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Abstract

The exponent of a word is the quotient of its length over its smallest period.
The exponent and the period of a word can be computed in time proportional
to the word length. We design an algorithm to compute the maximal expo-
nent of all factors of an overlap-free word. Our algorithm runs in linear-time
on a fixed-size alphabet, while a naive solution of the question would run in
cubic time. The solution for non overlap-free words derives from algorithms
to compute all maximal repetitions, also called runs, occurring in the word.

We also show there is a linear number of occurrences of maximal-exponent
factors in an overlap-free word. Their maximal number lies between 0.66n
and 2.25n in a word of length n. The algorithm can additionally locate all
of them in linear time.
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1. Introduction1

We consider the question of computing the maximal exponent of factors2

(substrings) of a given word (string). The exponent of a word is the quotient3

of the word length over the word smallest period. For example alfalfa has4

period 3 and exponent 7/3, and restore has period 5 and exponent 7/5.5

A word with exponent e is also called an e-power. The exponent indicates6

better than the period the degree of repetitiveness of factors occurring in a7

word.8

In this article we focus on factors whose exponent is at most 2. Such9

factors can uniquely be written as uvu where u is the longest border of uvu,10

that is, the longest proper prefix that is also a suffix of the factor. Note that11

the exponent is 1 if and only if u is the empty word, while it is 2 if and only if12

v is the empty word. Consistently with the existing literature a word whose13

exponent is 1, the minimal possible exponent, admits only the empty word14

as a border and is called border-free. A word is called a square when its15

exponent is a positive even integer. In this article, a factor whose exponent16

is smaller than 2 is called a repeat, while a factor whose exponent is at least17

2 is called a repetition or a periodic factor. In other words, in the former18

case the factor u repeats at two distant positions.19

The study of repeats in a word is relevant to long-distance interactions20

between separated occurrences of the same segment (the u part) in the word.21

Although occurrences may be far away from each other, they may interact22

when, for example, the word is folded as it is the case for genomic sequences.23

A very close problem to considering those repeats is that of computing max-24

imal pairs (positions of the two occurrences of u) with gaps constraints as25

described by Gusfield [2] and later improved by Brodal et al. [3].26

From a combinatorial point of view, the question is related to return27

words: z is a return word associated with u if u is a prefix of zu and u has no28

internal occurrence in zu. For instance, if u has only two occurrences in uvu29

(as a prefix and a suffix) then uv is a return word for u. The word then links30

two consecutive occurrences of u. The analysis of return words provide char-31

acterisations for word morphisms and infinite words. For example, a binary32

infinite Sturmian word, generalisation of Fibonacci word, is characterised by33

the fact that every factor (occurring infinitely many times) admits exactly34

two return words (see [4] and references therein).35

The notion of maximal exponent is central to questions related to the36

avoidability of powers in infinite words. An infinite word is said to avoid37
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e-powers (resp. e+-powers) if the exponents of its finite factors are smaller38

than e (resp. no more than e). Dejean [5] introduced the repetitive threshold39

RT(a) of an a-letter alphabet: the smallest rational number for which there40

exists an infinite word on a letters whose finite factors have exponent at most41

RT(a). In other words, the maximal exponent of factors of such a word is42

RT(a), the minimum possible. The word is also said to be RT(a)+-power free.43

It is known from Thue [6] that r(2) = 2, Dejean [5] proved that r(3) = 7/444

and stated the exact values of RT(a) for every alphabet size a > 3. Dejean’s45

conjecture was eventually proved in 2009 after partial proofs given by several46

authors (see [7, 8] and references therein).47

The exponent of a word can be calculated in linear time using basic string48

matching that computes the smallest period associated with the longest bor-49

der of the word (see [9]). A straightforward consequence provides a O(n3)-50

time solution to compute the maximal exponent of all factors of a word of51

length n since there are potentially of the order of n2 factors. However, a52

quadratic time solution is also a simple application of basic string matching.53

By contrast, our solution runs in linear time on a fixed-size alphabet.54

When a word contains runs, that is, maximal periodicities of exponent at55

least 2, computing their maximal exponent can be achieved in linear time by56

adapting the algorithm of Kolpakov and Kucherov [10] that computes all the57

runs occurring in the word. Their result relies on the fact that there exists a58

linear number of runs in a word [10] (see [11, 12] for precise bounds). Nev-59

ertheless, this does not apply to square-free words, which we are considering60

here.61

Our solution works indeed on overlap-free words, not only on square-free62

words, that is, on words whose maximal exponent of factors is at most 2.63

Thus, we are looking for factors w of the form uvu, where u is the longest64

border of w. In order to accomplish this goal, we exploit two main tools: the65

Suffix Automaton of some factors and a specific factorisation of the whole66

word.67

The Suffix Automaton (see [9]) is used to search for maximal-exponent68

factors in a product of two words due to its ability to locate occurrences of69

all factors of a pattern. Here, we enhance the automaton to report the right-70

most occurrences of those factors. Exploiting only the Suffix Automaton in a71

balanced divide-and-conquer manner produces a O(n logn)-time algorithm.72

In order to eliminate the log factor we additionally exploit a word factori-73

sation, namely the f-factorisation (see [9]), a type of LZ77 factorisation (see74

