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1. Introduction

The generation of independent realizations of a second-erdR%-valued
random vector X , whose distribution, Py (dx), is unknown but can only be
approximated from a nite set of N 1 realizations, is a central issue in
uncertainty quanti cation, signal processing and data ankysis. One possible
approach to address this problem is to suppose that the sehed distribu-
tion belongs to an algebraic class of distributions, whichao be mapped
from a relatively small number of parameters (for instancehe multidimen-
sional Gaussian distribution). Generating new realizatios of random vector
X amounts therefore at identifying the parameters that bestist the avail-
able data and then, at sampling independent realizations ssciated with the
identi ed parametric distribution. However, when the dep@&dence structure
associated with the components ak is complex, such that its distribution
can be concentrated on an unknown subset &, the de nition of a rele-
vant parametric class to represenPy (dx) can become very di cult. In that
case, nonparametric approaches are generally preferredtiese parametric
constructions [ ? ]. In particular, the multidimensional Gaussian kernel-
density estimation (G-KDE) method approximates the probabity density
function (PDF) of X, if it exists, as a sum ofN multidimensional Gaus-
sian PDFs, which are centred at each available independentalization of
X . Optimizing the covariance matrices associated with thedd PDFs is a
central issue, as they control the in uence of each realizan of X on the
nal approximation of Py (dx). Even if there are many contributions on this
subject (see for instance? ? ? ? ? ]), when the dimensiond of X is
high (d 10 100, constant covariance matrices parametrized by a unique
scaling parameter are generally considered. In particulathe Silverman rule
of thumb [? ] for choosing this scaling parameter is widely used because
its simplicity and its good asymptotic behaviour whenN tends to in nity.
However, for xed values ofN, this Silverman choice often overestimates the
scattering of Px (dx), and can have di culties to correctly concentrate the
new generated realizations oK on their regions of high probability.

To overcome this problem, a two-step procedure is introdude First, we
suggest to center and to uncorrelate the random vectot (using a Principal
Component Analysis for instance). Then, based on the maxigation of a
global "Leave-One-Out" likelihood, the idea is to separaten di erent blocks
the elements ofX , which could reasonably be considered as statistically
independent. A tensorized version of the classical G-KDE #h is adapted



to this dependence structure is eventually proposed. Ind#efor a nite
number of realizations ofX , the less elements there are in each group, the
more chance we have to correctly infer the multidimensionalistribution of
each sub-vector constituted of each group elements, and $®tbetter should
be the estimation of the PDF ofX . Nevertheless, the identi cation of this
(unknown) block decomposition is a di cult combinatorial problem. This
paper presents therefore two algorithms to nd relevant blok decompositions
in a reasonable computational time.

The outline of this work is as follows. Sectiofll2 presents trhtaeoretical
framework associated with the G-KDE and the optimization othe covariance
matrices on which it is based. The block decomposition we grose is then
detailed in Section(B. At last, the e ciency of the method is llustrated on a
series of analytic and industrial examples in Sectidd 4.

2. Theoretical framework

Let X = fX (!); ! 2 g be a second-order random vector de ned on
a probability space( ;T ;P), with values in RY. We assume that the prob-
ability density function (PDF) of X exists. By de nition, this PDF, which
is denoted bypy , is an element ofM ;(RY; R*), the set of positive-valued
functions, whose integral overRY is 1. It is assumed that the maximal
available information about px is a set ofN > d independent and dis-
tinct realizations of X , which are gathered in the deterministic seS(N) :=
fX(n); 1 n Ng Given these realizations oX , the kernel estimator
of px Is

det(H) =2 X

N KOH 200 X (o) 7 @)

bx (x;H ;S(N)) =

n=1

where de( ) is the determinant operator,K is any function of M ;(RY; R*),
andH is a(d d)-dimensional positive de nite symmetric matrix that is
generally referred as the "bandwidth matrix". In the followng, we focus on
the classical case wheK is the Gaussian multidimensional density. Hence,
the PDF px is approximated by a mixture ofN Gaussian PDFs, for which
the means are the available realizations of and the covariance matrices
are all equal toH :



1 X
bx (GHS(N)) = OGX(a)iH): x 2 RY (2)
n=1
where for anyR%-dimensional vector and for any (RY RY)-dimensional
symmetric positive de nite matrix C, (; ;C)isthe PDF of anRY-dimensional
Gaussian random vector with mean and covariance matrixC:

exp  1(x r\)TC x )
(2 )*=2" det(C)

