T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, vol.45, pp.601-620, 1999.

O. Bettinotti, Simulation of delamination under impact using a global-local method in explicit dynamics, Finite Elements in Analysis and Design, vol.100, pp.1-13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01756777

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilistic Engineering Mechanics 25, vol.2, pp.183-197, 2010.

G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, vol.230, pp.2345-2367, 2011.

F. Brezzi, J. Lions, and O. Pironneau, Analysis of a Chimera method, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, vol.332, pp.655-660, 2001.

M. Chevreuil, A. Nouy, and E. Safatly, A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties, Computer Methods in Applied Mechanics and Engineering, vol.255, pp.255-274, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00733739

A. Chkifa, A. Cohen, and C. Schwab, High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs, Foundations of Computational Mathematics, vol.14, pp.601-633, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01350602

. References, A. Chkifa, A. Cohen, and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs, Journal de Mathématiques Pures et Appliquées 103, vol.2, pp.400-428, 2015.

A. Chkifa, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs, ESAIM: M2AN 47.1, pp.253-280, 2013.

H. B. Dhia, Problèmes mécaniques multi-échelles: la méthode Arlequin-Multiscale mechanical problems: the Arlequin method, Comptes Rendus de l'Académie des SciencesSeries IIB-Mechanics-Physics-Astronomy, vol.326, pp.899-904, 1998.

H. B. Dhia and G. Rateau, Analyse mathématique de la méthode Arlequin mixteMathematical analysis of the mixed Arlequin method, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, vol.332, pp.649-654, 2001.

P. Dostert, Y. Efendiev, and T. Hou, Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification, Computer Methods in Applied Mechanics and Engineering, vol.197, pp.3445-3455, 2008.

M. Duval, Non-intrusive Coupling: Recent Advances and Scalable Nonlinear Domain Decomposition, Archives of Computational Methods in Engineering, pp.17-38, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065538

E. , W. , and B. Engquist, The Heterogeneous Multiscale Methods, Communications in Mathematical Sciences, vol.1, issue.1, pp.87-132, 2003.

B. References-iii-ganapathysubramanian and N. Zabaras, A stochastic multiscale framework for modeling flow through random heterogeneous porous media, Journal of Computational Physics, vol.228, pp.591-618, 2009.

B. Ganis, I. Yotov, and M. Zhong, A Stochastic Mortar Mixed Finite Element Method for Flow in Porous Media with Multiple Rock Types, SIAM Journal on Scientific Computing, vol.33, pp.1439-1474, 2011.

L. Gendre, O. Allix, and P. Gosselet, A two-scale approximation of the Schur complement and its use for non-intrusive coupling, International Journal for Numerical Methods in Engineering, vol.87, pp.889-905, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01224373

L. Gendre, Non-intrusive and exact global/local techniques for structural problems with local plasticity, English. In: Computational Mechanics, vol.44, issue.2, pp.233-245, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00437023

V. Ginting, A. Målqvist, and M. Presho, A Novel Method for Solving Multiscale Elliptic Problems with Randomly Perturbed Data, Multiscale Modeling & Simulation, vol.8, issue.3, pp.977-996, 2010.

R. Glowinski, Finite element approximation of multi-scale elliptic problems using patches of elements, Numerische Mathematik, vol.101, pp.663-687, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00113130

A. Gravouil, J. Rannou, M. Baïetto, and . English, A Local Multi-grid X-FEM approach for 3D fatigue crack growth, International Journal of Material Forming, vol.1, issue.1, pp.1103-1106, 2008.

C. Hager, Solving dynamic contact problems with local refinement in space and time, Computer Methods in Applied Mechanics and Engineering, pp.25-41, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01393141

J. References-iv-he, A. Lozinski, and J. Rappaz, Accelerating the method of finite element patches using approximately harmonic functions, Comptes Rendus Mathematique, vol.345, pp.107-112, 2007.

T. Y. Hou and X. Wu, A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media, Journal of Computational Physics, vol.134, pp.169-189, 1997.

T. J. Hughes, The variational multiscale method-a paradigm for computational mechanics, Advances in Stabilized Methods in Computational Mechanics, vol.166, pp.3-24, 1998.

B. M. Irons and R. C. Tuck, A version of the Aitken accelerator for computer iteration, International Journal for Numerical Methods in Engineering, vol.1, issue.3, pp.275-277, 1969.

C. Jin, X. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on Scientific Computing, vol.29, pp.2096-2114, 2007.
DOI : 10.1137/060662381

U. Küttler and W. A. Wall, Fixed-point fluid-structure interaction solvers with dynamic relaxation, Computational Mechanics 43.1, pp.61-72, 2008.

