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Abstract

This paper deals with the modeling of weakly rare�ed and dilute gas �ows in micro channels by

the continuum approach, valid for Knudsen numbers smaller than about 0.1. It particularly focuses

on the modeling of the associated heat transfer. The models proposed in the literature for the forced

convection of gas �ows in long micro channels between two in�nite plates are more speci�cally discussed.

The complete model for such �ows is reminded after a compilation and a brief description of their

possible applications in industries. The compatibility of the pressure work and viscous dissipation in

the energy equation with the power of the viscous stress at the walls is discussed in detail. A dimensional

analysis is proposed in the context of long micro channels. Analytical solutions for the velocity and

temperature �elds and for the Nusselt number are provided in the case of compressible micro-�ows in

isothermally heated �at plate channels, with pressure work and viscous dissipation included. The choice

of an appropriate Nusselt number, including the power of the viscous stress at the wall, is particularly

discussed. It is shown analytically and numerically, by solving the complete model for an isothermal

wall micro-channel, that the Nusselt number tends to zero when the hydraulic diameter decreases, that

is when the Reynolds number decreases and the Knudsen number increases. This could theoretically

explain the very small values of the Nusselt number obtained in the experiments by Demsis et al. (2009,

2010).

Keywords: micro-channel, �rst-order slip �ow, compressible �ow, heat transfer, Nusselt number, ana-

lytical solution

Highlights: (maximum 85 characters including spaces per bullet point)

• Isothermally heated gas slipping �ows in long plane micro-channels are considered

• Analytical solution of �ow and heat transfer established from an asymptotic analysis

• Viscous stress power at the wall must be included in the total wall heat �ux

• Wall Nusselt number tends to zero or to very small values for this �ow type

• The very small values of the Nusselt number obtained in experiments are explained
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1 Introduction

Due to the increasing development of Micro Electro Mechanical Systems (MEMS), the study

of liquid or gas �ows and heat transfer in ducts, heated or not, whose hydraulic diameter, Dh,

is of the order of a few microns (say 1 to 100 µm), has given rise to a considerable amount

of works over the past twenty years. A recent review by Kandlikar et al. [1] is dedicated to

them. It is shown that monophasic liquid �ows in micro channels have a behavior similar to

that observed at the macroscopic scale and the classical continuum mechanics model can be

used (Navier-Stokes equations with no slip boundary conditions).

However, for gas �ows at the microscopic scale, speci�c phenomena are observed and require

appropriate models [2, 3]. A slightly rare�ed �ow regime close to the wall, generated by the

interaction between the gas molecules and the wall atoms, must be taken into account at the

microscopic scale whereas it is negligible at the macroscopic scale or for liquid micro-�ows.

More speci�cally, a Knudsen layer whose thickness is of the order of the mean free path of

the gas molecules, λ, is formed closed to the wall. In this layer, the velocity magnitudes of

the gas molecules considered individually are di�erent at a �xed distance from the wall, due

to their interactions with the wall. In other words, in this layer, the gas is in a state of local

thermodynamic non-equilibrium which results in non-linear mean velocity pro�les and relations

between stress and strain rates. From the continuum mechanics point of view, at the micro

channel scale, when the Knudsen number is such that 0.001 < Kn = λ/Dh < 0.1, these

phenomena translate into a slip velocity and a temperature jump at the wall and, possibly, a

gas �ow driven by the tangential temperature gradient along the wall called �thermal creep� [4].

The consequences of these phenomena on the macroscopic quantities such as the mass �ow rate,

the friction factor, the bulk temperature and the wall heat �ux can be signi�cant [5] and must

be taken into account in the modeling of the convective heat transfer in MEMS with gas �ows.

Indeed they may have antagonistic e�ects on the heat transfer.

Gas micro-�ows, possibly with heat transfer, can be found in :

� micro heat exchangers for the cooling of electronic components or in chemistry [6, 7],

� micro pumps and turbines, including the thermal transpiration-driven Knudsen pumps

for vacuum pumping applications [8�10],

� micro-systems for the species separation in gas mixtures such as the method of gas sepa-

ration by membranes [11],

� micro gas analyzers such as micro mass spectrometers and micro-chromatographs [12,13],

� supersonic gas �ows in micro-nozzles to control the nano-satellite attitude or the boundary

layers in aerodynamics [14�18],

� arti�cial lungs [19,20],

� pressure, �ow rate and temperature micro-sensors in gas �ows [21,22], etc.

This paper investigates the theoretical models available to simulate and analyze the slightly

rare�ed gas micro-�ows with heat transfer, when Kn 6 0.1. We focus on the modeling of forced

convection of pure diluted gases in micro channels by a continuous approach based on the Navier-

Stokes equations and �rst order slip and temperature jump boundary conditions. It appears

that simpli�ed models are often used in the literature for this �ow type, but without relevant
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justi�cation and with recurrent errors propagating from one paper to the other, particularly

concerning the heat transfer analysis and the energy equation. Our purpose is to provide

a consistent model for gas micro-�ows and heat transfer and to compare with the vanishing

values of the Nusselt number obtained in experiments [23,24].

In that aim, the characteristic length scales of the continuum description and the way of

modeling the Knudsen layer are reminded in �2. The values of the slip and temperature jump

coe�cients are particularly discussed. The complete model for forced convection in heated

micro channels is established and discussed in �3. A dimensional analysis is developed and

the analytical solution of the temperature �eld given by a simpli�ed asymptotic model for

compressible gas convection in an isothermal micro-channel is established in �4. This solution is

compared with the numerical solution of the full model obtained from �nite volume simulations

in �5. Furthermore, from the numerical simulations, the heat �ux balances for slip and no

slip �ows and incompressible and compressible �ows are analysed in details. The numerical

method to solve the full model is presented in �5.1 and the analytical and numerical solutions

are compared in �5.2. The heat �ux balances and the very small values of the Nusselt number

obtained in the experiments by Demsis et al. [23, 24] are explained in �5.3.

2 Length scales of the continuum description and Knudsen layer modeling

The mean free path, λ, is the average distance traveled by the molecules between two

successive collisions. It is the main scale to evaluate the rarefaction rate in a gas �ow and the

validity domain of the continuum description. In this paper, the most standard de�nition used

for ideal gases is retained [2, 5, 26�28]:

λ =
µ

p

√
πrT

2
=
µ

ρ

√
π

2rT
= µ

√
π

2pρ
(1)

where r is the speci�c gas constant.

A scale analysis of the breakdown of the continuum description of gas �ows was presented by

Bird [25] and recalled by Gad-El-Hak [2,29], Colin [30] and Zhang et al. [31]. For dilute gases, the

limit on the range of validity of the continuum equations is �rst due to the local thermodynamic

non-equilibrium and the presence of very steep gradients in the �ow �elds (on characteristic

lengths, L, of the same order as the mean free path, λ), rather than due to statistical �uctuations

of the macroscopic variables. It is generally admitted that the thermodynamic equilibrium is

satis�ed and the Navier-Stokes equations are valid everywhere for Kn = λ/Dh < 0.001 to

0.01, and in the �ow core only for 0.01 < Kn < 0.1. In the latter case, in the thin layer

close to the wall (the Knudsen layer), the continuum equations are not valid because the gas

molecules only "see" a half-space where the nature of the shocks with the wall is di�erent from

the inter-molecular shocks: a local thermodynamic non-equilibrium is present in this zone.

An accurate description of the thin Knudsen layer whose thickness is between about λ and

3λ [5,31] is crucial for micro�uidics applications. Momentum and energy are indeed transferred

between the gas and the wall through this layer. An ill description has thus signi�cant conse-

quences on the evaluations of the mass �ow rate and friction factor, or on the maximum bulk
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temperature and wall heat �ux. For 0.001 < Kn < 0.1, a continuous approach coupled with

a modeling of the �ow and heat transfer in the Knudsen layer is generally considered. The

most used model consists in solving the Navier-Stokes equations with slip boundary conditions

and semi-empirical coe�cients, such as the �accommodation coe�cient� or the �slip length�, to

model the gas/wall interaction. A similar model is used for heat transfer: the energy equa-

tion is solved with a temperature jump boundary condition to mimic the thermal resistance

of the Knudsen layer. The choice of the slip and temperature jump coe�cients is detailed

below because inadaquate or unconsistent values of these coe�cients are regularly used in the

literature.

2.1 Slip and thermal creep boundary conditions

The �rst-order slip boundary condition was �rst introduced by Navier in 1823 [36], then

independently by Maxwell in 1879 [37]. The simpli�ed form on an impermeable wall writes:

ug − uw = Ls
∂u

∂−→n

∣∣∣∣
g

(2)

vg = 0 (3)

where u and v are the velocity components of the gas, tangential and normal to the wall

respectively, ug is the slip velocity of the gas on the wall, uw is the velocity of the wall (uw = 0

in general), Ls is the slip length and −→n is the direction normal to the wall directed toward

the gas with ∂u/∂−→n = ∇u.−→n . Here and in the following, the subscript �g� is used to denote

quantities on the gas side of the wall (slip-related quantities associated with the gas molecules

in contact with the wall) and the subscript �w� is used to denote the quantities on the solid

side of the wall.

The slip boundary condition (2) and the comparison of the �true� and modeled velocity

pro�les of the gas in the Knudsen layer are illustrated in the left part of Fig. 1. The "true"

velocity pro�le (in red) is non-linear close to the wall and presents a slip speed at the wall

denoted ug,true. The Navier and Maxwell model consists in approximating this velocity pro�le

in the Knudsen layer by the blue pro�le whose slip velocity, ug, is greater than the actual slip

velocity, ug,true, by considering that the di�erence ug−uw is proportional to the normal velocity

gradient along the Knudsen layer, ∂u
∂−→n

∣∣
g
. The slip length, Ls, in this model is a semi empirical

parameter, proportional to the mean free path, λ, and depends on the gas and wall nature, on

the wall roughness and, more generally, on the type of gas/wall interaction (di�use, specular or

mixed specular and di�use scattering of the gas molecules at the wall). Ls must be evaluated

so that ug provides a good approximation of the velocity pro�le outside the Knudsen layer.

There are many formulations of Ls in the literature which are more or less equivalent: some

formulations depend on a viscous slip coe�cient, σµ, such as Ls = σµλ; others are function

of the Tangential Momentum Accommodation coe�cient (TMAC)1, denoted σu here, such as

1 TMAC represents the average fraction of the momentum transferred to the wall atoms in the tangential
direction by the incident gas molecules impacting the wall : 0 < σu < 1 in case of partial accommodation of the
gas molecules with the wall, σu = 1 in case of a di�use re�ection (or full accommodation) of the gas molecules
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Fig. 1: Schematic representation of the true (in red) and approximated (in blue) velocity and
temperature pro�les in the Knudsen layer and (in green) of the slip length, Ls, and
temperature jump length, Ls,T .

Ls = [$u(2−σu)/σu]λ with $u a corrective coe�cient [38,39]. Recently, following the extensive

work by Sharipov [4], the �rst formulation seems to settle as a standard [1, 31]. However, the

slip boundary condition given by equation (2) is very simpli�ed. A more general form, valid for

non isothermal �ows, can be written :

ug − uw = σµλ

(
∂u

∂−→n
+

∂v

∂
−→
t

)∣∣∣∣
g

+ σθ

(
µr

p

∂T

∂
−→
t

)∣∣∣∣
g

(4)

where σµ and σθ are the viscous and thermal slip coe�cients (detailed below), µ the dynamic

viscosity and
−→
t the direction tangential to the wall. Compared with Eq. (2), the slip velocity

in Eq. (4) also depends on the tangential gradients of the normal velocity component, v, and

temperature, T . The term ∂v

∂
−→
t

∣∣∣
g
vanishes if the wall is plane and smooth. However, it must be

taken into account in case of high roughness or sharp curvature of the wall, when the radius of

curvature is about or less than the mean free path, λ, of the gas molecules [40,41].

The last term in Eq. (4) is the thermal creep or thermal transpiration term. It re�ects the

presence of a tangential �ow along the wall, generated by a longitudinal temperature gradient.