By construction, the matrix H in Eq. () characterizes the local con-
tribution of each realization of X . Thus, its value has to be optimized to
minimize the di erence betweenpy , which is unknown, andpy ( ;H ; S(N)).
The mean integrated squared error (MISE) performance crit®n

Z
MISE(H ;d;N)= E  (px (x) bx (x;H ;S(N))”dx (4)
Rd

is generally considered to quantify such a di erence. Hel[ ] is the mathe-
matical expectation. For this criterion, it can be noticed hat the setS(N) is
random, whereas in the rest of this paper it is deterministicGiven su cient
regularity conditions on px , an asymptotic approximation of this criterion
can be derived. In low dimension, the value df that minimizes this asymp-
totic criterion can be explicitly calculated, but its value depends on the un-
known PDF pyx and its derivatives (see? ] for more details). Studies have
therefore been conducted to estimate these functions (geaky iteratively)
from the only available information given byS(N) (see for instance? ? ]).
However, the convergence of these methods is rather slow ighhdimension,
such that in practice, a widely used value foH is given by the Silverman
bandwidth matrix

. x 2 RY%: 3)

22 o 03
SV (g n(\ - (S w2 O bE e
HE(@N)= (R )7y T 2 (5)
0 0 b3
where for alll i d, b? is the empirical estimation of the variance oKX,

and where
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N (d+2) ©)

This expression, which is derived from a Gaussian assumption py , IS
thought to be a good compromise between complexity and preicin. How-
ever, it is generally observed that, for xed values dN, when the distribution
of X is concentrated on an unknown subset d®¢, the more complex and
disconnected this subset, the less relevant the value dfS"(d; N). To face
this problem, the di usion maps theory [? ] can be used to bias the gen-
eration of independent realizations undepy (;H SV(d; N); S(N)) and make
them closer to the ones we could have got if they had been geated under
the true PDF pyx . Indeed, di usion maps are a very powerful mathemati-
cal tool to discover and characterize sets on which the digtution of X is
concentrated, and their coupling to nonparametric statigtal representations
has shown promising results, even when dealing with very higalues ofd
[? ]

From another point of view, the likelihoodL (S(N)jH ) associated with
H can also directly be used to identify relevant values ¢ . From Eq. (@),
it follows that

hSV(d; N) :=

' W Yo
L(S(N)jH ) := bx (X (! n); H;S(N)) = NN am(H):  (7)
n=1 n=1 m=1
nm(H) = (X X(m)H);, 1T nm N (8)

The function L(S(N)jH ) uses twice the same information (to compute
px (;H ;S(N)) and to evaluate it). Hence, it tends to in nity when H tends
to zero, which can be seen as an over tting of the available t&a In order
to avoid this phenomenon, it is proposed in? ] to consider its "Leave-One-
Out" (LOO) expression

LOO H ¥ 1 X
L'OO(S(NIH) = o= i (H) (9)
n=1 m=1;mén
instead. Given this approximate likelihood obtained from a LOO cross-

validation, and an a priori density py for H , Bayesian approaches can be
used to compute the posterior density oA [? ]:

5



pi (HJS(N)) == cL"P(S(N)jH )pu (H); H 2 M™ (d): (10)

Here,cis a normalizing constant andM* (d) is the set of all(d d)-dimensional
symmetric positive de nite matrices. In particular, the maximum likelihood
estimate ofH is denoted by

HME(d;N):=arg max L“°9(S(N)jH): (11)
H2M* (d)
Additionally, considering that the best available approxmnations of the
true mean and covariance matrix o)X are given by their empirical estima-
tions

1 X
by = — X ('n);
§ N n=1
X
fim g XCD b X b,

the expression given by Eq. [{1) can be slightly modied to ense that
the mean and the covariance matrix of the G-KDE approximatio of X are
equal to these estimations. Following? ], this can be done by considering
the subsequent proposition. The proof is given in Appendix.

Proposition 1. If the PDF of K is equal to

1 X
B (HISN)) = (GAX (ta)+ SH); (12)
n=1
=(lq A)b; H = Ry %AI‘?XAT; (13)
whereA is any (d d)-dimensional matrix such thatH is positive de nite,

then the mean and the covariance matrix & are equal tob and Fl?x re-
spectively.

