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1. Introduction

The generation of independent realizations of a second-order Rd-valued
random vectorX , whose distribution, PX (dx ), is unknown but can only be
approximated from a �nite set of N � 1 realizations, is a central issue in
uncertainty quanti�cation, signal processing and data analysis. One possible
approach to address this problem is to suppose that the searched distribu-
tion belongs to an algebraic class of distributions, which can be mapped
from a relatively small number of parameters (for instance,the multidimen-
sional Gaussian distribution). Generating new realizations of random vector
X amounts therefore at identifying the parameters that best suit the avail-
able data and then, at sampling independent realizations associated with the
identi�ed parametric distribution. However, when the dependence structure
associated with the components ofX is complex, such that its distribution
can be concentrated on an unknown subset ofRd, the de�nition of a rele-
vant parametric class to representPX (dx ) can become very di�cult. In that
case, nonparametric approaches are generally preferred tothese parametric
constructions [? ? ]. In particular, the multidimensional Gaussian kernel-
density estimation (G-KDE) method approximates the probability density
function (PDF) of X , if it exists, as a sum ofN multidimensional Gaus-
sian PDFs, which are centred at each available independent realization of
X . Optimizing the covariance matrices associated with theseN PDFs is a
central issue, as they control the in�uence of each realization of X on the
�nal approximation of PX (dx ). Even if there are many contributions on this
subject (see for instance [? ? ? ? ? ]), when the dimensiond of X is
high (d � 10� 100), constant covariance matrices parametrized by a unique
scaling parameter are generally considered. In particular, the Silverman rule
of thumb [? ] for choosing this scaling parameter is widely used becauseof
its simplicity and its good asymptotic behaviour whenN tends to in�nity.
However, for �xed values ofN , this Silverman choice often overestimates the
scattering of PX (dx ), and can have di�culties to correctly concentrate the
new generated realizations ofX on their regions of high probability.

To overcome this problem, a two-step procedure is introduced. First, we
suggest to center and to uncorrelate the random vectorX (using a Principal
Component Analysis for instance). Then, based on the maximization of a
global "Leave-One-Out" likelihood, the idea is to separatein di�erent blocks
the elements ofX , which could reasonably be considered as statistically
independent. A tensorized version of the classical G-KDE that is adapted
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to this dependence structure is eventually proposed. Indeed, for a �nite
number of realizations ofX , the less elements there are in each group, the
more chance we have to correctly infer the multidimensionaldistribution of
each sub-vector constituted of each group elements, and so the better should
be the estimation of the PDF ofX . Nevertheless, the identi�cation of this
(unknown) block decomposition is a di�cult combinatorial problem. This
paper presents therefore two algorithms to �nd relevant block decompositions
in a reasonable computational time.

The outline of this work is as follows. Section 2 presents thetheoretical
framework associated with the G-KDE and the optimization ofthe covariance
matrices on which it is based. The block decomposition we propose is then
detailed in Section 3. At last, the e�ciency of the method is illustrated on a
series of analytic and industrial examples in Section 4.

2. Theoretical framework

Let X := f X (! ); ! 2 
 g be a second-order random vector de�ned on
a probability space(
 ; T ; P), with values in Rd. We assume that the prob-
ability density function (PDF) of X exists. By de�nition, this PDF, which
is denoted bypX , is an element ofM 1(Rd; R+ ), the set of positive-valued
functions, whose integral overRd is 1. It is assumed that the maximal
available information about pX is a set of N > d independent and dis-
tinct realizations of X , which are gathered in the deterministic setS(N ) :=
f X (! n); 1 � n � N g. Given these realizations ofX , the kernel estimator
of pX is

bpX (x ; H ; S(N )) =
det(H )� 1=2

N

NX

n=1

K
�

H � 1=2 (x � X (! n ))
�

; (1)

where det(�) is the determinant operator,K is any function of M 1(Rd; R+ ),
and H is a (d � d)-dimensional positive de�nite symmetric matrix that is
generally referred as the "bandwidth matrix". In the following, we focus on
the classical case whenK is the Gaussian multidimensional density. Hence,
the PDF pX is approximated by a mixture ofN Gaussian PDFs, for which
the means are the available realizations ofX and the covariance matrices
are all equal toH :
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bpX (x ; H ; S(N )) =
1
N