The thermal creep is directed from low temperatures to high temperatures. Thanks to a dimen-

sional analysis, we will show that this phenomenon is only signi�cant at very small Reynolds

numbers. When the thermal creep is negligible, the �rst order slip boundary condition (4) on

a plane and smooth wall simply writes:

ug − uw = σµλ
∂u

∂−→n

∣∣∣∣
g

(5)

Sharipov [4] proposed a synthesis of the theoretical and experimental values of the viscous

and thermal slip coe�cients, σµ and σθ, and also the thermal jump coe�cient ξT (see Eq. (6))

available in the literature. The theoretical data in [4] are mainly calculated from the Boltzmann

kinetic equation or various kinetic equations, like the BGK kinetic model. Due to the di�erent

de�nitions of the mean free path λ between [4] and Eq. (1), all the data for these coe�cients

in [4] must be multiplied by the factor 2√
π
to be used with the present formulation. Thus, we

get σµ ≈ 1.1, σθ ≈ 1.2 and ξT ≈ 2.2 with the present de�nition of λ (Eq. (1)), in the case

of di�use scattering (or full accommodation) of the gas molecules at the wall. To take into

and σu → 0 in case of specular re�ection (no accommodation).
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account a non complete accommodation, it is generally assumed that a part, evaluated by the

coe�cient TMAC = σu, of incident particles is scattered di�usely, while the rest of particles,

i.e. the (1 − σu) part, is re�ected specularly. Thus, in case of non di�use scattering, only a

part of the molecules accommodates with the wall and it is shown that σµ is greater than 1.1

and diverges for a specular scattering (for σu → 0), whereas σθ is smaller than 1.2 and tends to
3
4 ×

2√
π
for a specular scattering. For the sake of simplicity and as, in most of the experiments,

the gas/wall interaction is di�use (TMAC = σu ≈ 1), we will take σµ = σθ = 1 and ξT = 2

in the present numerical applications. Note that, in most of the published numerical works,

σµ = 1 and σθ = 3/4 are used at the same time what is erroneous since the former expression

corresponds to a di�use scattering and the latter to a specular scattering.

2.2 Thermal jump boundary condition

Similarly to the Navier and Maxwell slip boundary conditions, Smoluchowski (1898) [42]

introduced an equivalent boundary conditions to characterize the temperature jump observed

at the wall in the Knudsen layer. This temperature jump and its modeling are illustrated in the

right part of Fig. 1. The boundary conditions equivalent to Eq. (5) but for the temperature

can be written, at the �rst order with Kn [1, 4, 31]:

Tg − Tw = ξTλ
∂T

∂−→n

∣∣∣∣
g

(6)

where Tg is the gas temperature at the wall, Tw the wall temperature and ξT the temperature

jump coe�cient such as the thermal jump length in Fig. 1 is Ls,T = ξTλ. According to the

bibliographical synthesis [4], with λ given by Eq. (1), ξT ≈ 2.1 to 2.2 for di�use scattering of

mono atomic gases (He , Ar , Ne and Xe) and their binary mixtures at the walls.

In the literature, Eq. (6) is often considered in the following form:

Tg − Tw =
2− σT
σT

2γ

γ + 1

λ

Pr

∂T

∂−→n

∣∣∣∣
g

(7)

where σT is the thermal accommodation coe�cient [3] (equivalent of TMAC for the thermal

energy), γ = Cp/Cv is the isentropic coe�cient and Pr the Prandtl number. However, in

the case of a mono-atomic (respectively diatomic) ideal gas, γ = 5/3 (respectively 7/5) and

Pr ≈ 0.7. So, as σT = 1 for a di�use gas/wall interaction, the factor 2−σT
σT

2γ
γ+1

1
Pr in Eq. (7)

is approximately equal to 1.6 to 1.8 for bi and mono atomic gases which is noticeably smaller

than ξT ≈ 2.1 to 2.2 given by Sharipov [4].

Finally note that the temperature jump boundary condition that re�ects the rarefaction

and the presence of the Knudsen layer is valid and must be applied regardless of the type of

thermal condition applied: �xed temperature, imposed heat �ux or heat conduction in the wall.

We insist on this point because some authors did not take into account the temperature jump

condition when a heat �ux is imposed on a wall to determine the wall temperature.
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3 Mathematical model for gas �ows in micro channels

3.1 Main physical phenomena and modeling issues

For �ows in micro channels of large aspect ratio, L/Dh, and typical sizes 1 µm ≤ Dh ≤
10 µm et 100 µm ≤ L ≤ 1 mm, submitted to a moderate heating of the walls and to pressure

variations between the inlet and the outlet of the channel of the order of one bar to a few bars, the

conversion of the mechanical work of the viscous forces into internal energy is very important.

It can also be shown that the Mach number, Ma = ū/
√
γrT , and the Brinkman number,

Br = µū2/(k∆T ), can reach or exceed the unit and the Reynolds number, Re = ūDh/ν, and

the Péclet number, Pe = ūDh/α, can vary between 10−2 and 102. Accordingly, modeling this

type of �ow requires to take into account a wide range of physical phenomena:

� the local thermodynamic non equilibrium and rarefaction e�ects in the Knudsen layer as

described in the previous sections (dynamic slip, temperature jump and thermal creep),

� the compressibility of the gas (the volume expansion and cooling of the gas associated

with the pressure work) [43�46],

� the viscous dissipation (heat source) [45,46],

� the work of the viscous forces at the wall in the presence of dynamic slip [27,47,48],

� the variation of the physical properties with temperature [49,50],

� the dominant thermal and dynamical axial di�usions at the inlet and outlet boundaries

when Re and Pe are less than unity,

� the heat conduction in the walls (conjugate heat transfer) because they are usually thicker

than the channel and more conducting than the gas [51].

� the relative roughness of the walls, which can be important at these small scales [31,52�56].

A bibliographical review of numerous numerical studies on this subject shows that all these

e�ects are never taken into account simultaneously. This may be justi�ed in some cases when

the e�ect of the omitted term in the model is negligible on the dynamic and thermal behavior

of the �ow. However, the justi�cation of the simplifying assumptions used in the model is often

omitted. One objective of this paper is thus to study the in�uence of di�erent phenomena

described above in the case of gas �ows in 2D straight micro channels. The analysis will

particularly focus on the thermal aspects: we will analyze the in�uence of di�erent terms in

the energy equation and thermal boundary conditions on the evolution of the temperature �eld

and Nusselt number.

To this end, we present below full and simpli�ed mathematical models for modeling gas

micro-�ows in the framework of continuum mechanics. The general conservation equations are

presented in �3.2. The viscous stress power at the walls is discussed in �3.3 and its in�uence on

the sum of the pressure work and viscous dissipation in �3.4. The summary of the governing

equations and boundary conditions in their dimensional form is given in �3.5. The dimensionless

equations and the main results derived from a dimensional analysis of these micro �ows are

presented in �3.6.
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3.2 General conservation equations

In the present study, we consider steady gas �ows in isothermal parallel-plate micro channels

with the inlet and outlet pressures prescribed at pin and pout. The geometry is presented in

Fig. 2. The �ow is assumed to be two-dimensional, symmetrical through the horizontal mid-

plane, steady, compressible and laminar. The �uid is an ideal gas with potentially variable

physical properties. The governing equations are the mass, momentum and energy conservation

equations in which the body forces are neglected with respect to the viscous forces.

Fig. 2: Considered geometry for gas �ows in 2D isothermal micro channels

The continuity and Navier-Stokes equations write [57]:

∇.(ρ−→v )=0 (8)

∇.(ρ−→v ⊗−→v )=−∇p+∇.τ (9)

where the shear stress tensor τ is de�ned for a Newtonian-Stokes �uid by :

τ = µ(∇−→v +∇−→v t)− 2

3
µ∇.−→v I (10)

By noting h the enthalpy and ec = −→v 2/2 the kinetic energy per mass unit of the gas, the

total energy conservation equation writes [57]:

∇.(ρ−→v h+ ρ−→v ec − k∇T − τ .−→v )=0 (11)

With the present assumptions, the mechanical energy balance (or equation of change for me-

chanical energy) can be written:

∇.(ρ−→v ec − τ .−→v ) = −−→v .∇p− τ : ∇−→v (12)

By subtracting Eq. (12) from Eq. (11), we get the enthalpic form of the energy equation:

∇.(ρ−→v h− k∇T )= −→v .∇p+ τ : ∇−→v (13)

The viscous dissipation (V D) is a heat source term in the enthalpy equation ( τ : ∇−→v > 0)

whereas the pressure work (PW ) term is a heat sink ( −→v .∇p < 0) since the velocity vector, −→v ,
and the pressure gradient, ∇p, have opposite directions in a channel �ow of constant section.

For a compressible gas �ow in a constant section duct, both the magnitudes of V D and PW

increase downstream due to the gas expansion (acceleration) at the channel outlet and the
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transformation of the enthalpy/internal energy into kinetic energy.

For an ideal gas, the density is given by the equation of state:

ρ(p, T ) =
p

rT
(14)

where r is the speci�c gas constant, and the enthalpy per unit of mass is computed by:

h(T )− href (Tref ) =

∫ T

Tref

Cp(T ) dT (15)

where href = h(Tref ) is the known reference enthalpy at the reference temperature Tref . In the

previous equations, the thermal conductivity, k, the dynamic viscosity, µ, and the speci�c heat

capacity at constant pressure, Cp, are a priori temperature dependent. However, in the present

study, since the temperature variations are small due to the used isothermal wall condition, the

temperature dependence of the physical properties is negligible and not considered hereafter.

3.3 Viscous stress power (V SP ) at impermeable walls

We consider a compressible, non-isothermal gas �ow in a channel (as shown in Fig.2). The

boundary of the �ow domain, Ω, is limited by the following four surfaces: the inlet section,

Sin, the outlet section, Sout, the surface on the gas side of the impermeable wall, Sw,g, and

the symmetry surface, Ss.
−→n is the inward normal unit vector of the closed surface Σ =

Sin ∪ Sout ∪ Sw,g ∪ Ss (Fig. 2). Then, by integrating the total energy equation (11) on Ω,

applying the Gauss theorem and simplifying, we get:∫∫
Sin∪Sout

(ρ−→v h+ ρ−→v ec − k∇T − τ .−→v ).−→n dS +

∫∫
Sw,g

(−k∇T |g − τ .−→v
∣∣
g
).−→n dS = 0 (16)

in which the power of the viscous stress (τ .−→v ).−→n
∣∣
g
6= 0 in case of slipping �ow along the wall

since −→v g = ug(x)−→ex 6=
−→
0 and

(τ .−→v ).−→n
∣∣
g

= µgug
∂u

∂−→n

∣∣∣∣
g

(17)

Therefore, in case of rarefaction and slip conditions, the conservation of the heat �ux between

the gas and the solid wall implies that the total heat �ux density transmitted through the walls,
−→q t,w.−→n = qt,w(x) [W/m2], is equal to the sum of the di�usion heat �ux and the power of the

viscous stress:
−→q t,w.−→n =

(
− k∇T |g − τ .−→v

∣∣
g

)
.−→n (18)

Thus, using Eq. (17), the total heat �ux density transmitted through the wall writes:

qt,w = −kg
∂T

∂−→n

∣∣∣∣
g︸ ︷︷ ︸

diffusion heat flux

− µgug
∂u

∂−→n

∣∣∣∣∣
g︸ ︷︷ ︸

viscous stress power≥0

(19)

where kg(x) = k(Tg(x)) and µg(x) = µ(Tg(x)) are the gas conductivity and viscosity at the gas
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temperature close to the walls, Tg(x) (see Fig.1 and Eqs. (6) or (7)). In Eq. (19), the power of

the viscous stress at the wall (the last term under the brace) is positive or null. Thus the total

heat �ux density through the wall, qt,w, is always smaller than the di�used or convected heat

�ux density to the �uid and it can be positive or negative according to the relative magnitude

of the two R.H.S terms.

The expression (19) of the wall heat �ux was presumably introduced by Maslen (1958) [58]

then discussed by Sparrow and Lin (1962) [27]. Since then, only a few authors have taken into

account the power of the viscous stress at the wall in their analysis of heat transfer [44,47,59].

So, as most of the authors neglected this contribution, it was eventually forgotten. Hong and

Asako [48] reiterated its importance in a paper in 2010 and, more recently, some papers have

used total heat �ux expressions similar to Eq. (19) to analyse heat transfer in iso�ux micro

channels [60, 61]. In the present paper, we will analyze the contribution of qt,w on the Nusselt

number, in the case of isothermal micro channels. We will show that it allows to recover very

low values of the Nusselt number as it was experimentally obtained by Demsis et al. [23, 24].