Given S(N), the G-KDE of the PDF of X under constraints on its mean
and its covariance matrix is denoted bypx (;H M5 (d;N);S(N)). Here,
H ME (d; N) is the argument that maximizes the LOO likelihood oH asso-
ciated with py .



Given b, Ry, and H M€ (d: N), the generation of independent realiza-

tions of X Bx (;HME (d;N);S(N)) is straightforward. Indeed, for
any M 1, the Algorithm [ (de ned below) can be used to generate a
(d  M)-dimensional matrix Z , whose columns are independent realizations

2 Let M bea(d M)-dimensional matrix whose columns are all
equal tob ;

Compute A such thatH = Ry N IAR,AT;

4 Dene X = X (!qug) X (oug)y)

Let bea(d M)-dimensional matrix, whose components aréM
independent realizations that are drawn fromN (0; 1) ;

6 AssembleZz =M + A(X M)+ HME(d;N)?

Algorithm 1:  Generation ofM independent realizations oK .

w

[&)]

Finally, this section has presented the general framework honparamet-
rically approximate the PDF of a random vector when the maxiral infor-
mation is a set of N independent realizations. Some adjustments of the
classical formulation have been proposed to take into acadlconstraints on
the rst and second statistical moments of the approximated®DF, and it
has been proposed to search the kernel density bandwidth deetsolution of
a computationally demanding LOO likelihood maximization poblem.

However, from the analysis of a series of test cases, it appetnat Ry is
a rather good approximation oH M-E (d; N) for the nonparametric modelling
of high dimensional random vectorsd 10 100 with limited information
(N 10d for instance). From Egs. [IR) and[(113), this means that we are
approximating the PDF of X as a unique Gaussian PDF, whose parameters
correspond to the empirical mean and covariance matrix of :

lim B (;H3S(N) = (;b;R): (14)
H1 Ry
This could prevent us from recovering the subset d®¢ on which X is

7



actually concentrated. To face this problem, we can be temgd to impose
smaller values for the components dfi in the nonparametric model. If all
the components ofX are actually dependent, there is however no reason
to do so without biasing the nal constructed distribution in focusing too
much on the available data. Thus, instead of arti cially deceasing the most
likely value of H (according to the available data), the next section propose
several adaptations of this G-KDE formalism.

3. Data-driven tensor-product representation

This section presents some adaptations of the classical GK to improve
the nonparametric representations opx when the numberN of available
realizations ofX is relatively small compared to its dimensiord. Following
[? ] and [? ], we rst suggest to pre-process the realizations of (from a
Principal Component Analysis for instance) such thaX is now supposed to
be centred and uncorrelated:

by = 0; Ii?x:Id:

Here,| 4 isthe (d d)-dimensional identity matrix. This makes independent
the components ofX that were only linearly dependent. Then, the idea is
to identify groups of components ofX that can reasonably be considered
as statistically independent, if they exist. Instead of usig statistical tests,
we propose to search these groups by looking for the maximurhabcross-
validation likelihood quantity that is associated with eab block formation.
Thus, given a block by block decomposition of the componert$ X , the PDF
px is approximated as the product of the nonparametric estimains of the
PDFs associated with each sub-vector &f . For instance, if thed components
of X are sorted ind distinct groups, the approximation ofpy corresponds
to the product of the d nonparametric estimations of the marginal PDFs
of X . Indeed, if the identi ed block decomposition is correctlyadapted to
the (unknown) dependence structure oK , there are good chances for the
nonparametric representation opy to be improved.

More details about this block decomposition are presented the rest of
this section. First, we introduce the notations and the forralism on which
this decomposition is based. Then, several algorithms areoposed for its
practical identi cation.



3.1. Block by block decomposition

Forany bin f1;:: :;dgd and foralll i d, b can be used as a block
index for the i™ componentX; of X . This means that ifh = b, Xi and
X; are supposed to be dependent and have to belong to the samechkloOn
the contrary, if b 6 b, X; and X; are supposed to be independent and they
can belong to two di erent blocks. In order to avoid any redudancy in the

considered:

B(d):= b2f1:::;dg” jby=1; 1 b 1+1max1b; 2 ] d
i
(15)
Additionally, for any b in B(d), let
Max(b) be the maximal value ofb,

sO)(X ;b) be the random vector that gathers all the components of
with a block index equal to™,

d- be the number of elements db that are equal to ",

S (N) be the set that gathers theN independent realizations 0§ (X ; b)
that have been extracted from theN independent realizations oX in
S(N).