NX

n=1

� (x ; X (! n ); H ) ; x 2 Rd; (2)

where for anyRd-dimensional vector� and for any (Rd � Rd)-dimensional
symmetric positive de�nite matrix C , � (�; � ; C ) is the PDF of anRd-dimensional
Gaussian random vector with mean� and covariance matrixC :

� (x ; � ; C ) :=
exp

�
� 1

2 (x � � )T C � 1 (x � � )
�

(2� )d=2
p

det(C )
; x 2 Rd: (3)

By construction, the matrix H in Eq. (2) characterizes the local con-
tribution of each realization of X . Thus, its value has to be optimized to
minimize the di�erence betweenpX , which is unknown, andbpX (�; H ; S(N )).
The mean integrated squared error (MISE) performance criterion

MISE(H ; d; N) = E
� Z

Rd
(pX (x ) � bpX (x ; H ; S(N ))) 2 dx

�
(4)

is generally considered to quantify such a di�erence. HereE [�] is the mathe-
matical expectation. For this criterion, it can be noticed that the set S(N ) is
random, whereas in the rest of this paper it is deterministic. Given su�cient
regularity conditions on pX , an asymptotic approximation of this criterion
can be derived. In low dimension, the value ofH that minimizes this asymp-
totic criterion can be explicitly calculated, but its valuedepends on the un-
known PDF pX and its derivatives (see [? ] for more details). Studies have
therefore been conducted to estimate these functions (generally iteratively)
from the only available information given byS(N ) (see for instance [? ? ]).
However, the convergence of these methods is rather slow in high dimension,
such that in practice, a widely used value forH is given by the Silverman
bandwidth matrix

H Silv (d; N) := ( hSilv (d; N))2

2

6
6
6
4

b� 2
1 0 � � � 0

0 b� 2
2

. . .
...

...
. . . . . . 0

0 � � � 0 b� 2
d

3

7
7
7
5

(5)

where for all 1 � i � d, b� 2
i is the empirical estimation of the variance ofX i ,

and where
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hSilv (d; N) :=
�

1
N

4
(d + 2)

� 1
d+4

: (6)

This expression, which is derived from a Gaussian assumption on pX , is
thought to be a good compromise between complexity and precision. How-
ever, it is generally observed that, for �xed values ofN , when the distribution
of X is concentrated on an unknown subset ofRd, the more complex and
disconnected this subset, the less relevant the value ofH Silv (d; N). To face
this problem, the di�usion maps theory [? ] can be used to bias the gen-
eration of independent realizations underbpX (�; H Silv (d; N); S(N )) and make
them closer to the ones we could have got if they had been generated under
the true PDF pX . Indeed, di�usion maps are a very powerful mathemati-
cal tool to discover and characterize sets on which the distribution of X is
concentrated, and their coupling to nonparametric statistical representations
has shown promising results, even when dealing with very high values ofd
[? ].

From another point of view, the likelihoodL (S(N )jH ) associated with
H can also directly be used to identify relevant values ofH . From Eq. (1),
it follows that

L (S(N )jH ) :=
NY

n=1

bpX (X (! n ); H ; S(N )) =
1

N N

NY

n=1

NX

m=1

� n;m (H ); (7)

� n;m (H ) := � (X (! n ); X (! m ); H ) ; 1 � n; m � N: (8)

The function L (S(N )jH ) uses twice the same information (to compute
bpX (�; H ; S(N )) and to evaluate it). Hence, it tends to in�nity when H tends
to zero, which can be seen as an over�tting of the available data. In order
to avoid this phenomenon, it is proposed in [? ] to consider its "Leave-One-
Out" (LOO) expression

L LOO (S(N )jH ) :=
NY

n=1

1
N � 1

NX

m=1 ;m6= n

� n;m (H ) (9)

instead. Given this approximate likelihood obtained from an LOO cross-
validation, and an a priori density pH for H , Bayesian approaches can be
used to compute the posterior density ofH [? ]:
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pH (H jS(N )) := c L LOO (S(N )jH )pH (H ); H 2 M+ (d): (10)

Here,c is a normalizing constant andM+ (d) is the set of all(d� d)-dimensional
symmetric positive de�nite matrices. In particular, the maximum likelihood
estimate ofH is denoted by

H MLE (d; N) := arg max
H 2 M+ (d)

L LOO (S(N )jH ): (11)

Additionally, considering that the best available approximations of the
true mean and covariance matrix ofX are given by their empirical estima-
tions

b� X :=
1
N

NX

n=1

X (! n );

bR X :=
1

N � 1

NX

n=1

(X (! n ) � b� X ) 
 (X (! n) � b� X );

the expression given by Eq. (1) can be slightly modi�ed to ensure that
the mean and the covariance matrix of the G-KDE approximation of X are
equal to these estimations. Following [? ], this can be done by considering
the subsequent proposition. The proof is given in Appendix.