[13]) fit for word algorithms. It has now become common to use this factorisa-75
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tion to derive efficient or even optimal algorithms. The f-factorisation allows76

one to skip larger and larger parts of the words during an online processing.77

For our purpose, it is composed of factors occurring before their current po-78

sition with no overlap. The factorisation can be computed in O(n log a)-time79

(where a is the alphabet size) using a Suffix Tree or a Suffix Automaton, and80

in linear time on an integer alphabet using a Suffix Array [14].81

The running time of the proposed algorithm depends additionally on the82

repetitive threshold of the underlying alphabet size of the word. The thresh-83

old restricts the context of the search for a second occurrence of u associated84

with a factor uvu.85

We show a very surprising property of factors whose exponent is max-86

imal in an overlap-free word: there are no more than a linear number of87

occurrences of them, although the number of occurrences of maximal (i.e.88

non-extensible) factors can be quadratic.89

We show a lower bound of 0.66n and an upper bound of 2.25n on their90

maximal number for a word of length n. They improve on the bounds given91

in a preliminary version [1] of the article. The lower bound is based on a92

result of Pansiot [15] on the repetitive threshold of four-letter alphabets.93

As a consequence, the algorithm can be modified to output all occurrences94

of maximal-exponent factors of an overlap-free word in linear time.95

The question would have a simple solution by computing MinGap on96

each internal node of the Suffix Tree of the input word, as is discussed in the97

conclusion. MinGap of a node is the smallest difference between the positions98

assigned to leaves of the subtree rooted at the node. Unfortunately, the best99

algorithms for MinGap computation, equivalent to MaxGap computation,100

run in time O(n logn) (see [16, 17, 18] and the discussion in [19]).101

A remaining question to the present study is to unify the algorithmic102

approaches for locating runs in non overlap-free words and maximal-exponent103

factors in overlap-free words.104

The plan of the article is as follows. After defining the problem in the105

next section we present the general scheme of the algorithm that relies on106

the f-factorisation of the input word in Section 3. The sub-function operat-107

ing a Suffix Automaton is described in Section 4 and the complexity of the108

complete algorithm is studied in Section 5. In Section 6 we prove lower and109

upper bounds on the number of occurrences of maximal-exponent factors. A110

conclusion follows.111
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2. Maximal-exponent factors112

We consider words (strings) on a finite alphabet A of size a. If x is a113

word of length |x| = m, x[i] denotes its letter at position i, 0 ≤ i < m. A114

factor of x is of the form x[i]x[i + 1] . . . x[j] for two positions i and j and is115

denoted by x[i . . j] (it is the empty word if j < i). It is a prefix of x if i = 0116

and a suffix of x if j = m− 1.117

The word x has period p, 0 < p ≤ m, if x[i] = x[i + p] whenever both118

sides of the equality are defined, i.e. for i = 0, . . . , m−p−1. The period of x,119

period(x), is its smallest period and its exponent is exp(x) = m/period(x).120

For example, exp(restore) = 7/5, exp(mama) = 2 and exp(alfalfa) = 7/3.121

An overlap-free word contains no factor of exponent larger then 2, that is,122

no factor of the form bwbwb for a letter b and a word w.123

We consider a fixed overlap-free word y of length n and deal with its124

factors having the maximal exponent among all factor exponents. They are125

called maximal-exponent factor or MEF for short. They have exponent126

at most 2 since y is overlap-free.127

A MEF w in y is of the form uvu, where u is its longest border (longest128

factor that is both a prefix and a suffix of w). Then period(w) = |uv| and129

exp(w) = |uvu|/|uv| = 1+ |u|/period(w). By convention, in the following we130

allow a border-free factor to be considered as a MEF of exponent 1, though131

it contains no repeat in the common sense since the repeating element u is132

empty and it can appear only if no letter in y appears more than once, i.e.133

if its length is no more than the alphabet size.134

First note that a MEF uvu contains only two occurrences of u since this135

would produce a factor with a larger exponent. Second, any occurrence of136

the MEF uvu is maximal in the sense that it cannot be extended with the137

same period. That is, the two occurrences of u are followed by two distinct138

letters and preceded by two distinct letters. These remarks are stated in139

Lemmas 3 and 2 respectively.140

The maximality of occurrences of repetitions in non overlap-free words141

implies their linear number but unfortunately this property does not hold for142

MEF occurrences.143

3. Computing the maximal exponent of factors144

The core result of the article is an algorithm, MaxExpFac, that com-145

putes the maximal exponent of factors of the overlap-free word y. The algo-146

rithm has to look for factors of the form uvu, for two words u and v, u being147
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z1 z2 zi−1 zi
u1 u1 (i)

u2 u2 (ii)
u3 u3 (ii) (iii)

u4 u4 (iii)

u5 u5 (iv)

Figure 1: The only four possible locations of a factor uvu involving phrase zi of the
factorisation of the word: (i) internal to zi; (ii) the first occurrence of u is internal to zi−1;
(iii) the second occurrence of u is internal to zi; (iv) the second occurrence of u is internal
to zi−1zi.