It appears that to get a continuum model consistent with the conservation of the total heat

�ux, it is necessary to consider the power of the viscous stress at the wall when slip is present.

Eq. (19) is therefore the consequence of the presence of a slipping �ow and this condition

is independent of the temperature jump condition, Eqs. (6) or (7). So, in case of moderate

rarefaction (0.001 ≤ Kn ≤ 0.1), Eqs. (19) and (6) or (7) must be simultaneously satis�ed in

the continuum model. Most of the published works consider only one of these two conditions.

3.4 Pressure work (PW ) and viscous dissipation (V D) for weakly compressible

�ows

In numerous studies on gas micro-�ows, the contributions of the pressure work and the

viscous dissipation in the energy equation (13) were either both neglected or the �ow was

considered quasi-incompressible and only the viscous dissipation was accounted for. We remind

here some important theoretical results on these assumptions.

We consider �rst the integration of the mechanical energy equation (12) on the slice δΩ of

the impermeable wall micro-channel of Fig. 2, whose boundary is δΣ = S− ∪ S+ ∪ δSw,g ∪ δSs
and −→n is the inward normal unit vector. After applying the Gauss theorem and simplifying,

we get:∫∫∫
δΩ

(−→v .∇p+ τ : ∇−→v
)
dΩ︸ ︷︷ ︸

PW+V D

=

∫∫
S−∪S+

(ρ−→v ec − τ .−→v ).−→n dS︸ ︷︷ ︸
IS−∪S+≈0

+

∫∫
δSw,g

−(τ .−→v ).−→n dS︸ ︷︷ ︸
V SP

(20)

where the �rst R.H.S integral IS−∪S+ is null for fully established incompressible �ows and is

negligible for weakly compressible �ows since, in this case, the velocity pro�le is (nearly) the

same on the inlet (S−) and outlet (S+) sections of δΩ. Furthermore the last integral of the

viscous stress power (V SP ) on the wall (δSw,g) vanishes for no slipping �ows.

Consequently the integral, PW + V D, of the pressure work and viscous dissipation on the

slice δΩ is very small (negligible) for fully established no slipping �ows with weak streamwise
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density variations: in this case, the pressure work compensates the viscous dissipation, both

locally (on a channel slice) and also on the whole domain, except at the inlet and the outlet

where the entrance and expansion e�ects can be important. It appears thus that it is preferable

to neglect PW and V D at the same time instead of one at a time. This is all the more true

since the �ow is compressible. This is perfectly illustrated in the numerical study of heated

compressible �ows in 2D micro channels by Hong et al. (2007) [45].

For established and moderately rare�ed slipping �ows (0.001 ≤ Kn ≤ 0.1) with small

streamwise density variations, it appears from Eq. (20) that the �rst integral term in the RHS

of Eq. (20) is approximately equal to zero. Therefore, PW + V D ≈ V SP : the sum of the

pressure work and viscous dissipation does not vanish and is approximately equal to the power

of the viscous stress at the wall. As a result, PW + V D cannot be neglected in the energy

equation if V SP is not negligible at the wall and vice versa.

3.5 Governing equations for two-dimensional �ows of ideal gases in an

isothermally heated �at-plate channel

Referring to the coordinate system of Fig. 2, the governing equations and boundary condi-

tions for two-dimensional �ows of ideal gases in the x direction, between two isothermal parallel

smooth walls of length L, separated by a distance H in the transverse y direction, are summed

up below. By denoting (u, v) the velocity components in directions (x, y) of the velocity vector

~v, the equations (8), (9) and (13) can be written:

∂ρu

∂x
+
∂ρv

∂y
=0 (21)

∂ρuu

∂x
+
∂ρuv

∂y
= −∂p

∂x
+

∂

∂x

[
2µ

(
∂u

∂x
− 1

3

(
∂u

∂x
+
∂v

∂y

))]
+

∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
(22)

∂ρuv

∂x
+
∂ρvv

∂y
= −∂p

∂y
+

∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂y

[
2µ

(
∂v

∂y
− 1

3

(
∂u

∂x
+
∂v

∂y

))]
(23)

Cp

(
∂ρuT

∂x
+
∂ρvT

∂y

)
=

[
∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)]
+

(
u
∂p

∂x
+ v

∂p

∂y

)
+ ¯̄τ : ∇~v (24)

where the viscous dissipation writes:

¯̄τ : ∇~v = µ

{
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2
]

+

(
∂u

∂y
+
∂v

∂x

)2

− 2

3

(
∂u

∂x
+
∂v

∂y

)2
}

(25)

The above set of equations is completed with the state equation (14) of the ideal gas.

At the inlet section x = 0, uniform pressure and temperature are applied:

p(0, y) = pin,
∂u

∂x
(0, y) = 0, v(0, y) = 0, T (0, y) = Tin (26)

At the outlet section x = L, the pressure is �xed and fully developed �ow conditions are applied:

p(L, y) = pout,
∂u

∂x
(L, y) = 0,

∂v

∂x
(L, y) = 0,

∂T

∂x
(L, y) = 0 (27)
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The symmetry boundary conditions are considered on the channel axis at y = 0:

∂u

∂y
(x, 0) = 0, v(x, 0) = 0,

∂T

∂y
(x, 0) = 0 (28)

On the gas side of the impermeable wall at y = H/2 (denoted by the subscript g below), zero

normal velocity is applied and, for the tangential velocity, the rarefaction e�ects are modeled

using the �rst-order Maxwell slip velocity and thermal creep boundary conditions (Eq. (4)):

ug(x) = u(x,H/2) = −σµλg
∂u

∂y

∣∣∣∣∣
g︸ ︷︷ ︸

1st order slip velocity

+σθ
µg
ρgTg

∂T

∂x

∣∣∣∣∣
g︸ ︷︷ ︸

thermal creep

(29)

vg(x) = v(x,H/2) = 0 (30)

where the mean free path λg at the wall is viscosity based (Eq. (1)):

λg =
µg
pg

√
πrTg

2
= µg

√
π

2ρgpg
(31)

For a channel with a uniform wall temperature Tw, the thermal boundary condition (6) is used:

Tg(x) = T (x,H/2) = Tw − ξTλg
∂T

∂y

∣∣∣∣∣
g︸ ︷︷ ︸

1st order temperature jump

(32)

3.6 Dimensionless equations for �ows in isothermally-heated, long

micro-channels

Reference quantities

In the present study, we consider developed gas �ows (i.e. located downstream the thermal

entrance zone), in micro-channels isothermally heated at the wall temperature, Tw. Thus the

following dimensionless variables are used in order to write the conservation equations and

boundary conditions in dimensionless form :

X = x/L , Y = y/Dh , U = u/uref , V = v/uref , P =
p− pav
∆pref

, θ =
T − Tw
∆Tref

ρ∗ = ρ/ρw , µ∗ = µ/µw , C∗p = Cp/Cp,w , k∗ = k/kw (33)

The subscript �w� denotes quantities evaluated at the wall temperature, with ρw = pav/rTw and

pav = (pin+pout)/2; uref , ∆pref and ∆Tref are reference quantities for the velocity, the pressure

and temperature di�erences. In macro �ows, the pressure gradient is generally considered of the

same order as the inertial term, so the reference pressure di�erence is taken as ∆pref = ρinū
2
in

for instance. In macro and micro channels, when the inlet and outlet pressures are the inputs

of the problem formulation, the reference pressure is:

12



∆pref = pin − pout (34)

In dynamically developed �ows in micro and macro channels, as the streamwise pressure gra-

dient balances the viscous term, the equality of these two terms in the Navier-Stokes equations

enables us to write the unknown reference velocity, uref , as:

uref = εDh∆pref/µw (35)

where ε = Dh/L = 2H/L; it is a small parameter in the framework of the long channel approx-

imation. Due to the way it is built, uref is a relevant reference velocity for the viscous term of

the Navier-Stokes equations or for the viscous dissipation term of the energy equation.

On the other hand, the average or bulk velocity remains the adequate reference velocity for

the inertial terms and the Reynolds and Mach numbers. Thus, in what follows, a bulk velocity,

ūb, de�ned from the mass �ow rate, ṁ, will also be used:

ūb = ṁ/ρwH (36)

Note that ṁ is a priori unknown for an imposed pressure di�erence, pin − pout. It can be

estimated from the asymptotic analytical expression Eq. (63) for instance.

For a uniform wall temperature, Tw, the reference temperature di�erence is usually chosen as

∆Tref = Tw−Tin. Here, we are mainly interested in the fully developed micro-�ows downstream

the thermal entrance length. Far from the inlet and for isothermal channel walls, the thermal

scale can be chosen by assuming that the thermal di�usion balances the heat source terms

(pressure work and viscous dissipation) in the energy equation (24) (such an assumption will

be justi�ed later on). Then we get:

∆Tref =
µwu

2
ref

kw
(37)

where uref is given by Eq. (35).

Dimensionless equations and boundary conditions

After introducing the dimensionless variables (33), taking into account Eqs. (34)-(37), the

governing equations (21)-(24) become:

ε
∂ρ∗U

∂X
+
∂ρ∗V

∂Y
= 0 (38)
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ε
∂ρ∗UU

∂X
+
∂ρ∗UV

∂Y
= − 1

Rew

ūb
uref

∂P

∂X
+

1

Rew

ūb
uref

{
∂

∂X

[
2µ∗

(
ε2
∂U

∂X
− 1

3

(
ε2
∂U

∂X
+ ε

∂V

∂Y

))]
+

∂

∂Y

[
µ∗
(
∂U

∂Y
+ ε

∂V

∂X

)]}
(39)

ε
∂ρ∗UV

∂X
+
∂ρ∗V V

∂Y
= − 1

εRew

ūb
uref

∂P

∂Y
+

1

Rew

ūb
uref

{
∂

∂X

[
µ∗
(
ε
∂U

∂Y
+ ε2

∂V

∂X

)]
+

∂

∂Y

[
2µ∗

(
∂V

∂Y
− 1

3

(
ε
∂U

∂X
+
∂V

∂Y

))]}
(40)

C∗p

(
ε
∂ρ∗Uθ

∂X
+
∂ρ∗V θ

∂Y

)
=

1

PrwRew

ūb
uref

[
ε2

∂

∂X

(
k∗
∂θ

∂X

)
+

∂

∂Y

(
k∗
∂θ

∂Y

)]
+

1

PrwRew

ūb
uref

(
U
∂P

∂X
+

1

ε
V
∂P

∂Y

)
+

1

PrwRew

ūb
uref

Φv (41)

where Φv is the dimensionless viscous dissipation term (25):

Φv=µ∗

{
2

[(
ε
∂U

∂X

)2

+

(
∂V

∂Y

)2
]

+

[
∂U

∂Y
+ ε

∂V

∂X

]2

− 2

3

[
ε
∂U

∂X
+
∂V

∂Y

]2
}

(42)

In Eqs. (38)-(42), ε = Dh/L is a small parameter for most micro channels. Prw = µwCp,w/kw

and Rew = ρwūbDh/µw = 2ṁ/µw are the Prandtl and Reynolds numbers evaluated at the wall

temperature. So the last two terms of the energy equation (41), the pressure work (PW ) and

viscous dissipation (V D) terms, are both of the order of ūb/(PrwRewuref ), considering that,

from Eq. (38), V ∼ ε in the PW term. The ratio PW/V D is therefore of the order of −1 since

PW is negative and V D is positive.

The dimensionless form of the state equation is:

ρ∗ =
1 +

∆pref
pav

P

1 +
∆Tref
Tw

θ
(43)

The dimensionless forms of the boundary conditions read:

• on the inlet, atX = 0, ∀Y ∈ [0, 1
4 ], P = Pin = 1

2 ,
∂U

∂X
= V = 0, θ = θin = Tw

∆Tref

(
Tin
Tw
− 1
)
;

• on the outlet, at X = 1, ∀Y ∈ [0, 1
4 ], P = Pout = −1

2 ,
∂U

∂X
=
∂V

∂X
=

∂θ

∂X
= 0;

• on the channel axis, at Y = 0, ∀X ∈ [0, 1],
∂U

∂Y
= V =

∂θ

∂Y
= 0;

• on the wall, at Y = 1
4 , ∀X ∈ [0, 1], the velocity boundary conditions (29) and (30) write:

Ug =
−σµKnwµ∗g√

ρ∗g

(
1 +

∆pref
pav

Pg

) ∂U∂Y
∣∣∣∣∣
g

+σθ

(
2 (γ − 1)

πγ

)
εPrwKn

2
wRew

(
uref
ūb

) µ∗g

1 +
∆pref
pav

Pg

 ∂θ

∂X

∣∣∣∣∣
g

(44)

Vg = 0 (45)
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where all the variables with subscript g are functions of X at Y = 1
4 , on the gas side.