Proposition 1. If the PDF of fX is equal to

epX (�; H ; S(N )) :=
1
N

NX

n=1

� (�; AX (! n) + � ; H ) ; (12)

� := ( I d � A )b� ; H := bR X �
N � 1

N
A bR X A T ; (13)

whereA is any (d � d)-dimensional matrix such thatH is positive de�nite,
then the mean and the covariance matrix offX are equal tob� and bR X re-
spectively.

Given S(N ), the G-KDE of the PDF of X under constraints on its mean
and its covariance matrix is denoted byepX (�; H MLE (d; N); S(N )). Here,
H MLE (d; N) is the argument that maximizes the LOO likelihood ofH asso-
ciated with epX .
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Given b� , bR X , and H MLE (d; N), the generation of independent realiza-
tions of fX � epX (�; H MLE (d; N); S(N )) is straightforward. Indeed, for
any M � 1, the Algorithm 1 (de�ned below) can be used to generate a
(d � M )-dimensional matrix Z , whose columns are independent realizations
of fX . There, U f1; : : : ; Ng denotes the discrete uniform distribution over
f 1; : : : ; Ng and N (0; 1) denotes the standard Gaussian distribution.

1 Let Q(! 0
1); : : : ; Q(! 0

M ) be M independent realizations that are drawn
from U f1; : : : ; Ng ;

2 Let M be a(d � M )-dimensional matrix whose columns are all
equal to b� ;

3 Compute A such that H := bR X � N � 1
N A bR X A T ;

4 De�ne �X :=
�
X (! Q(! 0

1)) � � � X (! Q(! 0
M ))

�
;

5 Let � be a(d � M )-dimensional matrix, whose components aredM
independent realizations that are drawn fromN (0; 1) ;

6 AssembleZ = M + A ( �X � M ) + H MLE (d; N)1=2� .

Algorithm 1: Generation ofM independent realizations offX .

Finally, this section has presented the general framework to nonparamet-
rically approximate the PDF of a random vector when the maximal infor-
mation is a set of N independent realizations. Some adjustments of the
classical formulation have been proposed to take into account constraints on
the �rst and second statistical moments of the approximatedPDF, and it
has been proposed to search the kernel density bandwidth as the solution of
a computationally demanding LOO likelihood maximization problem.

However, from the analysis of a series of test cases, it appears that bR X is
a rather good approximation ofH MLE (d; N) for the nonparametric modelling
of high dimensional random vectors (d � 10� 100) with limited information
(N � 10d for instance). From Eqs. (12) and (13), this means that we are
approximating the PDF of X as a unique Gaussian PDF, whose parameters
correspond to the empirical mean and covariance matrix ofX :

lim
H ! bR X

epX (�; H ; S(N )) = � (�; b� ; bR X ): (14)

This could prevent us from recovering the subset ofRd on which X is
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actually concentrated. To face this problem, we can be tempted to impose
smaller values for the components ofH in the nonparametric model. If all
the components ofX are actually dependent, there is however no reason
to do so without biasing the �nal constructed distribution in focusing too
much on the available data. Thus, instead of arti�cially decreasing the most
likely value of H (according to the available data), the next section proposes
several adaptations of this G-KDE formalism.