the longest border of uvu. The aim of this algorithm is accomplished with148

the help of Algorithm MaxExp, designed in the next section, which detects149

those factors occurring within the concatenation of two words.150

Algorithm MaxExpFac relies on the f-factorisation of y, a type of LZ77151

factorisation [13] defined as follows. It is a sequence of non-empty words,152

z1, z2, . . . , zk, called phrases and satisfying y = z1z2 · · · zk where zi is the153

longest prefix of zizi+1 · · · zk occurring in z1z2 · · · zi−1. When this longest154

prefix is empty, zi is the first letter of zizi+1 · · · zk, thus it is a letter that does155

not occur previously in y. This definition is equivalent to the definition in156

[9], in which a phrase zi can overlap with its previous occurrence, because157

the word y is overlap-free. We adapt the factorisation to the purpose of our158

problem by defining z1 as the longest prefix of y in which no letter occurs159

more than once. Then, |z1| ≤ a and MaxExpFac(z1) = 1. Note that160

MaxExpFac(z1z2) > 1 if z1 �= y.161

When the factorisation of y is computed, Algorithm MaxExpFac pro-162

cesses the phrases sequentially, from z2 to zk. After z1, z2, . . . , zi−1 have163

been processed, the variable e stores the maximal exponent of factors of164

z1z2 · · · zi−1. Then, the next factors to be considered are those involving165

phrase zi. Such factors uvu can either be internal to zi or involve other166

phrases. However, the crucial property of the factorisation is that the second167

occurrence of u is only to be searched for in zi−1zi because it cannot contain168

a phrase as this would contradict the definition of the factorisation.169

We further distinguish four possible cases according to the position of the170

factor uvu as follows (see Figure 1):171

(i) The two occurrences of u are contained in zi.172

(ii) The first occurrence of u is contained in zi−1 and the second ends in zi.173
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(iii) The first occurrence of u starts in zi−1 and the second occurrence is174

contained in zi.175

(iv) The first occurrence of u starts in z1 · · · zi−2 and the second occurrence176

is contained in zi−1zi.177

Case (i) needs no action and other cases are dealt with calls to Algorithm178

MaxExp as described in the code below where x̃ denotes the reverse of179

word x. For any two words z and w and a positive rational number e,180

MaxExp(z, w, e) is the maximal exponent of factors in zw whose occurrences181

start in z and end in w, and whose exponent is at least e; it is e itself if there182

is no such factor.183

MaxExpFac(y)

1 (z1, z2, . . . , zk)← f-factorisation of y
2 � z1 is the longest prefix of y in which no letter repeats
3 e← 1
4 for i← 2 to k do
5 e←MaxExp(zi−1, zi, e)
6 e←MaxExp(z̃i, z̃i−1, e)
7 if i > 2 then
8 e←MaxExp( ˜zi−1zi, ˜z1 · · · zi−2, e)
9 return e

184

Note that variable e can be initialised to the repetitive threshold RT(a)185

(see Introduction) when the alphabet of word y is of size a and if the word is186

long enough. The maximal length of words containing no factor of exponent187

at least RT(a) is 3 for a = 2, 38 for a = 3, 121 for a = 4, and a+1 for a ≥ 5188

(see [5]).189

Another technical remark is that the instruction at line 6 can be tuned to190

deal only with type (iii) factors of the form u4vu4 (see Figure 1), i.e. factors191

for which the first occurrence of the border starts in zi−1 and ends in zi,192

because line 5 finds those of the form u3vu3. However, this has no influence193

on the asymptotic running time.194

Theorem 1. For any overlap-free word input, MaxExpFac computes the195

maximal exponent of factors occurring in the word.196

Proof. We consider a run of MaxExpFac(y). Let e1, e2, . . . , ek be the197

successive values of the variable e, where ei is the value of e just after the198
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execution of lines 5–8 for index i. The initial value e1 = 1 is the maximal199

exponent of factors in z1 as a consequence of its definition. We show that ei200

is the maximal exponent of factors occurring in z1z2 · · · zi if ei−1 is that of201

z1z2 · · · zi−1, for 2 ≤ i ≤ k.202

To do so, since ei is at least ei−1 (use of max at lines 5–8), all factors203

occurring in z1z2 · · · zi−1 are taken into account and we only have to consider204

factors coming from the concatenation of z1z2 · · · zi−1 with zi, that is, factors205

of the form uvu where the second occurrence of u ends in zi. As discussed206

above and illustrated in Figure 1, only four cases are to be considered because207

the second occurrence of u cannot start in z1z2 · · · zi−2 without contradicting208

the definition of zi−1.209

Line 5 deals with Case (ii) by the definition of MaxExp. Similarly, line210

6 is for Case (iii), and line 8 for Case (iv).211

If a factor occurs entirely in zi, Case (i), by the definition of zi it occurs212

also in z1z2 · · · zi−1, which is reported by ei−1.213

Therefore, all relevant factors are considered in the computation of ei,214

which is then the maximal exponent of factors occurring in z1z2 · · · zi. This215

