B. Darimont and R. Sterner, Sequence, assembly and evolution of a primordial ferredoxin from Thermotoga maritima, The EMBO Journal, vol.13, issue.8, pp.1772-1781, 1994.

O. Tiboni, R. Cantoni, R. Creti, P. Cammarano, and A. M. Sanangelantoni, Phylogenetic depth of Thermotoga maritima inferred from analysis of the fus gene: amino acid seuqence of elongation factor G and organization of the Thermotoga str operon, Journal of Molecular Evolution, vol.33, issue.2, pp.142-151, 1991.

S. T. Fitz-gibbon and C. H. House, Whole genome-based phylogenetic analysis of free-living microorganisms, Nucleic Acids Research, vol.27, issue.21, pp.4218-4222, 1999.

K. E. Nelson, R. A. Clayton, and S. R. Gill, Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima, Nature, vol.399, issue.6734, pp.323-329, 1999.

S. Winker and C. R. Woese, A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics, Systematic and Applied Microbiology, vol.14, issue.4, pp.305-310, 1991.

R. Huber, T. A. Langworthy, and H. Konig, Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 ? C, Archives of Microbiology, vol.144, issue.4, pp.324-333, 1986.

R. Huber and K. O. Stetter, The order Thermotogales, pp.3809-3815, 1992.

R. Huber, C. R. Woese, T. A. Langworthy, J. K. Kristjansson, and K. O. Stetter, Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the 'Thermotogales, vol.154, pp.105-111, 1990.

H. W. Jannasch, R. Huber, S. Belkin, and K. O. Stetter, Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga, Archives of Microbiology, vol.150, issue.1, pp.103-104, 1988.

E. Windberger, R. Huber, A. Trincone, H. Fricke, and K. O. Stetter, Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs, Archives of Microbiology, vol.151, issue.6, pp.506-512, 1989.

P. H. Janssen and H. W. Morgan, Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1, FEMS Microbiology Letters, vol.96, issue.2-3, pp.213-218, 1992.

C. Schröder, M. Selig, and P. Schöonheit, Glucose fermentation to acetate, CO 2 and H 2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway, Archives of Microbiology, vol.161, issue.6, pp.460-470, 1994.

G. Ravot, B. Ollivier, and M. Magot, Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales, Applied and Environmental Microbiology, vol.61, issue.5, pp.2053-2055, 1995.

A. Rusch, E. Walpersdorf, D. Debeer, S. Gurrieri, and J. P. Amend, Microbial communities near the oxic/anoxic interface in the hydrothermal system of Vulcano Island, Italy, Chemical Geology, vol.224, issue.1-3, pp.169-182, 2005.

N. T. Eriksen, T. M. Nielsen, and N. Iversen, Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana, Biotechnology Letters, vol.30, issue.1, pp.103-109, 2008.

S. A. Van-ooteghem, A. Jones, D. Van-der-lelie, B. Dong, and D. Mahajan, H 2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions, Biotechnology Letters, vol.26, issue.15, pp.1223-1232, 2004.

C. Le-fourn, M. L. Fardeau, B. Ollivier, E. Lojou, and A. Dolla, The hyperthermophilic anaerobe Thermotoga maritima is able to cope with limited amount of oxygen: insights into its defence strategies, Environmental Microbiology, vol.10, issue.7, pp.1877-1887, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00335515

L. Chen, M. Y. Liu, J. Legall, P. Fareleira, H. Santos et al., Rubredoxin oxidase, a new flavo-hemo-protein, is the site of oxygen reduction to water by the 'strict anaerobe' Desulfovibrio gigas, Biochemical and Biophysical Research Communications, vol.193, issue.1, pp.100-105, 1993.

K. D. Rinker, Growth physiology and bioenergetics of the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima, 1998.

K. D. Rinker and R. M. Kelly, Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima, Biotechnology and Bioengineering, vol.69, issue.5, pp.537-547, 2000.