There exists a bijection betweerB(d) and the set of all block by block de-
compositions ofX . Forinstance, ford = 5, all the elements of (i;j;i;k;k ); 1 16 6 k 5g
correspond to the same block decomposition ¥f, but only b=(1;2;1;3;3)
is in B(d). We can also identify

sO(X;b)= (X1 X3); sP(X;b)= Xy s®(X;b)=(Xa;Xs);  (16)

Max(b)=3; d;=2 dy=1; d3=2: @an

According to Eq. (I2), for anyH - in M* (d-), the PDF of sC)(X ;b) can
be approximated by Byc)(x . ( s H ;S (N)). It follows that the PDF of X
can be constructed as the product of these Méx) PDFs:



Mg (b)

Bx (X;H 152153 H max(wy; S(N); b) := B x ) (SO (X D), H ;ST (N)):
=1
(18)
Such a construction for the PDF ofX means that the vectorsst)(X ;b),
1 Max(b), are assumed to be independent. For any in B(d), let

associated withpyx . Hence, for a given block by block decomposition of
that is characterized by a given value ob, the most likely G-KDE of px is
given by

Bx (x;H Y"E (b);:::;H F (b); S(N); b): (19)
Using Egs. [9), [12) and[(IB), foranyin B(d) and any(H 1;:::;H max(b))
in M™(dy) M™ (dwax (), this LOO likelihood is given by

MO W g

LYOO(S(N)jH 1:::;H 4;b) = — €um (H +;b); (20)
=1 n=1 m=1;mén

Cum(Hsb) = sOX (1n);b); AsOX (I m)ib)H ey 5 (21)

H-:=1g4 NTlAAT: (22)

Noticing that

~max —_— €um(H ;D)
1525 H Max (03D 1 n=1 m=1;mén (23)
Mgx (b) W 1 X
= max max Cum (H +; b);
b, P m=1;m6n

it follows that for a given block by block decomposition oK , the most likely

a possible re-use for an other value d&f Indeed, if b = (1:1;2;2), two

10



valuesH (11) and H (21) have to be chosen for the bandwidth matrices (one for
each block). This means that two independent LOO likelihoochaximization
problems have to be solved. In the same manner,hf? = (1;1;2;3), three
valuesH @, H? andH @ have to be chosen. However, given the same set
of realizations of X , it is clear that the most likely value of H (11) is equal

to the most likely value ofH (12). Hence, the most likely value ob, which is

denoted bybM'E | is eventually solution of

pM-E = arg QE%) L OO (S(N)jH Y E (b); :::; H ME (b); b): (24)
There, we remind that for anyb in B(d) and anyl =~ Max(b),

HME (b):=arg max ¥ 1 * €.m(H «;b): (25)

H-2M* (d: N
( )nzl m=1;mén

Analyzing the value of b™ can give information on the actual depen-

most appropriate representation for the PDF oK is its classical multidimen-
sional Gaussian kernel estimation. This would mean that alhe components
of X are likely to be dependent. On the contrary, il = (1;2;:::;d),
the most likely representation corresponds to the assumpt that all the
components ofX are independent. Other values ob“'® can also be used
to identify groups of dependent components ok , which are likely to be
independent the ones to the others.

3.2. Practical solving of the block by block decompositioroplem

The optimization problem de ned by Eq. (24) being very comm@x, we
suggest to search the most likely block by block decompositi of X using
very simple parametrizations of the bandwidth matrices. ldeed, once vector
X has been centred and uncorrelated, it is reasonable to paratrize each
bandwidth matrix H - by a unique scalarh-, such that H- = h?l 4. From
Eq. (22), it follows that

N ;
A-=—— 1 hélgy: 26
T ’ (26)
Hence, for a given precision, the complex problem of searching the most
likely values ofH 1;:::;H max) Can be reduced to minimizing Mag) non

convex but explicit functions over the closed interval ; 1]. This can be done

11



value ofd 1 2 3 4 5 6 7 8 9 10
value of NB(d) 1 2 5 15 52 203 877 4140 21147 115975
1 3 8

value of N2, (d) 17 31 51 78 113 157 211

Table 1: Evolution of Ng(q) and Ng&, (d) with respect to d.

in parallel, and each minimization problem can be solved were ciently
using a combination of golden section search and succesgeagabolic inter-
polations (see P ] for further details about this method). However, solving
the optimization problem de ned by Eq. (24) can still be comptationally
demanding wherd increases. Indeed, as it can be seen in Table 1, the number
of admissible values ob, which is denoted byNg), increases exponentially
with respect to d. Hence, a brute force approach, which would consist in
testing all the possible values ob, can not be used to identifyb™-= .