implies that the exponent ek returned by the algorithm is the exponent of216

z1z2 · · · zk = y as stated.217

4. Locating repeats in a product218

In this section, we describe Algorithm MaxExp applied to (z, w, e) for219

computing the maximal exponent of factors in zw that end in w, whose left220

border occurs in z, and whose exponent is at least e. MaxExp is called in221

the main algorithm of the previous section.222

To locate factors under consideration, the algorithm examines positions223

j on w and for each computes the longest potential border of a factor, a224

longest suffix u of zw[0 . . j] occurring in z. The algorithm is built upon an225

algorithm that finds all of them using the Suffix Automaton of word z.226

The Suffix Automaton of z, denoted S(z), is used to locate borders of227

factors. It is the minimal deterministic finite automaton whose language228

is the set of suffixes of z (see [9, Section 6.6] for more description and for229

efficient construction). An example is given in Figure 2. The data structure230

has an initial state denoted initial(S) and a state called last(S) that is the231

accepting state of z itself (it is the only state with no outgoing arcs). In232

addition to the transition function goto (represented by arcs in the figure) it233
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0 1 2 3 4 5 6 7 8 9

10

11 12

a b c a d b e c a

d
e

d

b

c

c

e

a

d

Figure 2: Suffix Automaton of abcadbeca. Suffix links: F [1] = 0, F [2] = 10, F [3] = 11,
F [4] = 1, F [5] = 0, F [6] = 10, F [7] = 0, F [8] = 11, F [9] = 12, F [10] = 0, F [11] = 0,
F [12] = 1. Maximal incoming word lengths: L[0] = 0, L[1] = 1, L[2] = 2, L[3] = 3,
L[4] = 4, L[5] = 5, L[6] = 6, L[7] = 7, L[8] = 8, L[9] = 9, L[10] = 1, L[11] = 1, L[12] = 2.
Minimal extension lengths: sc[0] = 0, sc[1] = 0, sc[2] = 7, sc[3] = 6, sc[4] = 5, sc[5] = 4,
sc[6] = 3, sc[7] = 2, sc[8] = 1, sc[9] = 0, sc[10] = 3, sc[11] = 1, sc[12] = 0.

contains the failure link Fz and the length function Lz, both defined on the234

set of states. The link is defined as follows: let p = goto(initial(S(z)), x) for235

x ∈ A+; then Fz(p) = goto(initial(S(z)), x′), where x′ is the longest suffix of236

x for which this latter state is not p. As for the length function, Lz(p) is the237

maximal length of words x for which p = goto(initial(S(z)), x).238

The next two lemmas show that, after u is located with the Suffix Au-239

tomaton, although some of its suffixes may have an exponent higher than e,240

we can discard many of them.241

z w
0 j

(1) u v u
(2) u′ v′ u′

Figure 3: When u and its suffix u′ end at the same right-most position on z, factor (1)
has a larger exponent than factor (2).

Figure 3 illustrates the proof of the following lemma.242

Lemma 2. Let u′ be a suffix of u. If they are both associated with the same243

state of S(z) the maximal exponent of a u′v′u′ is not greater than the maximal244

exponent of its associated uvu factor.245

Proof. The hypothesis implies that the right-most occurrence of u′ ends246

at the same positions on z as u (see Figure 3). Then, u′v′u′ and uvu have247
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the same period |vu| = |v′u′| but since u′v′u′ is not longer than uvu, the248

exponent of u′v′u′ is not greater than that of uvu.249

Note that a suffix u′ of u may have an internal occurrence in uvu, which250

would lead to a factor having a larger exponent. For example, let z = abadba251

and w = cdaba. The factor abadbacdaba with border aba has exponent 11/8252

while the suffix ba of aba infers the factor bacdaba of greater exponent 7/5.253

z w
0 j k

(1) u v u
(2) u v′ u

Figure 4: Factor (1) ending at position j has a larger exponent than factor (2) ending at
position k > j.

The proof of the following lemma can be deduced from the remark in254

Figure 4.255

Lemma 3. If u occurs at end positions j and k on w with k > j, the factor256

uv′u ending at k cannot be a maximal-exponent factor.257

Proof. To have a maximal exponent the first occurrence of u in uv′u should258

end at the right-most position on z. But then there is a factor sharing259

the same first occurrence of u and with a closer second occurrence of u260

(see Figure 4). Therefore 1 + |u|/|uv| > 1 + |u|/|uv′|, which completes the261

statement proof.262

The properties stated in the previous lemmas are used by Algorithm263

MaxExp to avoid some exponent calculations as follows. Let uvu be a264

factor ending at j on zw[0 . . j] and for which u is the longest word associated265

with state q = goto(initial(S), u), where goto is the transition function of266

the automaton. Then next occurrences of u and of any of its suffixes cannot267

produce factors with an exponent larger than that of uvu. State q is then268

marked to inform the next steps of the algorithm that it has been visited.269

We need another function, scz, defined on states of S(z) as follows: scz(p)270

is the minimal length of paths from p to a terminal state; in other terms, if271

p = goto(initial(S(z)), x), then scz(p) = |x′| where x′ is the shortest word for272

which xx′ is a suffix of z. With this precomputed extra element, computing273

an exponent is a mere division (see Figure 5).274
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z
0 j

a
u v u

��
�

��
sc[q]