Equation (44) shows that the thermal creep (the last R.H.S term) is O(ε) and O(Kn2
w)

that is of second order with Knw when the slip velocity (the �rst R.H.S term) is O(Knw).

Finally, in the case of uniform wall temperature Tw, the thermal boundary condition (32)

on the wall at Y = 1
4 writes, ∀X ∈ [0, 1]:

θg =
−ξTKnwµ∗g√

ρ∗g

(
1 +

∆pref
pav

Pg

) ∂θ∂Y
∣∣∣∣∣
g

(46)

and the resulting total wall heat �ux, qt,w, is given by Eq. (18) which also writes:

q∗t,w =
qt,wDh

kw∆Tref
= k∗g

∂θ

∂Y

∣∣∣∣∣
g

+ µ∗gUg
∂U

∂Y

∣∣∣∣∣
g

(47)

Number of independent parameters

In the above dimensionless conservation equations and boundary conditions (Eqs. (38)-(46)),

the following set of 12 dimensionless parameters emerges:

• Prw =
µwCp,w
kw

• Rew =
ρwūbDh

µw
=

2ṁ

µw

• Knw =
λw
Dh

=

√
π

2

µw
Dh

√
rTw
pav

=

√
π

2

µw
Dh

1
√
ρwpav

•
uref
ūb

,
∆pref
pav

,
∆Tref
Tw

, Tw
Tin

• ε = Dh
L , σµ, σθ , ξT and γ.

However, using the forthcoming analytical expression of the mass �ow rate ṁ (Eq. (63)), it can

be checked that uref (Eq. (35)) is related to the reference average velocity ūb (Eq. (36)) by:

ūb/uref =
(1 + 12σµKnw)

48
(48)

where Knw = λw/Dh is the Knudsen number, with the mean free path λw evaluated from Eq.

(1) at Tw and at the average pressure pav = (pin + pout)/2. Furthermore, by introducing the

Mach number Ma2
w = ρwū

2
b/γpav = ū2

b/γrTw, it can be shown that:

1

Rew
=

√
2

πγ

Knw
Maw

(49)

∆pref
pav

=
γ

ε

Ma2
w

Rew

uref
ūb

when ∆pref is given by Eqs. (34) (50)

∆Tref
Tw

= (γ − 1)Prw

(
Maw

uref
ūb

)2

when ∆Tref is given by Eq. (37) (51)
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Therefore, if the micro channel is heated at constant temperature, the number of indepen-

dent parameters is reduced to 9. The following set of 9 parameters is used in what follows:

Prw,Maw,Knw,
Tw
Tin

, ε, σµ, σθ, ξT , γ (52)

Note that, if all the physical properties are assumed constant, the Reynolds number is constant

in the whole channel due to mass �ow rate conservation: Re = Rew = cste. On the other hand,

Ma and Kn vary along the �ow in such a way that, from Eq. (49), their ratio is constant:
Ma

Kn
=
Maw
Knw

=

√
2

πγ
Re = cste (53)

That means that when the compressibility e�ects increase (Ma increases), the rarefaction e�ects

decrease (Kn decreases). Furthermore it is not possible to observe compressibility e�ects (Ma ∼
O(1)) and rarefaction e�ects (O(10−2) . Kn . O(10−1)) at the same time when Re . O(1).

4 Dimensional analysis and asymptotic solutions for long micro channels with

isothermal walls

A dimensional analysis of the mathematical model is useful to determine which terms are

dominant or negligible. The case of developed, subsonic low-rare�ed gas �ows in isothermal

long micro-channels of typical hydraulic diameter Dh ∼ 1 to 10 µm and length L ∼ 0.1 to

10 mm at Pr ∼ 1, Ma < 1 and 10−3 . Kn . 0.1 is considered here. It is shown that,

downstream the entrance zone, the viscous dissipation, pressure work and viscous stress power

at the walls cannot be neglected in the mathematical model while the thermal creep is negligible

(see Appendix A). Taking into account these results, we can compute an analytical solution

of this �ow type by solving a simpli�ed model resulting from an asymptotic analysis. This

analysis is valid for heated gaseous micro-�ows, far from the thermal entrance e�ects, for long

micro channels with isothermal walls. It shows that the Nusselt number tends to zero (and not

to the usual value Nu∞ = 7.541) for micro-�ows between to �at plates. Here we only present

and discuss the main results of this analysis for the present study (see Appendix B for more

details).

Following the asymptotic analyzes by Arkilic et al. [62] and Cai et al. [63], considering weakly

rare�ed �ows with small temperature variations in long micro-channels (ε = Dh/L << 1), the

dimensionless quantities can be written as asymptotic expansions in ε:

U = U0 + εU1 + ε2U2 + ... ; V = εV1 + ε2V2 + ... ; θ = εθ1 + ε2θ2 + ... ;

P = P0 + εP1 + ε2P2 + ...

and the analytical solution of the asymptotic model for constant physical properties reads (see

Appendix B):

U0(X,Y ) =
−1

32

pav
∆pref

dP ∗0 (X)

dX

[
1− 16Y 2 +

A

P ∗0 (X)

]
=
−1

2

dP0(X)

dX

[
b(X)− Y 2

]
(54)
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V1(X,Y ) =
A

64

pav
∆pref

1

P ∗0 (X)

d2P ∗
0

(X)

dX2

[
16Y 3 − Y

]
=
A

64

1

P ∗0 (X)

d2P0(X)

dX2

[
16Y 3 − Y

]
(55)

P ∗0 (X)=1 +
∆pref
pav

P0(X)=
1

pav

{(
p2
out − p2

in

)(
1 +

3A

2

)
X +

(
pin +

3A

2
pav

)2
}1/2

− 3A

2
(56)

θ1(X,Y ) = −F (X)

ε

{
8Y 4 − 16b(X)Y 2 + J(X)

}
(57)

with

F (X) =
1

64

(
dP0(X)

dX

)2

(58)

b(X) =
1

16

[
1 +

A

P ∗0 (X)

]
(59)

J(X) =
1

16

A

P ∗0 (X)

(
1 +

B

P ∗0 (X)

)
+

1

32
(60)

A = 8σµKnw (61)

B = 8ξTKnw (62)

Approximate analytical expressions of the mass �ow rate, ṁ, and total wall Nusselt number,

Nut(x), can also be deduced from this asymptotic analysis. At zero order with ε, ṁ reads as a

function of pin and pout:

ṁ =
H3

24Lµw

1

rTw

(
p2
in − p2

out

)
[1 + 12σµKnw] = ρwurefH

1 + 12σµKnw
48

(63)

For a constant wall temperature Tw, the total wall Nusselt number is de�ned by:

Nut(x) = Nudiff +NuV SP =
Dh

kw
(
Tw − T (x)

)( −kg
∂T

∂−→n

∣∣∣∣
g︸ ︷︷ ︸

diffusion heat flux

− µgug
∂u

∂−→n

∣∣∣∣∣
g︸ ︷︷ ︸

viscous stress power

)
(64)

where the bulk temperatures is:

T (x) =
2

ṁ

∫ H/2

0
ρ(x, y)u(x, y)T (x, y)dy (65)

Thus Nut(x) is the sum of two contributions: the di�usive heat �ux in the wall boundary layer,

Nudiff , and the power of the viscous stress at the walls, NuV SP . The asymptotic analysis in

Appendix B shows that the viscous stress power at the wall is never equal to zero for Knw 6= 0

and is the opposite of the conduction heat �ux at the wall, at least at the �rst order with ε, for

Rew < O(1) and Maw < O(1). Consequently, under these conditions, NuV SP = −Nudiff and

the total wall Nusselt number is zero:

Nut(x) = 0 (66)
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It should be emphasized that these results are linked to the approximations used in deriving

the analytical solution: the dynamical and thermal entrance e�ects are indeed neglected. In

particular, the convective term and the streamwise variation of the temperature from inlet are

not accounted for in the energy equation. This approximation is only justi�ed in the case of

long micro-channel because the Reynolds number is generally small and the thermal entrance

length is thus very short (a few hydraulic diameters).

On the opposite, when convection is dominant while the pressure work and viscous dissi-

pation are neglected in the energy equation, the Nusselt number can reach a �nite value in a

channel at constant wall temperature. For instance, for laminar incompressible �ows between

two in�nite plates at constant wall temperature, it is well established in standard Heat Transfer

textbooks that Nu(X → ∞) = Nu∞ = 7.541 if Knw = 0 provided that the axial di�usion is

neglected. Considering now both the viscous dissipation and the pressure work in the energy

equation, our �rst order asymptotic analysis clearly shows that Nu(X) = 0 for Rew < O(1)

and Maw < O(1).

This theoretical analysis could then explain the very small values of the Nusselt numbers

obtained by Demsis et al. [23, 24] in their experiments. The authors used a standard tube-

in-tube heat exchanger in which a rare�ed cold gas �ows in the interior tube and hot water

in the exterior annular tube. The thermal conditions for the rare�ed gas correspond to �ows

in a nearly isothermal pipe. The total wall heat transfer coe�cient h is determined through

the measurements of the inlet and outlet gas and water temperatures of the tube-in-tube heat

exchanger. For four rare�ed gas �ows (nitrogen, oxygen, argon and helium) in the range of

Knudsen number 0.0022 − 0.032 and range of Reynolds numbers 0.13 − 14.7, the obtained

Nusselt numbers vary between 6.2×10−5 and 2.8×10−2. This is two to �ve orders of magnitude

smaller than the corresponding values in the continuum regime since in an isothermal duct the

fully-developed Nusselt number at large Péclet numbers is Nu∞ = 3.66.

Till now, these very small values of the Nusselt number had never been explained theoreti-

cally because only the contribution of the di�usion heat �ux at the walls was considered while

the contribution of the viscous stress power was always omitted in the wall total heat �ux. In

what follows, we are going to check the validity of the asymptotic solution, based on an approx-

imate model, by numerically solving the full system of governing equations for compressible

micro-�ows in parallel plate micro-channels.

5 Analysis of the heat transfer balance from numerical simulations

5.1 Numerical method.

An in-house �nite volume code has been developed to solve the steady Navier-Stokes and

energy equations with �rst-order slip boundary conditions (Eqs. (21)-(32) in �3.5) on unstruc-

tured meshes. Details upon the discretization of the di�erent terms can be found in [64�66].

Only a few points are reminded here. A second-order centered scheme is used for the dif-

fusive and convective terms because the maximum Reynolds number is Remax < 15 and cell

Reynolds number is Re = u∆x
ν < 1 ; the same inequalities also apply for the Péclet number since

18



Pr ≤ O(1). The discrete nonlinear steady equations are solved in a coupled way by Newton's

algorithm. Since the channel geometry is here reduced to a rectangular domain, a Cartesian

grid is used. The mesh size is based on the half channel width, with symmetry conditions (see

Fig. 2). Mesh sizes are provided in each of the next subsections, according to the studied

problem. For each case, a particular attention will be paid to the relevance of the results by

checking the sensitivity of the solutions to the mesh re�nement. The code has already been

validated by numerous comparisons with experimental and numerical results [67�70].

5.2 Comparison of the analytical and numerical solutions

In this section, we compare the numerical and analytical solutions (Eqs. (54)-(62) in �4).

The comparisons are carried out on three characteristics micro-�ows, slipping or not, compress-

ible or not. The number of control volume on each space direction is Nx×Ny = 12000× 60 for

a 100-aspect ratio physical domain. The mesh is uniform on x-direction and re�ned near the

wall on y-direction, with a size ratio between two successive cells equal to 0.975.