3. Data-driven tensor-product representation

This section presents some adaptations of the classical G-KDE to improve
the nonparametric representations ofpX when the numberN of available
realizations ofX is relatively small compared to its dimensiond. Following
[? ] and [? ], we �rst suggest to pre-process the realizations ofX (from a
Principal Component Analysis for instance) such thatX is now supposed to
be centred and uncorrelated:

b� X = 0; bR X = I d:

Here, I d is the (d � d)-dimensional identity matrix. This makes independent
the components ofX that were only linearly dependent. Then, the idea is
to identify groups of components ofX that can reasonably be considered
as statistically independent, if they exist. Instead of using statistical tests,
we propose to search these groups by looking for the maximum of a cross-
validation likelihood quantity that is associated with each block formation.
Thus, given a block by block decomposition of the componentsof X , the PDF
pX is approximated as the product of the nonparametric estimations of the
PDFs associated with each sub-vector ofX . For instance, if thed components
of X are sorted ind distinct groups, the approximation ofpX corresponds
to the product of the d nonparametric estimations of the marginal PDFs
of X . Indeed, if the identi�ed block decomposition is correctlyadapted to
the (unknown) dependence structure ofX , there are good chances for the
nonparametric representation ofpX to be improved.

More details about this block decomposition are presented in the rest of
this section. First, we introduce the notations and the formalism on which
this decomposition is based. Then, several algorithms are proposed for its
practical identi�cation.
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3.1. Block by block decomposition

For any b in f 1; : : : ; dgd and for all 1 � i � d, bi can be used as a block
index for the i th component X i of X . This means that if bi = bj , X i and
X j are supposed to be dependent and have to belong to the same block. On
the contrary, if bi 6= bj , X i and X j are supposed to be independent and they
can belong to two di�erent blocks. In order to avoid any redundancy in the
block by block parametrization ofX , the following subset off 1; : : : ; dgd is
considered:

B(d) :=
�

b 2 f 1; : : : ; dgd j b1 = 1; 1 � bj � 1 + max
1� i � j � 1

bi ; 2 � j � d
�

:

(15)
Additionally, for any b in B(d), let

� Max(b) be the maximal value ofb,

� s(` )(X ; b) be the random vector that gathers all the components ofX
with a block index equal to`,

� d` be the number of elements ofb that are equal to `,

� S ` (N ) be the set that gathers theN independent realizations ofs(` )(X ; b)
that have been extracted from theN independent realizations ofX in
S(N ).

There exists a bijection betweenB(d) and the set of all block by block de-
compositions ofX . For instance, ford = 5, all the elements off (i; j; i; k; k ); 1 � i 6= j 6= k � 5g
correspond to the same block decomposition ofX , but only b = (1 ; 2; 1; 3; 3)
is in B(d). We can also identify

s(1) (X ; b) = ( X 1; X 3); s(2) (X ; b) = X 2; s(3) (X ; b) = ( X 4; X 5); (16)

Max(b) = 3 ; d1 = 2 d2 = 1; d3 = 2: (17)

According to Eq. (12), for anyH ` in M+ (d` ), the PDF of s(` )(X ; b) can
be approximated by eps( ` ) (X ;b)(�; H ` ; S` (N )). It follows that the PDF of X
can be constructed as the product of these Max(b) PDFs:
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epX (x ; H 1; : : : ;H Max (b) ; S(N ); b) :=
Max (b)Y

`=1

eps( ` ) (X ;b)(s
(` )(x ; b); H ` ; S` (N )):

(18)
Such a construction for the PDF ofX means that the vectorss(` )(X ; b),

1 � ` � Max(b), are assumed to be independent. For anyb in B(d), let
H MLE

1 (b); : : : ;H MLE
d (b) be the arguments that maximize the LOO likelihood

associated withepX . Hence, for a given block by block decomposition ofX
that is characterized by a given value ofb, the most likely G-KDE of pX is
given by

epX (x ; H MLE
1 (b); : : : ;H MLE

d (b); S(N ); b): (19)

Using Eqs. (9), (12) and (18), for anyb in B(d) and any(H 1; : : : ;H Max (b))
in M+ (d1) � � � � � M+ (dMax (b)), this LOO likelihood is given by

L LOO (S(N )jH 1 : : : ; H d; b) =
Max (b)Y

`=1

NY

n=1

1
N � 1

NX

m=1 ;m6= n

e� n;m (H ` ; b); (20)

e� n;m (H ` ; b) := �
�
s(` )(X (! n ); b); A `s(` )(X (! m ); b); H (` )

�
; (21)

H ` := I d` �
N � 1

N
A `A T

` : (22)

Noticing that

max
H 1 ;:::;H Max ( b) ;b

Max (b)Y

`=1

NY

n=1

1
N � 1

NX

m=1 ;m6= n

e� n;m (H ` ; b)

= max
b

Max (b)Y

`=1

max
H `

NY

n=1

1
N � 1

NX

m=1 ;m6= n

e� n;m (H ` ; b);