��
j + 1

Figure 5: The maximal exponent of all factors in question bordered by u, longest factor
of z ending at j, is (� + sc[q] + j + 1)/(sc[q] + j + 1).

j 0 1 2 3 4 5 6 7 8 9
w[j] d e c a d b e c a d

q 12 5 7 8 9 5 6 7 8 9 5
� 2 3 1 2 3 3 4 5 6 7 3

exp 8/5 5/4 3/2 7/4 4/3 13/9 14/9 5/3 16/9 17/14
5/4 10/9

Figure 6: Computing exponents when searching zw for factors uvu. The first occurrence of
u is in z and the second ends in zw. The Suffix Automaton of z = abcadbecawith function
sc is in Figure 2. The search is done by parsing w = decadbecad with the automaton.
Exponents of factors are given by the expression (�+ sc[q]+ j+1)/(sc[q]+ j+1). The last
line is for exponents corresponding to suffixes of u. The maximal exponent of all factors
is 7/4.

MaxExp(z, w, e)

1 S ← Suffix Automaton of z
2 mark initial(S)
3 (q, �)← (F [last(S)], L[F [last(S)]])
4 for j ← 0 to min{�|z|/(e− 1)− 1�, |w| − 1} do
5 while goto(q, w[j]) = NIL and q �= initial(S) do
6 (q, �)← (F [q], L[F [q]])
7 if goto(q, w[j]) �= NIL then
8 (q, �)← (goto(q, w[j]), �+ 1)
9 (q′, �′)← (q, �)
10 while q′ unmarked do
11 e← max{e, (�′ + sc[q′] + j + 1)/(sc[q′] + j + 1)}
12 if �′ = L[q′] then
13 mark q′

14 (q′, �′)← (F [q′], L[F [q′]])
15 return e

275

Figure 6 illustrates a computation done by the algorithm using the Suffix276
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Automaton of Figure 2.277

Note that the potential overflow when computing �|z|/(e − 1) − 1� can278

easily be fixed in the algorithm implementation.279

Theorem 4. Algorithm MaxExp, applied to words z and w and to the280

rational number e, produces the maximal exponent of factors in zw that end281

in w, whose left border occurs in z, and whose exponent is at least e.282

Proof. In the algorithm, position j on w stands for a potential ending283

position of a relevant factor. First, we show that the algorithm does not284

require to examine more values of j than those specified at line 4. The285

exponent of a factor uvu is |uvu|/|vu|. Since we are looking for factors286

satisfying |uvu|/|vu| ≥ e, the longest possible such factor has period j + 1287

and border z. Then (|z|+j+1)/(j+1) > e implies j < |z|/(e−1)−1 (which288

is conventially set to +∞ if e = 1). Since j is a position on w, j < |w|, which289

completes the first statement.290

Second, given a position j on w, we show that the algorithm examines all291

the possible concerned factors having an exponent at least e and ending at j.292

The following property related to variables q, state of S, and � is known from293

[9, Section 6.6]: let u be the longest suffix of zw[0 . . j] that is a factor of z,294

then q = goto(initial(S), u) and � = |u|. The property is also true just after295

execution of line 3 for z alone due to the initialisation of the two variables.296

Then, word u is the border of a factor ending in w and whose left border297

occurs in z. Lines 9 to 14 check the exponents associated with u and its298

suffixes. If q′ is unmarked, the exponent is computed as explained before (see299

Figure 5). If the condition at line 11 is met, which means that u is the longest300

word satisfying q′ = goto(initial(S), u), due to Lemma 3 the algorithm does301

not need to check the exponent associated with later occurrences of u, nor302

with the suffixes of u since they have been checked before. Due to Lemma303

2, suffixes of u ending at the same right-most position on z do not have a304

larger exponent. Therefore the next suffix whose associated exponent has to305

be checked is the longest suffix leading to a different state of S: it is F (q′)306

and the length of the suffix is L(F (q′)) by definition of F and L.307

Finally note the initial state of S is marked because it corresponds to an308

empty word u, that is a factor of exponent 1, which is not larger than the309

values of e.310

This proves the algorithm runs through all possible relevant factors and311

completes the proof.312
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5. Complexity analysis313

In this section we analyse the running time and memory usage of our314

algorithms.315

Proposition 5. Applied to words z and w and to the rational number e,316

Algorithm MaxExp requires O(|z|) space in addition to inputs and runs in317

total time O(|z|+min{�|z|/(e− 1)− 1�, |w| − 1}) on a fixed size alphabet. It318

performs less than 2|z|+min{�|z|/(e−1)−1�, |w|−1} exponent computations.319

Proof. The space is used mostly for storing the automaton, which is known320

to have no more than 2|z| states and 3|z| edges (see [9]). It can be stored321

in linear space if edges are implemented by successor lists, which adds a322

multiplicative log a factor on transition time.323

It is known from [9, Section 6.6] that the algorithm runs in linear time324

on a fixed alphabet, including the automaton construction with elements F ,325

L and sc, if we exclude the time for executing lines 9 to 14.326

It remains to enumerate the number of times line 11 is executed. It is327

done once for each position j associated with an unmarked state. If it is done328