5.2.1 Studied cases

The numerical simulations are performed for a nitrogen �ow at Tin = 270K in a micro-

channel of length L = 300 µm and height H = 3 µm, with walls at Tw = 300K. The physical

properties of the gas are assumed constant and their values at Tw are gathered in Table 1. The

three simulated cases are presented in Table 2:

• Case (a) is at low pressure and corresponds to a quasi incompressible �ow (Ma < 0.09)

but with a strong slip velocity all along the channel walls because the Knudsen number

values are relatively large, both at the inlet and outlet sections (0.02 < Kn < 0.1);

• Case (b) is at a large pressure di�erence between inlet and outlet. It corresponds to

a strongly compressible �ow since Maout = 0.6428 and it presents a strong slip at the

channel outlet since Knout = 0.09354;

• Case (c) is at high pressure but small relative di�erence in the inlet and outlet pressures.

It corresponds to an incompressible �ow with a very low slip since Ma < 0.03 and Kn <

0.0023 all along the channel.

k
[W/m.K]

Cp
[J/kg.K]

µ× 105

[Pa.s]
Pr r

[J/kg.K]
γ =
Cp/Cv

σµ σθ ξT

0.024712 1032.48 1.6588 0.693 296.8 1.4 1 1 2

Tab. 1: Nitrogen physical properties at Tw = 300 K.

5.2.2 Comparisons of the velocity and temperature �elds

Table 3 gives the relative errors on the mass �ow rate, eṁ, between the analytical solution

of Eq. (89) and the numerical solutions in Table 2. An excellent agreement is observed since
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Case pin
[bar]

pout
[bar]

∆pref
[bar]

Rein =
Reout

Knin Knout Main Maout ṁ× 106

[kg/m.s]
Nut

(a) 0.5 0.1 0.4 1.038 0.019620 0.1032 0.01373 0.08848 8.608 0.1082
(b) 1.5 0.1 1.4 7.833 0.006539 0.09354 0.03453 0.64280 64.91 0.1472
(c) 5 4.6 0.4 12.05 0.001962 0.002248 0.01595 0.02716 99.97 0.2215

Tab. 2: Imposed inlet and outlet pressures for each simulated case. The others quantities,
except Knin, result from the simulations.

the maximum relative error is 1.2% for the case (b).

Case pin[bar] pout[bar] eṁ [%] eu [%] ep [%] eT [%]

(a) 0.5 0.1 0.06 0.32 0.040 0.43
(b) 1.5 0.1 1.2 6.9 0.68 0.53
(c) 5 4.6 0.04 0.68 4.6× 10−4 0.54

Tab. 3: Relative error on ṁ and L2-norm of the relative errors on u, p, and T between the
analytical and numerical solutions.

The comparison of the analytical and numerical solutions for the streamwise, u, and trans-

verse, v, velocity components and the temperature, T , are presented in Figures 3-5 for the cases

(a)-(c) respectively. Table 3 also gives the L2-norm of the relative errors on u, p, and T between

the analytical and numerical solutions. The values and absolute errors on v being both very

small, the relative errors on v are not signi�cant and then not presented here. Globally, the

analytical and numerical solutions for u, p and T are in a good accordance since the maximum

relative error is 6.9% on u in the case (b). The graphical comparisons show a good agreement

between the solutions, except at the outlet in the compressible case (b) (Fig. 4) and at the inlet

for the temperature �eld. In the former case, the Reynolds and Mach numbers are relatively

large (Re = 7.8 and Maout = 0.64): the upper limit of the validity domain of the asymptotic

analysis is reached (Rew . O(1), Maw < O(1)). In the later case, the inlet and wall temper-

atures di�er from each other in the numerical simulations, what produces a thermal entrance

length which is not considered in the used analytical model. To a lesser extent, the entrance

region also a�ects the v-�eld in Fig 5 but, in this case, the v-value remains very small.

5.2.3 Comparisons of the Nusselt number values

The wall total Nusselt number, Nut(x) = Nudiff (x) + NuV SP (x), is de�ned by Eq. (64).

The integral average of Nut(x) along the wall is denoted by Nut and the numerical values

for the cases (a) to (c) are reported in Table 2. They are very low (Nut ∼ 0.1) compared

to the standard value Nu∞ = 7.541 calculated for a fully-established incompressible �ow at

large Péclet numbers between two isothermal parallel plates. The computed Nut-values are in

qualitative agreement with the zero value of the total Nusselt number predicted analytically

(Eq. (99)), by neglecting the thermal entrance length and keeping the leading terms of the

ε-expansion. Furthermore, by comparing the cases (c) and (a) in Table 2, it appears that Nut
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Fig. 3: Comparison of the analytical solution (black isolines) and numerical solution (color
�elds) for u (top, left), v (top, right) and T (bottom), in case (a). Symmetry is taken
into account and a half channel is presented.

Fig. 4: Same as Figure 3 but for case (b) and with a zoom on the outlet zone for each �eld (see
coordinates on the abscissa axes).

Fig. 5: Same as Figure 3 but for case (c).

decreases when Kn increases.

The pro�les of Nut, Nudiff and NuV SP , computed from the numerical simulations, are
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plotted with respect to x/L on Figs. 6-8 for the cases (a)-(c), respectively. From these pro�les

and from Figs. 3-5, it appears that the length of the thermal entrance is approximately equal

to 5H in the low Reynolds number case (a) (Fig. 6) and to 10H at maximum in the higher

Reynolds number case (c) (Fig. 8). The total local Nusselt number, Nut, is very small in the

whole channel except at the entrance where the �ow is not thermally-established, and close

to the outlet section due to the gas expansion and cooling associated with the pressure work.

Downstream the thermal entrance zone, Nudiff and −NuV SP vary between ∼ 0.2 in case (c)

(Fig. 8) and ∼ 1.5 in case (a) (Fig. 6), while Nu varies between less than 0.002 in case (a) and

less than 0.03 in case (b) (Fig. 7). Thus even though Nudiff and NuV SP take non negligible

values, Nut = Nudiff+NuV SP nearly vanishes becauseNuV SP is nearly the opposite ofNudiff

downstream the thermal entrance zone (note that it is �−Nudiff � that is plotted on Figs. 6-8).

These Nusselt number behaviors are investigated in more details in the next section.
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Fig. 6: Pro�les of Nut, NuV SP and −Nudiff , with respect to x/L, in the simulated case (a).
A zoom on the Nut pro�le is included.
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22



-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
u

x/L

Nut

NuVSP

-Nudiff

 0.0039

 0.004

 0.0041

 0.0042

 0.0043

 0  0.2  0.4  0.6  0.8  1

Fig. 8: Same as Figure 6 but for case (c).

5.3 Detailed analysis of the Nusselt number

The aim of this section is to understand why and how Nut tends to very small values in the

preceding cases (a)-(c). We �rst investigate the classical case of an incompressible no slip �ow

between two in�nite plates for which the standard Heat Transfer textbooks give Nu∞ = 7.541.

5.3.1 Nusselt number for incompressible no slip �ows

The numerical simulations are for a nitrogen �ow at Tin = 270K and Tw = 300K (see

Table 1). The full numerical model is solved again. The pressure work (PW ) and viscous

dissipation (V D) source terms are kept in the energy equation. However, the Knudsen number

is �xed here at Kn = 0 (no slip) and the density is �xed at ρav = pav
rTw

, where pav = pin+pout
2

(incompressible �ow). The pressure di�erence between the inlet and the outlet is very small

(∆pref = 0.01 bar) while the average pressure is high (pav = 4.995 bar). Furthermore the

channel aspect ratio is set at L/H = 50 and the channel height varies between H = 3 µm and

H = 96 µm (6 µm ≤ Dh ≤ 192 µm). The size of the uniform mesh is Nx × Ny = 3000 × 60,

except when it is stated that Nx ×Ny = 12000× 240.

The Nusselt number and bulk temperature of incompressible no slip �ows are de�ned by:

Nu(x) =
−k ∂T

∂y

∣∣∣
w

k
(
Tw − T (x)

)
/Dh

(67)

T (x) =
2

uH

∫ H/2

0
u(x, y)T (x, y)dy (68)

The Nu pro�les are plotted with respect to x/L on Fig. 9, for various hydraulic diameters or

Reynolds numbers. The Reynolds number, ReDh , is proportional to D
2
h because the analytical

average velocity, u, is proportional to Dh in simulations at �xed ∆pref and L/H values. One

can note that, when Dh and ReDh are large enough (Dh = 192 µm and ReDh = 697), Nu

decreases at the channel entrance and tends towards the classical Nu value, Nu∞ = 7.541,
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downstream. However, when Dh (or ReDh) decreases, a di�erent behavior is observed. The

�nite Nu-value, reached after its sudden decrease close to the inlet section, tends towards

zero further downstream. It is then possible to distinguish two entrance lengths: the �rst one

is de�ned from the inlet section to the �rst Nusselt plateau and the second one to the fully

established region where Nu ∼ 0. The length of the �rst plateau decreases with Dh (or ReDh)

as well as the length from the inlet to Nu ∼ 0. The explanation of Nu ∼ 0 is detailed below.
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Fig. 9: Pro�les of the wall Nusselt number, Nu, with respect to X = x/L, for incompressible
no slip �ows at various hydraulic diameters and Reynolds numbers (pin = 5 bar, pout =
4.99 bar, L/H = 50). A zoom on the Nu pro�les at the channel entrance is included.

Let us �rst reformulate the enthalpy equation (13) in its integral form as follows:∫∫
δΣ(x)

−ρCpT −→v .−→n dS︸ ︷︷ ︸
=CONV×∆x

+

∫∫
δΣ(x)

k∇T.−→n dS︸ ︷︷ ︸
=DIFF×∆x

=

∫∫∫
δΩ(x)

−→v .∇pdω︸ ︷︷ ︸
=PW×∆x

+

∫∫∫
δΩ(x)

τ : ∇−→v dω︸ ︷︷ ︸
=V D×∆x

(69)

where −→n is the inward unit vector, δΩ(x) is a channel slice of width ∆x at the mean abscissa x,

and δΣ(x) = S−(x)∪S+(x)∪δSw,g(x)∪δSs(x) is its surface (see Fig. 2). The notations CONV ,

DIFF , PW and V D refer to the average values per unit length ∆x of the CONVective and

DIFFusive heat �uxes transferred through the surface δΣ(x), and the average Pressure Work

and Viscous Dissipation produced into the slice volume δΩ(x), respectively. The streamwise

variations of these terms are plotted on Fig. 10 in the case of the narrowest channel of Fig.

9, (Dh = 6 µm). As the incompressible �ow is dynamically fully-established from the inlet to

the outlet of the channel, Fig. 10 shows that the PW and V D source terms are constant and

strictly opposite all along the channel length: PW (x) + V D(x) = 0 2. Since the �ow tends

to be thermally fully established far from the channel entrance (∂T∂x → 0 and ∂T
∂x → 0), the

average convective term CONV also tends to zero, as well as the average di�usion heat �ux

DIFF =PW+V D−CONV →0. Considering both this later equality, the streamwise di�usion

2 This result has already been obtained and discussed at �3.4 where the L.H.S. term of Eq. (20) is equal to
zero for dynamically fully-developed and incompressible no slip �ows.
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heat �ux which tends to zero, and the symmetry condition ( ∂T∂y

∣∣∣
s

= 0), the di�usion heat �ux

at the wall necessarily tends towards zero too.
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Fig. 10: Streamwise variation of each term of the energy equation integrated on a channel slice
(convective (CONV ) and di�usive (DIFF ) �uxes and pressure work (PW ) and viscous
dissipation (V D) source terms), and total energy balance (CONV+DIFF−PW−V D),
for the no slip incompressible �ow at Dh=6 µm, pin = 5 bar, pout = 4.99 bar of Fig. 9.

This result is illustrated on Fig. 11 where both the numerator, −k ∂T
∂y

∣∣∣
w
, and the denomina-

tor, k(Tw−T )/Dh, of the Nusselt number expression (Eq. (67)) are plotted. It is worth noticing

that the di�usion heat �ux at the wall tends to zero with the grid re�nement: past x/L ∼ 0.15,

its value is reduced by 42 by dividing the Cartesian cell sizes by 4, from Nx×Ny = 3000×60 to

12000× 240. The factor is equal to 42 because the mesh size ratio is equal to four in each space

direction and the space convergence order of the code is O(∆x2,∆y2). This is highlighted by

the black arrow between the red dashed line and the red square symbols. On the other hand,

the Nusselt denominator, k(Tw − T )/Dh, is insensitive to the mesh size and keeps a non-zero

constant value for x/L & 0.15. This temperature di�erence is related to the transverse thermal

gradient induced by the source terms PW and V D in the integral energy equation (69). Indeed,

though PW and V D counterbalance each other (Fig. 10), they contribute to the local thermal

unbalance, acting close to the wall for the viscous dissipation and near the symmetry plane for

the pressure work. Thus, as soon as the source terms dominate the convective and di�usive

contributions for x/L & 0.75 (Fig. 10), a constant transverse thermal gradient exists in the core

�ow. Consequently, the reference heat �ux k(Tw − T )/Dh becomes constant and the Nusselt

number cancels out (see the encapsulated graphic in Fig. 11).