(23)

it follows that for a given block by block decomposition ofX , the most likely
values of H 1; : : : ;H Max (b) can be computed independently, and saved for
a possible re-use for an other value ofb. Indeed, if b(1) = (1 ; 1; 2; 2), two
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valuesH (1)
1 and H (1)

2 have to be chosen for the bandwidth matrices (one for
each block). This means that two independent LOO likelihoodmaximization
problems have to be solved. In the same manner, ifb(2) = (1 ; 1; 2; 3), three
valuesH (2)

1 , H (2)
2 and H (2)

3 have to be chosen. However, given the same set
of realizations ofX , it is clear that the most likely value of H (1)

1 is equal
to the most likely value ofH (2)

1 . Hence, the most likely value ofb, which is
denoted bybMLE , is eventually solution of

bMLE := arg max
b2 B(d)

L LOO (S(N )jH MLE
1 (b); : : : ;H MLE

d (b); b): (24)

There, we remind that for anyb in B(d) and any 1 � ` � Max(b),

H MLE
` (b) := arg max

H ` 2 M+ (d` )

NY

n=1

1
N � 1

NX

m=1 ;m6= n

e� n;m (H ` ; b): (25)

Analyzing the value ofbMLE can give information on the actual depen-
dence structure for the components ofX . Indeed, if bMLE = (1 ; : : : ; 1), the
most appropriate representation for the PDF ofX is its classical multidimen-
sional Gaussian kernel estimation. This would mean that allthe components
of X are likely to be dependent. On the contrary, ifbMLE = (1 ; 2; : : : ; d),
the most likely representation corresponds to the assumption that all the
components ofX are independent. Other values ofbMLE can also be used
to identify groups of dependent components ofX , which are likely to be
independent the ones to the others.

3.2. Practical solving of the block by block decomposition problem
The optimization problem de�ned by Eq. (24) being very complex, we

suggest to search the most likely block by block decomposition of X using
very simple parametrizations of the bandwidth matrices. Indeed, once vector
X has been centred and uncorrelated, it is reasonable to parametrize each
bandwidth matrix H ` by a unique scalarh` , such that H ` = h2

` I d` . From
Eq. (22), it follows that

A ` =
N

N � 1

q
1 � h2

` I d` : (26)

Hence, for a given precision� , the complex problem of searching the most
likely values ofH 1; : : : ;H Max (b) can be reduced to minimizing Max(b) non
convex but explicit functions over the closed interval[�; 1]. This can be done
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value of d 1 2 3 4 5 6 7 8 9 10
value of NB(d) 1 2 5 15 52 203 877 4140 21147 115975

value of N max
greedy(d) 1 3 8 17 31 51 78 113 157 211

Table 1: Evolution of NB(d) and N max
greedy (d) with respect to d.

in parallel, and each minimization problem can be solved very e�ciently
using a combination of golden section search and successiveparabolic inter-
polations (see [? ] for further details about this method). However, solving
the optimization problem de�ned by Eq. (24) can still be computationally
demanding whend increases. Indeed, as it can be seen in Table 1, the number
of admissible values ofb, which is denoted byNB(d) , increases exponentially
with respect to d. Hence, a brute force approach, which would consist in
testing all the possible values ofb, can not be used to identifybMLE .

As an alternative, we propose to consider a greedy algorithm, whose com-
putational cost can be bounded. Starting from a con�guration where all the
components ofX are in the same block, which corresponds tob = (1 ; : : : ; 1),
the idea of this algorithm is to remove iteratively one element of this initial
block, and to put it in a block that would be already built, or in a new
block where it is the only element. The Algorithm 2 provides amore de-
tailed description of this procedure. By construction, thenumber Ngreedy(d)
of evaluations ofb 7! maxh L LOO (S(N )jb; h) veri�es

Ngreedy(d) � N max
greedy(d) := 1 +

d� 2X

i =0

(d � i )( i + 1) � d3: (27)

For d > 4, such an algorithm can therefore be used to approximatebMLE

at a computational cost that is much more a�ordable than a direct identi�-
cation based onNB(d) evaluations ofb 7! maxh L LOO (S(N )jb; h).