more than once for a given position, then the second value of q′ comes from329

the failure link. A crucial observation is that condition at line 12 holds for330

such a state. Therefore, since S(z) has no more than 2|z| states, the total331

number of extra executions of line 11 is at most 2|z|, which gives the stated332

result.333

The proof of the linear running time of AlgorithmMaxExpFac addition-334

ally relies on a combinatorial property of words. It is the notion of repetitive335

threshold RT(a) for an alphabet of size a mentioned in Introduction.336

Theorem 6. Applied to any overlap-free word of length n on a fixed-size337

alphabet, Algorithm MaxExpFac runs in time O(n) and requires O(n) extra338

space.339

Proof. Computing the f-factorisation (z1, z2, . . . , zk) of the input takes time340

and space O(n) on a fixed-size alphabet using any suffix data structure. (It341

can even be done in time O(n) on an integer alphabet, see [14].)342

The next instructions execute in linear extra space from Proposition 5.343

Line 5 takes time O(|zi−1| + min{�|zi−1|/(e − 1) − 1�, |zi| − 1}), which is344

bounded by O(|zi−1|+ |zi−1|/(e− 1)− 1), for i = 2, . . . , k. For a long enough345
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input, e is eventually at least RT(a) where a is the input alphabet. The time346

is then bounded by O(|zi−1|+ |zi−1|/(RT(a)− 1)− 1), thus O(|zi−1|) because347

RT(a) is a constant. The contribution of Line 5 to the total runtime is then348

O(Σk
i=2|zi−1|).349

Similarly it is O(Σk
i=2|zi|) for Line 6 and O(Σk

i=2|zi−1zi|) for Line 8. Thus350

the overall runtime is bounded by O(Σk
i=1|zi|), which is O(n) as expected.351

6. Counting maximal-exponent factors352

This section is devoted to the combinatorial aspects of maximal-exponent353

factors (MEF). We exhibit upper and lower bounds on their maximal number354

of occurrences in an overlap-free word.355

The upper bound shows there is no more than a linear number of MEF356

occurrences in a word according to its length. In addition, the lower bound357

proves that this is optimal up to a multiplicative factor that remains to be358

discovered.359

Note that on the alphabet {a, a1, . . . , an} the word aa1aa2a . . . aana of360

length 2n + 1 has a quadratic number of maximal factors. Indeed all occur-361

rences of factors of the form awa for a non-empty word w are non extensible.362

But only the n factors of the form aca for a letter c have the maximal expo-363

nent 3/2.364

6.1. Upper bound365

Before giving an upper bound, we start with a simple property of MEFs,366

which does not lead to their linear number, but is used later to tune the367

upper bound.368

Lemma 7. Consider two occurrences of MEFs with the same border length369

b starting at respective i and j on the word y, i < j. Then, j − i > b.370

Proof. The two MEFs having the same border length, since they have the371

same exponent, they have also the same period and the same length. Let b372

be their border length and p their period.373

Assume ab absurdo j−i ≤ b. The word y[i . . i+b−1] = y[i+p . . i+p+b−1]374

is the border of the first MEF. The assumption implies that y[i+b] = y[i+p+375

b] because these letters belong to the border of the second MEF. It means376

the first MEF can be extended with the same period, producing a larger377

exponent, a contradiction. Therefore, j − i > b as stated.378
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If we count the occurrences of MEFs by their border lengths after Lemma 7379

we get an initial part of the harmonic series, a quantity that is not linear380

with respect to the length of y.381

To get a linear upper bound on the number of occurrences of MEFs we382

introduce the notion of δ-MEFs, for a positive real number δ, as follows. A383

MEF uvu is a δ-MEF if its border length b = |u| = |uvu| − period(uvu)384

satisfies 2δ < b ≤ 4δ. Then any MEF is a δ-MEF for some δ ∈ Δ, where385

Δ = {1/4, 1/2, 1, 2, 22, 23, . . .}. This is the technique used for example in386

[11, 12] to count runs in words.387

y
i j

u v u
ū v̄ ū

w w w
��
< δ larger exponent

y
ij

u v u
ū v̄ ū
w w w

��
< δ larger exponent

y
i j

u v u
ū v̄ ū ū��

< δ larger exponent

Figure 7: Two δ-MEFs, uvu and ūv̄ū, having mid-positions of their left borders at close
positions induce a factor with a larger exponent, a contradiction.