As an alternative, we propose to consider a greedy algorithmwhose com-
putational cost can be bounded. Starting from a con guratia where all the

the idea of this algorithm is to remove iteratively one elenme of this initial

block, and to put it in a block that would be already built, or in a new
block where it is the only element. The Algorithm[2 provides anore de-
tailed description of this procedure. By construction, thenumber Ngeeqy(d)
of evaluations ofb 7! max, L“°° (S(N)jb; h) veri es

X 2
Ngreedy(d) Ng:ggdy(d) =1+ d Di+1) o 27)
i=0
For d > 4, such an algorithm can therefore be used to approximat#'-=
at a computational cost that is much more a ordable than a diect identi -
cation based onNgq evaluations ofb 7! max, L°° (S(N)jb; h).

When modelling high dimensional random vectorsd( 50 100, the
value of Ng&, (d), which is de nitely much smaller than Ng(), can also

become very high:

NMaX, (d =50) = 22051; NI, (d = 100) = 171601 (28)

To identify relevant values forb at a lower computational cost in such
a constrained discrete seB(d), the genetic algorithms (see? ] for further

12



14
15

16

Initialization: b =(1;:::;1), ind.blocked=; ;
for k=1:ddo
LO = b = index® =;, ~=1;
for i 2f1;:::;dgnind.blockeddo
for j =2 : min(d;Max(b’) + 1) do
Adapt the value of the block index:b®*™ := b, §*™ = j ;
Compute: L™ = max;, L° (S(N)jb™; h);
Save results:L® f g = Lt pK) f g= pemp,
indexX¥f g=i;
Increment: ©~ " +1;
end
end
Find the best block index at iterationk: = =argmax:- L& f g ;

Actualize: b b™f" g, ind.blocked ind.blocked[ index®) f* g

end
Maximize over all iterations: (*9'¢%; k9reed) := arg max-, L&) f *g;
Approximate bME  pk*¥) ~greedy

Algorithm 2:  Greedy search ob“'E .
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details) seem to be particularly adapted. Hence, an adaptan of these
algorithms to the case of the identi cation of the most likey block by block
decomposition ofX is proposed. The fusion and the mutation processes on
which such algorithms are generally based, as well as a pseymtojection

in B(d) are therefore detailed in Appendix. In these algorithms, faany set

S (which can be discrete or continuous), we denote by(S) the uniform
distribution over S. Based on these three functions, the Algorithra]l3 shows
the genetic procedure we suggest for solving Ed._{24). Thesudts given by
this genetic algorithm are dependent on three parameters:

the maximum number of iterationsi ™,
the probability of mutation pMUt,

the size of the population we are considering in the genetidgarithm
Npop-

For this algorithm, the number of evaluations ob 7! max, L"°° (S(N)jb; h)
is equal toN™ = im™*  N_,,. For a given value ofN', it is however hard
to infer the optimal values for these three parameters, asdaepends ord and
on the optimal block-by-block structure of the consideredandom vector of
interest. However, from the analysis of a series of numerieaxamples, it is
generally interesting to choose small values f@““t to limit the number of
spontaneous mutations, and favour high values for the numbef iterations
iM& rather than for the population sizeNpqp.