L. Bris, . Claude, F. Legoll, and F. Thomines, Multiscale Finite Element approach for "weakly" random problems and related issues, pp.815-858, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00639349

J. Lions and O. Pironneau, Domain decomposition methods for CAD, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, vol.328, pp.73-80, 1999.
DOI : 10.1016/s0764-4442(99)80015-9

Y. Liu, Q. Sun, and X. Fan, A non-intrusive global/local algorithm with non-matching interface: Derivation and numerical validation, Computer Methods in Applied Mechanics and Engineering, pp.81-103, 2014.
DOI : 10.1016/j.cma.2014.04.012

A. References-v-lozinski, Méthodes numériques et modélisation pour certains problèmes multi-échelles". Habilitation à diriger des recherches, 2010.

A. J. Macleod, Acceleration of vector sequences by multi-dimensional ? 2 methods, Communications in Applied Numerical Methods, vol.2, issue.4, pp.385-392, 1986.

K. M. Mao and C. T. Sun, A refined global-local finite element analysis method, International Journal for Numerical Methods in Engineering, vol.32, pp.29-43, 1991.

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol.46, pp.131-150, 1999.

V. A. Narayanan and N. Zabaras, Variational multiscale stabilized FEM formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations, Journal of Computational Physics, vol.202, pp.94-133, 2005.

A. Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.1603-1626, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00455635

A. Nouy and F. Pled, A multiscale method for semi-linear elliptic equations with localized uncertainties and non-linearities, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01507489

N. Parés, P. Díez, and A. Huerta, Bounds of functional outputs for parabolic problems. Part I: Exact bounds of the discontinuous Galerkin time discretization, Computer Methods in Applied Mechanics and Engineering, pp.1641-1660, 1920.

, References VI

J. C. Passieux, Direct estimation of generalized stress intensity factors using a three-scale concurrent multigrid X-FEM, International Journal for Numerical Methods in Engineering, vol.85, pp.1648-1666, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00708392

J. Passieux, Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver, English. In: Computational Mechanics, vol.52, pp.1381-1393, 2013.
DOI : 10.1007/s00466-013-0882-3

URL : https://hal.archives-ouvertes.fr/hal-00824125

O. Pironneau, Numerical zoom for multiscale problems with an application to flows through porous media, Discrete & Continuous Dynamical Systems-A 23.1, pp.265-280, 2009.

K. C. Saltelli-andrea and E. M. Scott, Sensitivity Analysis, 2000.

A. Sarkar, N. Benabbou, and R. Ghanem, Domain decomposition of stochastic PDEs: Theoretical formulations, International Journal for Numerical Methods in Engineering, vol.77, pp.689-701, 2009.

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Special Issue on Computational Methods in Stochastic Mechanics and Reliability Analysis, vol.194, pp.26-64, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00686157

C. Soize, Maximum entropy approach for modeling random uncertainties in transient elastodynamics, The Journal of the Acoustical Society of America, vol.109, p.329, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00686287

J. L. Steger, F. C. Dougherty, and J. A. Benek, A Chimera grid scheme, Advances in Grid Generation, vol.5, pp.59-69, 1983.

E. Stein and S. Ohnimus, Coupled model-and solution-adaptivity in the finite-element method, Computer Methods in Applied Mechanics and Engineering, vol.150, pp.327-350, 1997.

T. Strouboulis, I. Babu?ka, and K. Copps, The design and analysis of the Generalized Finite Element Method, Computer Methods in Applied Mechanics and Engineering, vol.181, issue.1-3, pp.43-69, 2000.

B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety 93, vol.7, pp.964-979, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01432217

R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-refinement Techniques, 1996.

M. F. Wheeler, T. Wildey, and I. Yotov, A multiscale preconditioner for stochastic mortar mixed finite elements, Computer Methods in Applied Mechanics and Engineering, pp.1251-1262, 0200.

J. Whitcomb, Iterative global/local finite element analysis, Computers & Structures, vol.40, pp.1027-1031, 1991.

, References VIII

J. Xu, Iterative Methods by Space Decomposition and Subspace Correction, SIAM Review, vol.34, pp.581-613, 1992.

X. F. Xu, A multiscale stochastic finite element method on elliptic problems involving uncertainties, Computer Methods in Applied Mechanics and Engineering, vol.196, pp.2723-2736, 2007.

X. F. Xu, X. Chen, and L. Shen, A Green-function-based multiscale method for uncertainty quantification of finite body random heterogeneous materials, Computers & Structures, vol.87, pp.1416-1426, 2009.

K. Zhang, Domain decomposition methods for linear and semilinear elliptic stochastic partial differential equations, Applied Mathematics and Computation, vol.195, pp.630-640, 2008.