep convolutional neural networks for the segmentation of gliomas in multi-sequence mri, Proceedings MICCAI-BRATS, pp.52-55, 2015.

M. Havaei, A. Davy, D. Warde-farley, A. Biard, A. Courville et al., Brain tumor segmentation with deep neural networks, Medical image analysis, vol.35, pp.18-31, 2017.

G. E. David-e-rumelhart, R. Hinton, and . Williams, Learning representations by backpropagating errors, nature, vol.323, issue.6088, p.533, 1986.

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th international conference on machine learning (ICML-10), pp.807-814, 2010.

N. Geoffrey-e-hinton, A. Srivastava, I. Krizhevsky, . Sutskever, and . Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, 2012.

B. Zoph, V. Vasudevan, J. Shlens, and Q. Le, Learning transferable architectures for scalable image recognition, vol.2, 2017.

H. Pham, Y. Melody, B. Guan, . Zoph, V. Quoc et al., Efficient neural architecture search via parameter sharing, 2018.

P. Diederik, J. Kingma, and . Ba, Adam: A method for stochastic optimization, 2014.

J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Journal of Machine Learning Research, vol.12, pp.2121-2159, 2011.

B. B. Nicholas-j-tustison, P. A. Avants, Y. Cook, A. Zheng, . Egan et al., N4itk: improved n3 bias correction, IEEE transactions on medical imaging, vol.29, issue.6, pp.1310-1320, 2010.