The proof of the next lemma is illustrated by Figure 7. We define the388

mid-position of an occurrence of a factor x whose first letter is at position i389

on y by i+ �|x|/2� − 1.390
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Lemma 8. Let uvu and ūv̄ū be two occurrences of δ-MEFs in y whose left391

borders mid-positions are at respective positions i and j on y. Then, |j− i| ≥392

δ.393

Proof. We consider w.l.o.g. |u| ≥ |ū|. Assume ab absurdo |j − i| < δ (see394

Figure 7).395

Since both |u| > 2δ and |ū| > 2δ, the two occurrences of left borders396

overlap. Let w be the overlap. It can be a suffix of u and a prefix of ū, or it397

can be a suffix of ū and a prefix of u, or w can be ū itself, the shorter of two398

borders, when it occurs inside u. The three cases are displayed in this order399

on Figure 7.400

Let p = |uv| be the period of uvu and p′ = |ūv̄| be that of ūv̄ū. The401

exponent of the two factors is e = 1 + |u|/p = 1 + |ū|/p′, which implies402

p− p′ = (|u| − |ū|)/(e− 1).403

Note that w, the overlap of the two left borders, occurs at least at two
other positions. For example, in the first case, it occurs as a suffix of the right
border of u and as a prefix of the right border of ū. Due to the periodicity
of the two factors, uvu and ūv̄ū, the last two occurrences of w are p − p′

positions apart. Therefore the factor z starting with one occurrence and
ending with the other has exponent at least (it can be larger if w is not the
longest border of z):

1 +
|w|

p− p′
= 1 +

|w|(e− 1)

(|u| − |ū|) .

Now, from inequalities 2δ < |ū| ≤ |u| ≤ 4δ and the definition of w, we404

have both |w| > |u|/2 and |u| − |ū| < |u|/2. Then |w| > |u| − |ū| and since405

e− 1 > 0 the exponent of z is then larger than e, a contradiction. Therefore406

|j − i| ≥ δ as stated.407

A direct consequence of the previous lemma is the linear number of MEF408

occurrences. Because Lemma 8 implies that the number of δ-MEF occur-409

rences in y is no more than n/δ. And since values of δ in Δ cover all border410

lengths, the total number of occurrences of MEFs is bounded by411

∑
δ∈Δ

n

δ
= n

(
4 + 2 + 1 +

1

2
+
(
1

2

)2

+ . . .

)
< 8n.

The next statement refines the above upper bound by combining results412

of Lemmas 7 and 8.413
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Theorem 9. There are less than 2.25n occurrences of maximal-exponent414

factors in a word of length n.415

Proof. According to Lemma 7 there are less than416

b=5∑
b=1

n

b+ 1
= 1.45n

occurrences of MEFs with border length at most 5.417

We then apply Lemma 8 with values of δ ∈ Γ that cover all remaining418

border lengths of MEFs: Γ = {(5/2), 5, 10, 20, . . .}. It gives the upper bound419

∑
δ∈Γ

n

δ
=

1

5

(
2 + 1 +

1

2
+
(
1

2

)2

+ . . .

)
n =

4

5
n

for the number of occurrences of MEFs with border length at least 6. There-420

fore the global upper bound we obtain is 2.25n.421

Note that the border length 5 minimises the expression422 (
b=k∑
b=1

n

b+ 1

)
+

1

k

(
2 + 1 +

1

2
+
(
1

2

)2

+ . . .

)
n =

(
b=k∑
b=1

n

b+ 1

)
+

4n

k

with respect to k, which means the technique is unlikely to produce a smaller423

bound. By contrast, experiments show that the number of occurrences of424

MEFs is smaller than n and not even close to n, at least for small values of425

n. The following table displays the maximal number of MEFs for overlap-426

free word lengths n = 5, 6, . . . , 20 and for alphabet sizes 2, 3 and 4. It also427

displays (second element of pairs) the associated maximal exponent. In the428

binary case we already know that it is 2 since squares are unavoidable in429

words whose length is greater than 3.430

n 5 6 7 8 9 10 11 12
binary 2 3 4 5 5 6 6 8
ternary (2, 1.5) (3, 1.5) (4, 2) (5, 2) (5, 2) (6, 1.5) (6, 2) (8, 2)
4−ary (2, 1.5) (3, 1.5) (4, 2) (5, 2) (5, 2) (6, 1.5) (7, 1.5) (8, 2)

431

13 14 15 16 17 18 19 20
8 9 9 11 11 12 12 14

(8, 2) (9, 2) (9, 2) (11, 2) (11, 2) (12, 2) (12, 2) (14, 2)
(8, 1.5) (9, 1.5) (10, 1.5) (11, 2) (12, 1.5) (12, 1.5) (13, 1.5) (14, 1.5)

432

17



6.2. Lower bound433

We now deal with a lower bound on the maximal number of occurrences434

of maximal-exponent factors. We first consider an infinite word whose factors435

have maximal exponent 3/2 and then show that its prefixes contain a linear436

number of occurrences of these factors.437

There exists an infinite word on the four-letter alphabet A4 = {a, b, c, d}
whose maximal exponent of its factors is 7/5. The existence of such a word
was proved by Pansiot [15] and it is easy to see that the exponent value
cannot be smaller for an infinite word on A4. Indeed, the result is part of the
conjecture of Dejean [5] who stated the repetitive threshold for all alphabet
sizes; the proof of this conjecture was eventually completed by Rao [7] and
by Currie and Rampersad [8]. Here is an example of such a word given by
Pansiot [15]:

p = bacdabcadcbacdbcabdacbad . . .

From the word p we define q on the alphabet A5 = {a, b, c, d, e} by
inserting letter e in between any two consecutive letters. That is, for each
integer i ≥ 0,

q[2i] = e

q[2i+ 1] = p[i]

or in other words q = f(p), where f is the morphism defined by f(a) = ea,
for any letter a ∈ A4. The word q is:

q = ebeaecedeaebeceaedecebeaecedebeceaebedeaecebeaed . . .