5.3.2 Nusselt number for incompressible slipping �ows

For an incompressible slipping �ow, the Nusselt number behavior is similar to that of the

incompressible no slip �ow. This is illustrated by simulating a �ow in a micro-channel at

Dh = 6 µm, using the same conditions as in the previous subsection, except the Knudsen num-

ber that is computed by Kn = λ/Dh with λ = µ
p

√
πrT

2 , and the pressures that are equal to
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Fig. 11: Streamwise pro�les of the Nusselt number Nu (enclosed �gure), Nu numerator

(−k ∂T
∂y

∣∣∣
w
) and Nu denominator (k(Tw − T )/Dh), for the incompressible no slip �ow

at Dh = 6 µm, pin = 5 bar and pout = 4.99 bar (Fig. 9) and for two uniform Cartesian
meshes of sizes Nx ×Ny = 3000× 60 and 12000× 240.

pin = 0.1 bar and pout = 0.09 bar. The computed �ow parameters are gathered in Table 4.

pin
[bar]

pout
[bar]

∆pref
[bar]

Rein =
Reout

Knin Knout ṁ× 106

[kg/m.s]
Nut

0.1 0.09 0.01 0.02823 0.1034 0.1088 0.2341 0.2039

Tab. 4: Imposed inlet conditions and computed outlet conditions for the incompressible slipping
�ow in a micro-channel at Dh = 6 µm.

For a dynamically fully-developed incompressible �ow, the integral of the total energy equa-

tion on the same channel slice δΩ(x) as in the previous subsection, of surface δΣ(x) at the mean

abscissa x (see Fig. 2), writes (see Eq. (11)):∫∫
δΣ(x)

−ρCpT −→v .−→n dS︸ ︷︷ ︸
=CONV×∆x

+

∫∫
δΣ(x)

k∇T.−→n dS︸ ︷︷ ︸
=DIFF×∆x

=

∫∫
δΣ(x)

−(τ .−→v ).−→n dS︸ ︷︷ ︸
=V SP×∆x

(70)

where the V SP term is the average power of the viscous stress on the slice surface δΣ(x) per

unit length. Assuming a fully-developed �ow, this last term writes:

V SP =
1

∆x

∫∫
δSw,g(x)

−(τ .−→v ).−→n dS = −(τ .−→v )y=H/2.
−→n = µgug

∂u

∂y

∣∣∣∣∣
g

(71)

As the thermal energy balance (Eq. (69)) is still valid for an incompressible slipping �ow,

the thermal and mechanical energy balances write in a compact form:

CONV +DIFF = PW + V D = V SP (72)
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The �ve terms of these equations are plotted on Fig. 12. It can e�ectively be checked

that PW + V D = CONV + DIFF = V SP 6= 0. When the �ow tends to be thermally fully-

established, that is when ∂T
∂x → 0, the convective term tends towards zero and the integral of

the di�usive heat �ux density tends towards the integral of the power of the viscous term at

the wall: if CONV → 0 then DIFF → V SP 6= 0. From a numerical point of view, the zoom

in Fig. 12 shows that DIFF → V SP with a second order space convergence.
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Fig. 12: Streamwise pro�les of each term of Eq. (72) and energy balance (CONV + DIFF −
PW − V D), for the incompressible slipping �ow at Dh = 6 µm, pin = 0.1 bar and
pout = 0.09 bar (see Table 4). The zoom shows that DIFF → V SP for two uniform
Cartesian meshes of sizes Nx ×Ny = 3000× 60 and 12000× 240.

As a result, the total wall heat �ux must tend to zero when the �ow tends to be thermally

fully-established because it is the sum of two opposite contributions at the walls: the di�usive

�ux and the power of the viscous stress (see Eq. (18)). Then the total local Nusselt number

de�ned by Nut(x) = Nudiff (x) +NuV SP (x) (Eq. (64)) must also tends towards zero. Indeed,

as in the no slip case, the di�erence (Tw−T ) at the Nut denominator still tends towards a non

zero constant value (the PW and V D source terms do not cancel out and do not compensate

each other locally). This is con�rmed in Fig. 13 which presents the streamwise pro�les of Nut,

Nudiff and NuV SP for the incompressible slipping �ow at Dh = 6 µm (see Table 4), for two

uniform Cartesian meshes of di�erent sizes. Nudiff and NuV SP tend towards opposite values

after the thermal entrance zone and Nut tends towards zero. Once again, the second-order

space convergence to a zero value of the total Nusselt number, Nut, is checked on Fig. 13.

5.3.3 Nusselt number for compressible slipping �ows

We now consider compressible slipping �ows of nitrogen in a micro-channel of aspect ratio

L/H = 50, with H = 3 µm (Dh = 6 µm). Not any simpli�cation in the full model of �3.5 is

invoked. The inlet and wall temperatures are Tin = 270K and Tw = 300K. The physical

properties are given in Table 1 and the �ow parameters in Table 5. The pressure di�erence
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Fig. 13: Streamwise pro�les of the total Nusselt number Nut(x), its di�usive part, Nudiff (x),
and its part due to V SP , NuV SP (x), for the incompressible slipping �ow atDh = 6 µm,
pin = 0.1 bar and pout = 0.09 bar (see Table 4) and for two uniform Cartesian meshes
of size Nx ×Ny = 3000× 60 and 12000× 240. A zoom on the Nut pro�les is included.

between the inlet and the outlet is �xed at ∆pref = 0.1 bar but the average pressure decreases

from one case to another one and, therefore, the average Knudsen number increases. The size

of the uniform mesh is Nx × Ny = 12000 × 240. It was checked to be enough �ne to provide

accurate solutions.

pin
[bar]

pout
[bar]

Rein =
Reout

Knin Knout Main Maout ṁ× 106

[kg/m.s]
Nut

2 1.9 2.5402 0.00490 0.00544 0.01247 0.01370 21.07 0.2932
1 0.9 1.3156 0.00981 0.01149 0.01268 0.01467 10.91 0.2598

0.6 0.5 0.8257 0.01635 0.02068 0.01299 0.01613 6.848 0.2384
0.3 0.2 0.4582 0.03270 0.05169 0.01380 0.02090 3.800 0.2048
0.2 0.1 0.3357 0.04904 0.10336 0.01466 0.02864 2.785 0.1804
0.15 0.05 0.2745 0.06539 0.20689 0.01555 0.04381 2.277 0.1611

Tab. 5: Imposed inlet conditions and computed outlet conditions of the compressible �ows sim-
ulated with the full model in a micro-channel at Dh = 6 µm and ∆pref = 0.1 bar.

An example of the energy balance is presented in Fig. 14 for the micro-�ow at pin = 0.2 bar

and pout = 0.1 bar (5th row of Table 5). Here the �ow is nearly incompressible since the

maximum Mach number is Maout ≈ 0.03. However, the full compressible model is used for the

simulation and weak compressible e�ects are highlighted in the energy balance. In the case of

compressible micro-�ows, the thermal energy balance CONV + DIFF = PW + V D is still

valid but PW + V D 6= V SP . The simpli�ed mechanical energy balance for incompressible

�ows (Eqs. (70) and (72)) is not valid because, due to the streamwise density variation, the

velocity pro�le is not the same between two di�erent channel sections. As a result, the kinetic

energy and the power of the viscous stress vary between two channel sections and the �ow

is neither dynamically nor thermally fully-developed. Thus, from Eq. (20), the sum of the
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source terms, PW + V D, and the sum CONV + DIFF are not zero and are never equal to

V SP . Consequently, contrary to the previously considered incompressible cases, DIFF does

not converge to V SP with the grid size after the thermal entrance zone (see the zoom in Fig.

14).
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Fig. 14: Streamwise pro�les of the thermal energy balance (CONV +DIFF − PW − V D), of
its di�erent terms and of the power of the viscous stress at the wall (V SP ), for the
compressible slipping �ow at Dh = 6 µm, pin = 0.2 bar, pout = 0.1 bar (see Table 5).

In conclusion, for compressible �ows in isothermal wall channels, the total wall heat �ux

is not null because the power of the viscous stress does not compensate for the di�usive �ux.

Therefore Nut = Nudiff +NuV SP is not zero everywhere along the walls. This is illustrated for

instance in Fig. 7, for the compressible case (b) of Table 2, where the total local Nusselt number

increases downstream due to the gas expansion and its cooling in the channel core. However,

when the hydraulic diameter is very small and the pressure di�erence between the inlet and

the outlet of the channel is moderate, the Mach number generally remains small. The source

term variation has almost no e�ect on the Nusselt number, except in the thermal entrance zone

and just upstream the outlet where the gas expansion can be locally more important. This is

illustrated on Fig. 15 which presents the streamwise pro�les of the total Nusselt number, Nut,

for the weakly compressible �ows of Table 5. Since the temperature di�erence at the inlet is

Tw − Tin = 30 K, the Nusselt number reaches at �rst a plateau for 0.01 . x
L . 0.05, where

2 . Nu . 4. This �rst plateau corresponds to the zone where the CONV and DIFF terms of

the energy balance dominate the PW and V D source terms (see Fig. 14). Then Nut steeply

decreases for 0.05 . x
L . 0.2 to reach a second plateau where Nut < 5× 10−4, except close to

the channel outlet where the cooling due to gas expansion (at pav = 0.1 bar) and the outlet

boundary conditions disrupt the Nusselt number variation. This second plateau corresponds to

the zone where the CONV and DIFF terms reach very small values, i.e. much smaller than

the PW and V D values in the energy balance (see Fig. 14). Therefore, when Dh (or ReDh) is

small, Nut is not null but keeps very small values along the walls, at least in the central zone

of the channel, far enough from the inlet and outlet sections.
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Fig. 15: Streamwise pro�les of the total Nusselt number, Nut(X), for the weakly compressible
micro-�ows of Table 5, at Dh = 6 µm, ∆pref = 0.1 bar and a decreasing average
pressure.

The integral mean of the total Nusselt number along the whole wall, Nut, and along the wall

part corresponding to the second Nu-plateau, Nut,plateau#2, are plotted on Fig. 16 with respect

to the average Knudsen number, Knav = (Knin+Knout)/2, for the weakly compressible micro-

�ows of Table 5. Due to the in�uence of the �rst Nu-plateau close to the entrance, the Nut

values are at least three orders of magnitude higher than theNut,plateau#2 values. Nut decreases

with respect to Knav according to the correlation: Nut = 0.113Kn-0.184av . Nut,plateau#2 also

decreases with Knav but no clear correlation can be found.
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Fig. 16: Integral mean of the total Nusselt number along the whole wall (Nut) and along the
wall part corresponding to the second Nu-plateau (Nut,plateau#2), with respect to the
average Knudsen number, for the weakly compressible micro-�ows of Table 5, at Dh =
6 µm, ∆pref = 0.1 bar and a decreasing average pressure.

In the micro tube experiments by Demsis et al. [23, 24], a linearly decreasing slope in Log-

Log scale of the relation Nut = f(Knav) is also observed. However, in these experiments, the

values of the average Nusselt number, Nut, along the whole wall vary between 3 × 10−4 and
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2 × 10−2 while they vary between 0.16 and 0.3 in our simulations (Fig. 16). It is clear from

Fig. 15 that our values of Nut are highly in�uenced by the thermal entrance zone of length

x = 0.1L = 5H = 2.5Dh where the Nusselt number is larger. If the channel aspect ratio was

much larger than the one used (L/H = 50), the Nut numerical values would be much smaller.

However in the experiments [23,24], the channel aspect ratio is also relatively small (L/D ≈ 40,

with D the tube diameter). Therefore, it looks like as only the central part of the duct with low

Nusselt numbers be selected for the calculations of the average Nusselt numbers in [23,24]. This

could be an explanation for the small Nusselt number values obtained. In these experiments,

the temperature probes were indeed shifted 1.4D downstream the inlet and 1.4D upstream the

outlet of the inner tube of the heat exchanger. Furthermore, due to the heat exchanger design,

the small values of the Reynolds number and the likely presence of inverse di�usion, the inlet

and outlet thermal conditions were maybe not perfectly controlled (read the criticism in [71]).