When modelling high dimensional random vectors (d � 50 � 100), the
value of N max

greedy(d), which is de�nitely much smaller than NB(d) , can also
become very high:

N max
greedy(d = 50) = 22051; N max

greedy(d = 100) = 171601: (28)

To identify relevant values for b at a lower computational cost in such
a constrained discrete setB(d), the genetic algorithms (see [? ] for further

12



1 Initialization: b� = (1 ; : : : ; 1), ind.blocked= ; ;
2 for k = 1 : d do
3 L (k) = ; , b(k) = ; , index(k) = ; , ` = 1 ;
4 for i 2 f 1; : : : ; dg nind.blockeddo
5 for j = 2 : min( d;Max(b?) + 1) do
6 Adapt the value of the block index:btemp := b� , btemp

i = j ;
7 Compute: L temp = max h L LOO (S(N )jbtemp ; h );
8 Save results:L (k) f `g = L temp , b(k) f `g = btemp ,

index(k) f `g = i ;
9 Increment: `  ` + 1;

10 end
11 end
12 Find the best block index at iteration k: ` � = arg max` L (k) f `g ;
13 Actualize: b�  b(k) f ` � g, ind.blocked ind.blocked[ index(k) f ` � g

;
14 end
15 Maximize over all iterations: (`greedy; kgreedy) := arg max `;k L (k) f `g;

16 Approximate bMLE � b(kgreedy ) �
`greedy

	
.

Algorithm 2: Greedy search ofbMLE .

13



details) seem to be particularly adapted. Hence, an adaptation of these
algorithms to the case of the identi�cation of the most likely block by block
decomposition ofX is proposed. The fusion and the mutation processes on
which such algorithms are generally based, as well as a pseudo-projection
in B(d) are therefore detailed in Appendix. In these algorithms, for any set
S (which can be discrete or continuous), we denote byU(S) the uniform
distribution over S. Based on these three functions, the Algorithm 3 shows
the genetic procedure we suggest for solving Eq. (24). The results given by
this genetic algorithm are dependent on three parameters:

� the maximum number of iterationsimax ,

� the probability of mutation pMut ,

� the size of the population we are considering in the genetic algorithm
Npop.

For this algorithm, the number of evaluations ofb 7! maxh L LOO (S(N )jb; h)
is equal toN tot = imax � Npop. For a given value ofN tot , it is however hard
to infer the optimal values for these three parameters, as itdepends ond and
on the optimal block-by-block structure of the considered random vector of
interest. However, from the analysis of a series of numerical examples, it is
generally interesting to choose small values forpMut to limit the number of
spontaneous mutations, and favour high values for the number of iterations
imax rather than for the population sizeNpop.

Once a satisfying valuebb
MLE

of b has been identi�ed using the scalar
parametrization of the bandwidth matrices, it is possible to enrich the parametriza-
tion of the bandwidth matrices to improve the nonparametricrepresentation
of the PDF of X . This amounts at solving

H MLE
` (bb

MLE
) = arg max

H ` 2 M+ (d` )

1
N � 1

NX

m=1 ;m6= n

e� n;m (H ` ; bb
MLE

) (29)

for all 1 � ` � Max(bb
MLE

). In practice, we observed on a series of test
cases that the interest of such an enrichment of the bandwidth matrix was
relatively limited.
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1 ChooseNpop � 2, 0 � pMut � 1 and imax � 1 ;
2 Initialization ;
3 De�ne B = ; , L = ; , inc = 1 ;

4 Choose at randomNpop elements ofB(d),
n

b(1) ; : : : ; b(Npop )
o

;

5 for n = 1 : Npop do
6 Compute: L temp = maxh L LOO (S(N )jb(n) ; h);
7 Save results:L f incg = L temp , B f incg = b(n) , inc = inc + 1 ;
8 end
9 Iteration ;

10 for i = 2 : imax do
11 Gather in S the Npop elements ofB associated with theNpop highest

values ofL ;
12 Choose at randomNpop distinct pairs of elements ofS:n�

b(n;1); b(n;2)
�

; 1 � n � Npop

o
;

13 for n = 1 : Npop do
14 Fusion: bFus = Fusion(b(n;1); b(n;2)) ;
15 Mutation: bMut = Mutation (bFus; pMut ) ;
16 Compute: L temp = max h L LOO (S(N )jbMut ; h);
17 Save results:L f incg = L temp , B f incg = bMut , inc = inc + 1 ;
18 end
19 end
20 Maximize over all iterations: kgene = arg max1� k� inc� 1 L f kg ;
21 Approximate bMLE � B f kgeneg.