Let uvu be a factor of p, where u is its longest border and then |uv| is its438

smallest period. By the choice of p, we have exp(uvu) = |uvu|/|uv| ≤ 7/5.439

In addition, we know that the period length of all 7/5-powers in p is at440

least 10 (see [20]). Thus the induced factor f(uvu)e in q has exponent441

(2|uvu| + 1)/2|uv|, which is 29/20 when uvu is a 7/5-power. This value is442

less than 3/2.443

As another example, consider the factor abcda of p. It has exponent 5/4444

and its induced factor in q, f(abcda)e = eaebecedeae, has exponent 11/8,445

which is less than 3/2 again. By contrast, the factor abca of p has exponent446

4/3 and its induced factor in q, eaebeceae has exponent 9/6 = 3/2.447

The next lemma shows that very few factors of q have exponent 3/2, the448

maximal value.449
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Lemma 10. Let w be a factor of q, then exp(w) ≤ 3/2. Additionally450

exp(w) = 3/2 when w = f(uvu)e with either uvu = v = a or u = a and451

v = bc up to a permutation of letters.452

Proof. Let w be a factor with maximal exponent among the factors of q.453

Its first letter is e because otherwise its length could be increased by one unit454

without changing the period, which would increase the exponent. Similarly,455

its last letter is e. Then, w is of the form f(uvu)e for a factor uvu of p whose456

longest border is u.457

Assume that exp(w) ≥ 3/2. Then

2|uvu|+ 1

2|uv| ≥ 3/2 ,

which gives
2|u|+ 1 ≥ |uv| .

Also, since uvu is a factor of p, it satisfies

|uvu|/|uv| ≤ 7/5 ,

which implies
5

2
|u| ≤ |uv| .

Therefore
5

2
|u| ≤ 2|u|+ 1 ,

which is only possible for |u| = 0, 1, or 2.458

If |u| = 0, |v| = |uv| = 1, and the induced factor in q is of the form eae,459

for a letter a ∈ A4, and has exponent 3/2.460

If |u| = 1, |uv| = 3, and then uvu is of the form abca up to a permutation461

of letters, inducing a factor of exponent 3/2 in q.462

Finally, if |u| = 2, |uv| = 5 and exp(uvu) = 7/5. But as recalled above,463

no factor of p with that exponent has period 5. This case is impossible,464

which concludes the proof.465

The conclusion of the previous lemma is that the maximal exponent of466

factors is 3/2. The lower bound on the occurrence number of 3/2-powers in467

q requires another property of p, which is used in the proof of the following468

corollary.469
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Corollary 11. The number of occurrences of maximal-exponent factors in470

prefixes of q tends to 2n/3 with the prefix length n.471

Proof. From the previous lemma, maximal-exponent factors in q are472

induced by factors of the form a or abca, up to a permutation of the four473

letter of A4, in p.474

It is clear from the definition of q that at every two of its positions occur475

one of the factors eae, ebe, ece, ede. Their occurrence number then tends476

to n/2.477

Turning to the other factors of exponent 3/2, it is known that the six478

factors of the form abca appear at every three positions in p. Indeed, an479

occurrence of abca, can extend to abcad and abcadb but not to abcadbc480

whose suffix bcadbc has exponent 6/4 = 3/2 > 7/5. Therefore, the induced481

factors of exponent 3/2 occur at every six positions in q, leading to a limit482

of n/6.483

Summing up the two limits, the occurrence numbers of 3/2-powers in484

prefixes of q tend to n/2 + n/6 = 2n/3 as stated.485

7. Conclusion486

The result of Section 6 implies that Algorithm MaxExpFac can be mod-487

ified to output all the MEFs occurring in the input word in the same asymp-488

totic time. Indeed, the only occurrences of MEFs that are skipped by the489

algorithm when computing the maximal exponent are those occurring inside490

a phrase of the f-factorisation (Case (i) of Section 3). However storing the491

previous occurrences of MEFs and listing them can be done in time propor-492

tional to their number, which does not affect the asymptotic running time of493

the algorithm and yields the next statement.494

Corollary 12. All the occurrences of maximal-exponent factors of a word495

can be listed in linear time with respect to its length.496

The present work triggers the study of a uniform solution to compute497

both repetitions (of exponent at least 2) and repeats. However, exponent498

2 seems to reflect a transition phase in the combinatorics of these studied499

objects. For instance, the number of repetitions in a word can be of the order500

of n log n and the number of maximal periodicities (runs) is linear, while the501

number of maximal occurrences of factor uvu can be quadratic.502
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An interesting question is to select factors related to repeats that occur503

only a linear number of times or slightly more. An attempt has been achieved504

in [21] where it is shown that the number of maximal repetitions of any505

exponent more than 1 + ε is bounded by 1
ε
n lnn. See also the discussions at506

the end of [10] and of [22].507

Other interesting problems are the exact evaluation of the maximal num-508

ber of occurrences of MEF and the calculation of the maximal number of509

(distinct) MEFs occurring in a word.510
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