V. Muralidharan, K. D. Rinker, I. S. Hirsh, E. J. Bouwer, and R. M. Kelly, Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures, Biotechnology and Bioengineering, vol.56, issue.3, pp.268-278, 1997.

C. Lapaglia and P. L. Hartzell, Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus, Applied and Environmental Microbiology, vol.63, issue.8, pp.3158-3163, 1997.

K. D. Rinker and R. M. Kelly, Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation, Applied and Environmental Microbiology, vol.62, issue.12, pp.4478-4485, 1996.

R. E. Hungate, A roll-tube method for the cultivation of strict anaerobes, Methods in Microbiology, pp.117-132, 1969.

J. M. Macy, J. E. Snellen, and R. E. Hungate, Use of syringe methods for anaerobiosis, American Journal of Clinical Nutrition, vol.25, issue.12, pp.1318-1323, 1972.

W. E. Balch, G. E. Fox, and L. J. Magrum, Methanogens: reevaluation of a unique biological group, Microbiological Reviews, vol.43, issue.2, pp.260-296, 1979.

T. L. Miller and M. J. Wolin, A serum bottle modification of the Hungate technique for cultivating obligate anaerobes, Journal of Applied Microbiology, vol.27, issue.5, pp.985-987, 1974.

S. Moore, D. H. Spackman, and W. H. Stein, Chromatography of amino acids on sulfonated polystyrene resins: an improved system, Analytical Chemistry, vol.30, issue.7, pp.1185-1190, 1958.

M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Colorimetric method for determination of sugars and related substances, Analytical Chemistry, vol.28, issue.3, pp.350-356, 1956.

R. S. Oremland, Biogeochemistry of methanogenic bacteria, Biology of Anaerobic Microorganisms, pp.641-705, 1988.

W. H. Patrick and C. N. Reddy, Chemical changes in rice soils, Soils and Rice, pp.361-379, 1978.

A. Zehnder, Ecology of methane formation, Water Pollution Microbiology, pp.349-376, 1978.

H. S. Jee, T. Mano, N. Nishio, and S. Nagai, Influence of redox potential on methanation of methanol by Methanosarcina barkeri in Eh-stat batch cultures, International Journal of Microbiology, vol.66, issue.1, pp.123-126, 1988.

S. Fetzer and R. Conrad, Effect of redox potential on methanogenesis by Methanosarcina barkeri, Archives of Microbiology, vol.160, issue.2, pp.108-113, 1993.

M. Vargas, K. Kashefi, E. L. Blunt-harris, and D. R. Lovley, Microbiological evidence for Fe(III) reduction on early earth, Nature, vol.395, issue.6697, pp.65-67, 1998.

M. Balk, J. Weijma, and A. J. Stams, Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor, International Journal of Systematic and Evolutionary Microbiology, vol.52, issue.4, pp.1361-1368, 2002.

G. Ravot, B. Ollivier, and M. L. Fardeau, L-alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism?, Applied and Environmental Microbiology, vol.62, issue.7, pp.2657-2659, 1996.

F. Wenzhöfer, O. Holby, R. N. Glud, H. K. Nielsen, and J. K. Gundersen, In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece, Marine Chemistry, vol.69, issue.1-2, pp.43-54, 2000.

X. Yang and K. Ma, Characterization of an exceedingly active NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima, Journal of Bacteriology, vol.189, issue.8, pp.3312-3317, 2007.

M. A. Pysz, S. B. Conners, and C. I. Montero, Transcriptional analysis of biofilm formation processes in the anaerobic, hyperthermophilic bacterium Thermotoga maritima, Applied and Environmental Microbiology, vol.70, issue.10, pp.6098-6112, 2004.

S. Fetzer, F. Bak, and R. Conrad, Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation, FEMS Microbiology Ecology, vol.12, issue.2, pp.107-115, 1993.

H. Sass and H. Cypionka, Response of sulfate-reducing bacteria to oxygen, pp.141-166, 2007.