Algorithm 3: Genetic search ofbMLE . The functions Mutation() and
Fusion() are presented in Appendix, and are detailed in Algorithms 4
and 5.
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4. Simulation and application studies

The purpose of this section is to illustrate the interest of the correlation
constraints and the tensorized formulation for the nonparametric represen-
tation of PDFs when the maximal information is a �nite set of independent
realizations. To this end, a series of examples will be presented. The �rst
examples will be based on generated data, so that the errors can be con-
trolled, whereas the last example presents an industrial application based on
experimental data.

4.1. Monte Carlo simulation studies

4.1.1. Lemniscate function
Let U be a random value that is uniformly distributed on[� 0:85�; 0:85� ],

� = ( � 1; � 2) be a 2-dimensional random vector whose components are two in-
dependent standard Gaussian variables, andX L = ( X L

1 ; X L
2 ) be the random

vector so that

X L =
�

sin(U)
1 + cos(U)2

;
sin(U) cos(U)
1 + cos(U)2

�
+ 0:05� : (30)

We assume thatN = 200 independent realizations ofX L have been gath-
ered in S(N ). Given this information, we would like to generate additional
points that could sensibly be considered as new independentrealizations of
X L . Based on the G-KDE formalism presented in Section 2, four kinds of
generators are compared in Figure 1, depending on the value of the band-
width and on the constraints on the statistical moments ofX L .

� Case 1: pX L is approximated by pcX
L (�; (hSilv (d; N))2I d; S(N )), which

is de�ned by Eq. (1) (no constraints).

� Case 2: pX L is approximated by pfX
L (�; (hSilv (d; N))2I d; S(N )), which

is de�ned by Eq. (12) (constraints on the mean and the covariance).

� Case 3:pX L is approximated bypcX
L (�; (hMLE (d; N))2I d; S(N )) (no con-

straints).

� Case 4: pX L is approximated by pfX
L (�; (hMLE (d; N))2I d; S(N )) (con-

straints on the mean and the covariance).
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The relevance of the di�erent approximations ofpX L can be analysed
from a graphical point of view in Figure 1. It is instructive to compare the
associated values of the LOO likelihood, which is denoted byL LOO (S(N )jH ),
as the higher this value, the more likely the approximation.Hence, for this
example, introducing constraints on the mean and the covariance of the G-
KDE tends to slightly increase the values ofL LOO (S(N )jH ). Moreover,
these results are strongly improved when choosinghMLE (d; N) instead of
hSilv (d; N). Then, for these four cases, Figure 2 compares the evolution
of hSilv (d; N) and hMLE (d; N) with respect to N , and shows the associated
values of the LOO likelihood. For this example, it can therefore be seen
that hSilv (d; N) strongly overestimates the scattering of the distributionof
X L , for any considered values ofN . This is not the case when working
with hMLE (d; N). It is also interesting to notice that for values ofN lower
than 104 (which is very high for 2-dimensional cases), the di�erencebetween
hMLE (d; N) and hSilv (d; N) is always important.

4.1.2. Four branches clover-knot function
In the same manner than in the previous section, letU be a random value

that is uniformly distributed on [� �; � ], � = ( � 1; � 2; � 3) be a 3-dimensional
random vector whose components are three independent standard Gaussian
variables, andX FB be the random vector so that

X FB = (cos(U) + 2 cos(3U); sin(U) � 2 sin(3U); 2 sin(4U)) + � : (31)

Once again, starting from a data set ofN = 200 independent realizations,
we would like to be able to generate additional realizationsof X FB . For
this 3-dimensional case, as in the previous section, Figures 3 and 4 allow
us to underline the interest of considering G-KDE representations that are
constrained in terms of mean and covariance, for which the bandwidths are
optimized from the likelihood maximization point of view.

4.1.3. Interest of the block-by-block decomposition in higher dimensions
As explained in Section 3, whend is high, the G-KDE of pX requires

very high values ofN to be able to identify the manifold on which the dis-
tribution of X is concentrated. In other words, ifN is �xed, the higher d,
the higher hMLE (d; N) and the more scattered the new realizations ofX . As
an illustration of this phenomenon, let us consider the two following random
vectors, ford � 1:
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