G. Badkobeh, M. Crochemore, and C. Toopsuwan, Computing the maximal- 516 exponent repeats of an overlap-free string in linear time, p.517

D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer 521
DOI : 10.1017/CBO9780511574931

G. S. Brodal, R. B. Lyngsø, C. N. Pedersen, and J. Stoye, Finding max- 524 imal pairs with bounded gap, p.525
DOI : 10.1007/3-540-48452-3_11

URL : http://www.daimi.au.dk/~gerth/Papers/brics-rs-99-12.ps.gz

L. Vuillon, A Characterization of Sturmian Words by Return Words, European Journal of Combinatorics, vol.22, issue.2, pp.263-275, 2001.
DOI : 10.1006/eujc.2000.0444

URL : https://doi.org/10.1006/eujc.2000.0444

M. Rao, Last cases of Dejean???s conjecture, Theoretical Computer Science, vol.412, issue.27, pp.3010-3018, 2011.
DOI : 10.1016/j.tcs.2010.06.020

URL : https://doi.org/10.1016/j.tcs.2010.06.020

J. D. Currie and N. Rampersad, A proof of Dejean???s conjecture, Mathematics of Computation, vol.80, issue.274
DOI : 10.1090/S0025-5718-2010-02407-X

M. Crochemore, C. Hancart, T. Lecroq-]-r, G. Kolpakov, and . Kucherov, Algorithms on Strings, Cam- 538 bridge University Press On maximal repetitions in words, J. Discret. 540 Algorithms, vol.1, issue.1, pp.392-539, 2000.

]. W. Rytter, The number of runs in a string, Information and Computation, vol.205, issue.9, pp.541-1459, 2007.
DOI : 10.1016/j.ic.2007.01.007

URL : https://hal.archives-ouvertes.fr/hal-00742037

M. Crochemore, L. Ilie, and L. Tinta, The " runs " conjecture, Theor. Com- 544 put, Sci, vol.412, issue.27, pp.2931-2941, 2011.
DOI : 10.1016/j.tcs.2010.06.019

URL : https://doi.org/10.1016/j.tcs.2010.06.019

J. Ziv and A. , A universal algorithm for sequential data compression, IEEE Transactions on Information Theory, vol.23, issue.3, pp.337-343, 1977.
DOI : 10.1109/TIT.1977.1055714

URL : http://www.ece.gatech.edu/users/swm/0337ziv.pdf

M. Crochemore and G. Tischler, Computing Longest Previous non-overlapping Factors, Information Processing Letters, vol.111, issue.6, pp.291-295, 2011.
DOI : 10.1016/j.ipl.2010.12.005

URL : https://hal.archives-ouvertes.fr/hal-00742050

J. Pansiot, A propos d'une conjecture de F. Dejean sur les répétitions 550 dans les mots, Automata, Languages and Program- 551 ming, 10th Colloquium Proceed- 552 ings, pp.549-553, 1983.

]. O. Berkman, C. S. Iliopoulos, and K. Park, The subtree max gap problem 555 with application to parallel string covering, Inf. Comput, vol.123, issue.556, pp.554-127, 1995.
DOI : 10.1006/inco.1995.1162

URL : https://doi.org/10.1006/inco.1995.1162

C. S. Iliopoulos, D. W. Moore, and K. Park, Covering a string, Algorith- 558 mica, pp.557-288, 1996.
DOI : 10.1007/bf01955677

G. S. Brodal and C. N. Pedersen, Finding maximal quasiperiodicities 560 in strings, Combinatorial Pattern, pp.559-561
DOI : 10.1007/3-540-45123-4_33

URL : http://www.daimi.au.dk/~cstorm/courses/StrAlg_e05/papers/BrodalPedersen2000_Quasi.pdf

M. Christou, M. Crochemore, C. S. Iliopoulos, M. Kubica, S. P. Pissis et al., Efficient seeds com- 565 putation revisited, Combinatorial 566 Pattern Matching, p.567
DOI : 10.1007/978-3-642-21458-5_30

URL : http://hal.inria.fr/docs/00/74/20/61/PDF/Efficient_Seeds_Computation_Revisited.pdf

R. Kolpakov, G. Kucherov, and P. Ochem, Finite repetition threshold for 569 large alphabets, RAIRO -Theor On maximal repetitions of arbi- 571 trary exponent, Inf. and Applic. Inf. Process. Lett, vol.110, issue.7, pp.568-252, 2010.

M. Crochemore and L. Ilie, Maximal repetitions in strings, Journal of Computer and System Sciences, vol.74, issue.5
DOI : 10.1016/j.jcss.2007.09.003

URL : https://hal.archives-ouvertes.fr/hal-00619712