6 Conclusion

The thermal aspects of the modeling of weakly rare�ed gaseous �ows (0.001 < Kn ≤ 0.1)

with �rst-order slip and temperature jump models have been discussed in details thanks to a

dimensional analysis, an asymptotic analysis and numerical simulations. This model has been

analyzed in the case of the forced convection of a cold gas �owing in long �at micro channels

isothermally heated. The order of magnitude of the pressure work (PW ) and viscous dissipation

(V D) in the bulk �ow and the order of magnitude of the power of the viscous stress (V SP )

and thermal creep (TC) at the walls have been determined with respect to the �ow parameters

(Rew, Maw, Knw) and ε = Dh/L.

The main remarks and tricky points highlighted are:

� in the wall boundary conditions, the values of the viscous, thermal slip and temperature

jump coe�cients must be all compatible with the same characteristics: a di�usive or fully

accommodating wall for instance (see [4]);

� modeling the Knudsen layer requires to introduce a temperature jump, even if a heat �ux

is imposed at the wall;

� computing the total heat �ux at the wall requires to take into account the power of the

viscous stress at the wall (V SP );

� the integral PW + V D of the pressure work and viscous dissipation in a channel slice is

approximately equal to the power of the viscous stress at the wall. Therefore, V SP cannot be

neglected in the energy �ux if PW + V D is not negligible;

� for the �fully-developed� weakly rare�ed gas �ows in isothermally heated micro-channels

considered in the present paper, the viscous dissipation, the pressure work and the viscous stress

power at the walls cannot be neglected in the mathematical model while the thermal creep is

negligible far from the entrance.

In the second part of the paper, the analytical asymptotic solutions of the �ow and thermal

�elds established by Arkilic et al. [62] and Cai et al. [63] for forced convection of gas in isothermal

wall micro-channels of large aspect ratio are extended to compressible �ows and the Nusselt

number computation (see Eqs. (54)-(66) in �4 and Appendix B). It is shown that the local total
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Nusselt number, Nut(x), tends towards zero, at least at �rst order with ε, far enough from the

thermal entrance zone, provided that the contribution of the power of the viscous stress at the

wall is accounted for.

This analytical solution, valid at low Reynolds and Mach numbers (Rew . O(1) andMaw <

O(1)), is compared with the numerical solution of the full model by a �nite volume method.

This numerical solution takes into account the �rst order slip and thermal jump conditions at

the walls, the power of the viscous stress at the wall, the pressure work, the viscous dissipation

and the thermal creep term. In the simulated cases reported in Table 2, the analytical and

numerical solutions agree well for a wide range of �ow parameters and �ow types.

Finally, a thorough analysis of the streamwise distribution of the di�erent contributions

to the thermal and mechanical energy balances and to the total heat �ux is carried out in

the cases of non slipping or slipping, incompressible and compressible �ows in isothermal wall

micro-channels. It is shown that the contribution of the power of the viscous stress at the walls

must not be neglected because it is opposite to and of the order of magnitude of the di�usive

�ux at the walls. Furthermore, the total wall heat �ux and total Nusselt number tend towards

zero all the more so as the Knudsen number is large (signi�cant rarefaction e�ects) and the

Reynolds number is small (short thermal entrance zone). This is coherent with the Nusselt

number values obtained in the experiments by Demsis et al. [23, 24].
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Appendix A: order of magnitude of the di�erent terms linked with heat transfer

in long micro channels

The order of magnitude of the di�erent terms linked with heat transfer in the conservation

equations and boundary conditions are evaluated as a function of the rarefaction and compress-

ibility intensities, represented by Knw and Maw, respectively. The study is limited to subsonic

low rare�ed gas �ows: Pr ∼ 1, Maw < 1 and 10−3 . Knw . 0.1. The typical micro-�ows

considered concern gas �ows through long micro channels of hydraulic diameter Dh ∼ 1 to

10 µm and length L ∼ 0.1 to 10 mm. The inverse of the longitudinal aspect ratio is therefore

a small parameter: 10−4 . ε = Dh
L . 0.1.

Using Eqs. (49), (50) and (51), the order of magnitude ofRew,
1

PrwRew

ūref
uref

, εPrwKn
2
wRew

uref
ūref

,
∆Tref
Tw

and
∆pref
pav

that appear in the conservation equations (39)-(41), state equation (43) and

boundary conditions (44)-(47) can be computed with respect to the orders of magnitude of

Maw and Knw. The orders of magnitude of all these linked parameters are given in Table 6.

They are expressed as a function of ε only. To this end, it was considered that
ūref
uref
∼ ε1/2 for

10−3 . ε . 10−2 since, from Eq. (48), 1
48 ≤ ūref/uref ≤

1
22 for 0 ≤ Knw ≤ 0.1 and σµ = 1.

Maw
Rew ε2 ε 1

Knw

ε2 1 ε−1 ε−2

ε ε 1 ε−1

ε1/2 ε1.5 ε0.5 ε−0.5

(a) Rew =
√

πγ
2
Maw/Knw ∼ Maw/Knw

(Eq. (49))

Maw
1

PrwRew

ūref
uref

ε2 ε 1

Knw

ε2 ε0.5 ε1.5 ε2.5

ε ε−0.5 ε0.5 ε1.5

ε1/2 ε−1 1 ε

(b) Order of magnitude of PW and V D in Eq. (41):
1

PrwRew

ūref

uref
=
√

2
πγ

Knw
MawPrw

ūref

uref
∼ Knw

Maw
ε1/2

Maw
εPrwKn

2
wRew

uref
ūref

ε2 ε 1

Knw

ε2 ε4.5 ε3.5 ε2.5

ε ε3.5 ε2.5 ε1.5

ε1/2 ε3 ε2 ε

(c) Order of magnitude of 5 to 10 × TC in Eq. (44):
εPrwKn

2
wRew

uref

ūref
∼ ε1/2MawKnw

Maw
∆Tref
Tw

ε2 ε 1

Knw

ε2 ε3 ε ε−1

ε ε3 ε ε−1

ε1/2 ε3 ε ε−1

(d)
∆Tref

Tw
= (γ − 1)Prw

(
Maw

uref

ūref

)2

∼
ε−1Ma2

w (Eq. (51))

Maw
∆pref
Pav

ε2 ε 1

Knw

ε2 ε2.5 ε1.5 ε0.5

ε ε1.5 ε0.5 ε−0.5

ε1/2 ε 1 ε−1

(e)
∆pref
Pav

= γ
ε

Ma2w
Rew

uref

ūref
∼ ε−3/2MawKnw

(Eq. (50))

Tab. 6: Orders of magnitude of the dimensionless groups that appear in the equations and
boundary conditions of the model, with respect to Maw and Knw expressed as a func-
tion of ε.
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First, in the momentum and energy conservation equations (39)-(41), the advection and

transport terms are of the order of O(ε). Furthermore, it can be checked from Tables 6a and 6b

that all the other terms of these equations are at least of the order of O(ε0.5) when Rew . O(1)

andMaw < O(1). Therefore the advection and transport terms terms are negligible with respect

to the other terms in this parameter range. Since the analytical solutions are established by

neglecting these terms, they are thus valid for Rew . O(1) andMaw < O(1). In this parameter

range, Tables 6d and 6e indicate that the relative temperature and pressure variations keep small

:
∆Tref
Tw

. O(ε) and
∆pref
Pav

. O(1).

The pressure work (PW ) and the viscous dissipation (V D) in the energy equation (41) are

of the order of 1
PrwRew

ūref
uref
∼ Knw

Maw
ε1/2 (see Table 6b). As a consequence PW and V D cannot

be neglected in the energy equation whatever the values of Maw and Knw. They are indeed

at least of the order of the transverse di�usion term (∼ 1
PrwRew

ūref
uref

) or of the transport term

(∼ ε). Similarly, the power of the viscous stress in the expression of the wall heat �ux (second

R.H.S term in Eq. (47)) is of the order of the di�usive term (�rst R.H.S term), independently

of Knw and Maw. Consequently, NuV SP in Eqs. (64) and (93) is never negligible.

The thermal creep (TC) term (second R.H.S term in Eq. (44)) is of the order of εPrwKn
2
wRew

uref
ūref

with a quite small factor ahead: σθ
2(γ−1)
πγ ∼ 0.1 to 0.2. As for the velocity slip term (�rst R.H.S

term of (44)), it is of the order of Knw. Therefore, from Table 6c, the thermal creep term

appears to be always negligible, whatever Maw and Knw, for the developed micro-�ows con-

sidered here. This conclusion is obviously not valid when the entrance e�ects are important:

in this case, the scale for the temperature di�erence should be taken as ∆Tref = Tw − Tin.
Then it can be shown that the TC term must be taken into account at small Mach numbers

(Maw . ε2) for
∆Tref
Tin

∼ 1, which corresponds to small Reynolds numbers (Rew . 1).

Appendix B: asymptotic solutions for long micro channels with isothermal walls

Following the asymptotic analyzes by Arkilic et al. [62] and Cai et al. [63], considering weakly

rare�ed �ows with small temperature variations in long micro-channels (ε = Dh/L << 1), the

dimensionless quantities can be written as asymptotic expansions in ε:

U = U0 + εU1 + ε2U2 + ... ; V = εV1 + ε2V2 + ... ; P = P0 + εP1 + ε2P2 + ...

θ = εθ1 + ε2θ2 + ... ; ρ∗ = ρ∗0 + ερ∗1 + ε2ρ∗2 + ... ; µ∗ = µ∗0 + εµ∗1 + ε2µ∗2 + ... ; etc.

Note that V0 = 0 because the continuity equation (38) gives
∂ρ∗0V0

∂Y = 0 at the zero order

with ε and V0 = 0 at the wall. At the zero order with ε, the dimensionless temperature is also

supposed constant, equal to θ0 = 0, i.e. T = Tw. The temperature expansion is thus compatible

with walls at constant or weakly varying temperature.

Then, the dimensionless conservation equations (38)-(41) can be written at the zero or �rst

order with ε accounting for the ranges of variations of the dimensionless parameters expressed

as a function of ε in Table 6 of Appendix A. When Rew . O(ε−2) (maximum Reynolds number

in the present study; see Table 6a), the inertial and viscous terms of the spanwise momentum

equation (40) are negligible and the lowest order with ε gives:
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∂P0

∂Y
= 0 ⇐⇒ P0 = P0(X) (73)

For Rew . O(ε−1), we also get P1 = P1(X). At �rst order, the continuity equation (38) is:

∂ρ∗0U0

∂X
+
∂ρ∗0V1

∂Y
= 0 (74)

and by noting P ∗0 (X) = 1 +
∆pref
pav

P0(X), the ideal gas law (43) at the zero order with ε reads:

ρ∗0(X) = 1 +
∆pref
pav

P0(X) = P ∗0 (X) (75)

Then Eq. (74) at �rst order with ε can also be written:

∂P ∗0U0

∂X
+
∂P ∗0 V1

∂Y
= 0 (76)

For Rew . O(1) and Maw < O(1), at the lowest order with ε, the streamwise momentum

equation (39) becomes:

−∂P0

∂X
+

∂

∂Y

(
µ∗0
∂U0

∂Y

)
= 0 (77)

and, taking into account the continuity equation (74), the energy equation (41) writes:

∂

∂Y

(
k∗0
∂θ1

∂Y

)
= −1

ε

[
U0
∂P0

∂X
+ µ∗0

(
∂U0

∂Y

)2
]

(78)

Thus the analytical solutions of micro-�ows at Rew . O(1) and Maw < O(1) can be

computed from the asymptotic continuity equation (76), streamwise Navier-Stokes equation

(77) and energy equation (78). The boundary conditions for U0, V0, V1, P0 and θ1 are the same

as for U, V, P and θ, with a negligible thermal creep term in Eq. (44) (see Appendix A):

• on the entrance, at X = 0, ∀Y ∈ [0, 1
4 ], P0,in = 1

2 ,
∂U0
∂X = 0, V1,in = 0 and θ1,in = Tin−Tw

ε∆Tref
;

• on the outlet, at X = 1, ∀Y ∈ [0, 1
4 ], P0,out = −1

2 ,
∂U0
∂X = ∂V1

∂X = ∂θ1
∂X = 0 ;

• on the channel axis, at Y = 0, ∀X ∈ [0, 1], ∂U0
∂Y = V1 = ∂θ1

∂Y = 0 ;

• on the wall, at Y = 1
4 , ∀X ∈ [0, 1], the velocity boundary conditions are:

U0,g =
−σµKnwµ∗0,g
1 +

∆pref
pav

P0,g

∂U0

∂Y

∣∣∣∣∣
g

(79)

V1,g = 0 (80)

The thermal boundary conditions in the case of a uniform wall temperature Tw read:

θ1,g =
−ξTKnwµ∗0,g
1 +

∆pref
pin

P0,g

∂θ1

∂Y

∣∣∣∣∣
g

(81)
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and, from Eq. (47), the dimensionless total wall heat �ux writes:

q∗t,w =
qwDh

kw∆Tref
= k∗0,gε

∂θ1

∂Y

∣∣∣∣∣
g

+ µ∗0,gU0,g
∂U0

∂Y

∣∣∣∣∣
g

(82)

The analytical solution of this asymptotic model can easily be computed if the physical

properties are considered constant and equal to their values at Tw: µ
∗
0 = 1 and k∗0 = 1. In

this case, for a uniform wall temperature Tw, this analytical solution, adapted from Arkilic et

al. [62] and Cai et al. [63], is given by the equations (54)-(62) in �4.

Temperature jump at the wall: εθ1,g(X)

The temperature jump at the wall is equal to θg ≈ εθ1,g with:

εθ1,g(X) = εθ1(X,Y =
1

4
) =
−A.B

16

F (X)

P ∗20 (X)
= −σµξT

16
Kn2

w

(
1

P ∗0 (X)

dP0(X)

dX

)2

(83)

The �uid temperature close to the wall is thus di�erent from the wall temperature (θ1,g 6= 0)

when Knw 6= 0.

Average streamwise velocity: U0(X)

The average velocity is de�ned by:

U0(X) = 4

1/4∫
Y=0

U0(X,Y )dY = −2
dP0

dX

1/4∫
Y=0

[
b(X)− Y 2

]
dY (84)

Therefore:

U0(X) =
1− 48b(X)

96

dP0(X)

dX
(85)

U0(X,Y )

U0(X)
=
b(X)− Y 2

b(X)− 1
48

(86)

Mass �ow rate: ṁ

The inlet and outlet pressures, pin and pout, being inputs of the problem formulation, the

mass �ow rate, ṁ, is an output of the calculations. An approximate analytical expression of ṁ

as a function of pin and pout can be established, at zero order with ε, starting from its de�nition:

ṁ = 2

H/2∫
y=0

ρ(x, y)u(x, y)dy = 4ρwurefH

1/4∫
Y=0

ρ∗(X,Y )U(X,Y )dY (87)

Then, using Eq. (75), ṁ can be written:
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ṁ = 4ρwurefHρ
∗
0(X)

1/4∫
Y=0

U0(X,Y )dY = ρwurefHP
∗
0 (X)U0(X) (88)

From Eqs. (35), (56) and (85), the following expression is derived:

ṁ =
H3

24Lµw

1

rTw

(
p2
in − p2

out

)
[1 + 12σµKnw] = ρwurefH

1 + 12σµKnw
48

(89)

The expression (89) is similar to that derived by Arkilic et al. [62] for an isothermal weakly

compressible �ow. It can be deduced from Eqs. (88) and (89) that:

4ρ∗0(X)

1/4∫
Y=0

U0(X,Y )dY = ρ∗0(X)U0(X) = P ∗0 (X)U0(X) =
1 + 12σµKnw

48
(90)

Wall Nusselt number: Nut(X)

For a constant wall temperature Tw, the total wall Nusselt number can be de�ned as:

Nut(x) =
qt,wDh

kw
(
Tw − T (x)

) =
−qt,wDh

kw∆Trefθ(X)
(91)

where qt,w is given by Eq. (19). The dimensionless form of the bulk temperature (Eq. (65))

reads:

θ(x) =
T (x)− Tw

∆Tref
=

2

ṁ

∫ H/2

0
ρ(x, y)u(x, y)θ(x, y)dy (92)

At the �rst order of the temperature, θ(X) ≈ εθ1(X). Then, using Eq. (82) with constant

physical properties, the total local Nusselt number, de�ned by Eq. (64), also writes:

Nut(x) = Nudiff +NuV SP =
−1

εθ1(X)

ε∂θ1

∂Y

∣∣∣∣∣
g

+ U0,g
∂U0

∂Y

∣∣∣∣∣
g

 (93)

The three terms involved in Eq. (93) are calculated below:

• The temperature �rst derivative at the walls is obtained from Eq. (57) for θ1(X,Y ).

Thus, using Eq. (59), the conductive heat �ux close to the walls is:

ε
∂θ1

∂Y

∣∣∣∣∣
g

= F (X)
16b(x)− 1

2
=
F (X)

2

A

P ∗0 (X)
(94)

• The viscous stress power at the walls is computed from Eq. (54) for U0(X,Y ):

U0,g
∂U0

∂Y

∣∣∣∣∣
g

=
−1

2

(
dP0(X)

dX

)2 [
b(X)− Y 2

]
Y

∣∣∣∣∣
g

=
−1

128

(
dP0(X)

dX

)2

[16b(X)− 1]
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From the de�nitions of F (X) and b(X) (Eqs. (58) and (59)), we obtain:

U0,g
∂U0

∂Y

∣∣∣∣∣
g

= −F (X)

2

A

P ∗0 (X)
(95)

• From the de�nition (92) of the average bulk temperature, using Eqs. (86) and (90), the

�rst order approximation of θ(X) becomes:

θ1(X) =
4

U0(X)

1/4∫
Y=0

U0(X)θ1(X,Y )dY =
192

48b(X)− 1

1/4∫
Y=0

(
b(X)− Y 2

)
θ1(X,Y )dY (96)

Using Eq. (57) for θ1(X,Y ) leads to:

θ1(X) =
−192

48b(X)− 1

F (X)

ε

1/4∫
Y=0

(
b(X)− Y 2

) {
8Y 4 − 16b(X)Y 2 + J(X)

}
dY (97)

and, after integration, we get:

εθ1(X) = F (X)
17920b(X)2 − 1008b(X) + 15 + J(X) (1120− 53760b(X))

1120 (48b(X)− 1)
(98)

For Knw = 0 (no slip and no rarefaction case ), b = 1
16 , J = 1

32 and εθ1(X) = 3F (X)
140 .

The viscous stress power at the wall (Eq. (95)) is thus the opposite of the conduction heat �ux

at the wall (Eq. (94)). Consequently, using Eq. (98), the total wall Nusselt number (93) is:

Nut(X) =
−560 (48b(X)− 1)

17920b(X)2 − 1008b(X) + 15 + J(X) (1120− 53760b(X))

(
A

P ∗0 (X)
− A

P ∗0 (X)

)
= 0

(99)

Since b(X) > 0 and J(X) > 0 whatever X ∈ [0, 1], the Nusselt number denominator never

tends towards zero and Nut(X) = 0 everywhere at the �rst order with ε.

From Eqs. (94) and (95), it appears that the conduction heat �ux and the viscous stress

power at the walls both vanish when Knw = 0 since then A = 0 (see Eq. (61)). On the other

hand, for Knw 6= 0, the conduction heat �ux at the walls is di�erent from zero but the total

heat �ux at the walls and thus the total Nusselt number tend everywhere towards zero, at

least at the �rst order with ε. These results are linked to the approximations used in deriving

the analytical solution: the dynamical and thermal entrance e�ects are indeed neglected. In

particular, the convective term and the streamwise variation of the temperature from inlet are

not accounted for in the energy equation (78). This approximation is justi�ed in the case of

long micro-channel because the Reynolds number is generally small and the thermal entrance

length is thus very short.
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Nomenclature

Br Brinkman number, Br = µū2

k∆Tref

Cp, Cv speci�c heat at constant pressure and volume respectively [J.kg−1.K−1]

CONV integral mean of the convective term on a channel slice

d mean molecule diameter [m]

Dh hydraulic diameter, Dh = 2H [m]

DIFF integral mean of the di�usive term on a channel slice

ec kinetic energy per mass unit, ec = −→v 2/2 [J.kg−3]

Ec Eckert number, Ec = ū2

Cp∆Tref
~f body force vector [N.m−3]

~g gravity acceleration vector [m.s−2]

h enthalpy per mass unit [J.kg−1]

h heat transfer coe�cient [W.m−2.K−1]

H channel height [m]

k thermal conductivity [W.m−1.K−1]

kB Boltzmann constant, kB = 1.38065× 10−23 [J.K−1]

Kn Knudsen number, Kn = λ
Dh

¯̄I second order unit tensor

L channel length [m]

Ls slip length [m]

ṁ �ow rate per depth unit, ṁ = ρūH [kg.s−1.m−1]

M molar mass [kg.mol−1]

Ma Mach number, Ma = ū√
γrT

n normal direction [m]
−→n inward normal unit vector

NA Avogadro number, Na = 6.02214× 1023 [mol−1]

Nx, Ny cell number in the streamwise and transverse directions respectively

Nu Nusselt number, Nu = hDh
k

p pressure [Pa]

P dimensionless pressure, P = p−pin
∆pref

Pe Péclet number, Pe = RePr = ūDh
α

Pr Prandlt number, Pr =
µCp
k

PW Pressure Work, −→v .∇p [W.m−3], or integral of this term

qw heat �ux density at the wall [W.m−2]

r speci�c gas constant, r = R
M [J.kg−1.K−1]

R ideal gas constant, R = NAkB = 8.31446 [J.mol−1.K−1]

Re Reynolds number, Re = ρūDh
µ = 2ṁ

µ

S surface [m2]

t time [s] or tangential direction to the wall [m]

T temperature [K]
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u streamwise velocity component along x-direction [m.s−1]

ūb bulk streamwise velocity [m.s−1]

uref reference velocity, uref =
εDh∆pref

µw
[m.s−1]

U dimensionless streamwise velocity component, U = u/ū

v transverse velocity component along y-direction [m.s−1]

~v velocity vector

vm molecule speed [m.s−1]

V dimensionless transverse velocity component, V = v/ū

V D Viscous Dissipation, τ : ∇−→v [W.m−3], or integral of this term

V SP Viscous Stress Power at the wall, (τ .−→v ).−→n
∣∣
g
[W.m−2], or integral of this term

x streamwise coordinate [m]

X dimensionless streamwise coordinate, X = x/L

y transverse coordinate [m]

Y dimensionless transverse coordinate, Y = y/Dh

Greek symbols

α thermal di�usivity [m2/s]

β thermal expansion coe�cient [K−1]

γ isentropic coe�cient, γ =
Cp
Cv

δΩ, δΣ volume and surface of a channel slice

ε small parameter of the asymptotic analysis, DhL = 2HL
θ dimensionless temperature, θ = T−Tw

∆Tref

λ mean free path, λ = µ
p

√
πrT

2 [m]

µ dynamic viscosity [Pa.s]

ν kinematic viscosity [m2.s−1]

ξT temperature jump coe�cient

ρ gas density [kg.m−3]

σT thermal accommodation coe�cient

σu Tangential Momentum Accommodation coe�cient (TMAC)

σµ viscous slip coe�cient

σθ thermal slip coe�cient

¯̄τ shear stress tensor [N.m−2]

∆pref reference pressure, di�erence between the inlet and outlet pressures, ∆pref = pin − pout [Pa]
∆Tref reference temperature di�erence, ∆Tref = µwū2

kw
[K]

∆x space step in x-direction

Φv dimensionless viscous dissipation

Subscripts

av arithmetic average quantity

conv relative to the convective term
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diff relative to the di�usive term

g slip-related quantity on the gas side of the wall

in quantity at the inlet

imp imposed quantity

max maximum quantity

out quantity at the outlet

ref reference quantity

s quantity on the symmetry axis

t relative to the total heat �ux or Nusselt number

V SP relative to the viscous stress power term

w quantity evaluated at Tw or on the solid side of the wall

0, 1, 2 terms of the zero, �rst and second orders in the ε asymptotic expansion

∞ quantity at in�nity

Superscripts

∗ dimensionless quantity

bulk or integral average quantity
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