Once a satisfying vaIueBMLE of b has been identi ed using the scalar
parametrization of the bandwidth matrices, it is possiblea enrich the parametriza-
tion of the bandwidth matrices to improve the nonparametriacepresentation
of the PDF of X . This amounts at solving

MLE 1 X! MLE
HMEB " yzarg max ——— em(H B ) (29)
H-2Mm*(d) N 1m=1'm6n
MLE . .
forall 1 ° Max(B ). In practice, we observed on a series of test

cases that the interest of such an enrichment of the bandwidtmatrix was
relatively limited.
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ChooseNpo, 2,0 pMt  landim™  1;

Initialization  ;
DeneB=;,L=;,inc=1; n o
Choose at randonmN,,,, elements ofB(d), b®;:::;pMNeew)

for n=1: Ny do
Compute: L™ = max; L% (S(N)jb™; h);
Save results:L fincg= L*™ B fincg= b™, inc=inc+1 ;

end
Iteration
for i=2: im™* do

Gather in S the N, elements ofB associated with theN ., highest
values ofL ;
Ghoose at randomN,,, distinct pairs of elements ofS:
b(n;l); p(M:2) 1 n Npop :
for n=1: Ny do
Fusion: b™* = Fusion(b(™Y; b("2)) -
Mutation: b™"* = Mutation (b™s; pMt) ;
Compute: L™ = max, L9 (S(N)jbM"; h);
Save results:L fincg= L*®™ B fincg= b"", inc=inc+1 ;
end

end

Maximize over all iterations: k"¢ = argmax; ¢ inc 1L fkg;

Approximate bM-E B f koeneg,

Algorithm 3:  Genetic search ob™-F. The functions Mutation() and
Fusion() are presented in Appendix, and are detailed in Algthms @
and[5.
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4. Simulation and application studies

The purpose of this section is to illustrate the interest oftie correlation
constraints and the tensorized formulation for the nonparaetric represen-
tation of PDFs when the maximal information is a nite set of ndependent
realizations. To this end, a series of examples will be presed. The rst
examples will be based on generated data, so that the errorancbe con-
trolled, whereas the last example presents an industrial pfication based on
experimental data.

4.1. Monte Carlo simulation studies

4.1.1. Lemniscate function
Let U be a random value that is uniformly distributed on[ 0:85; 0:85 ],
=( 1; ») be a 2-dimensional random vector whose components are twe in
dependent standard Gaussian variables, and - = (X}; X}) be the random
vector so that

sin(U)  sin(U) cosW)
1+ cosU)2" 1+ cos(U)?2

We assume thatN = 200 independent realizations oK " have been gath-
ered in S(N). Given this information, we would like to generate additioal
points that could sensibly be considered as new independeetlizations of
X -. Based on the G-KDE formalism presented in Sectidd 2, fournds of
generators are compared in Figurg] 1, depending on the valuktbe band-
width and on the constraints on the statistical moments o¥X ".

Xt= +0:05 : (30)

Case 1:py . is approximated by pg . (; (h%"(d;N))?I ¢; S(N)), which
is de ned by Eq. (@) (no constraints).

Case 2:py . is approximated by pg « (; (h3"(d;N))?l ¢; S(N)), which
is de ned by Eq. (I2) (constraints on the mean and the covariee).

Case 3:px . is approximated bypg . ( ; (hMLE (d; N))?I ¢; S(N)) (no con-
straints).

Case 4:py . is approximated by p, « ( :(hMLE (d; N))?1 ¢; S(N)) (con-
straints on the mean and the covariance).
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The relevance of the di erent approximations ofp, . can be analysed
from a graphical point of view in Figure[1. It is instructive to compare the
associated values of the LOO likelihood, which is denoted hy°° (S(N)jH ),
as the higher this value, the more likely the approximationHence, for this
example, introducing constraints on the mean and the covamce of the G-
KDE tends to slightly increase the values ofL"°° (S(N)jH ). Moreover,
these results are strongly improved when choosing'E (d;N) instead of
hSV(d;N). Then, for these four cases, FigurEl 2 compares the evolution
of hSV(d;N) and hME (d; N) with respect to N, and shows the associated
values of the LOO likelihood. For this example, it can therefre be seen
that hS"V(d;N) strongly overestimates the scattering of the distributionof
X b, for any considered values oN. This is not the case when working
with hMLE (d; N). It is also interesting to notice that for values ofN lower
than 10* (which is very high for 2-dimensional cases), the di erendeetween
hMLE (d; N) and hSV(d; N) is always important.

4.1.2. Four branches clover-knot function

In the same manner than in the previous section, l&il be a random value
that is uniformly distributed on [ ; ], = ( 1; 2; 3) be a 3-dimensional
random vector whose components are three independent stand Gaussian
variables, andX ™ be the random vector so that

X FB = (cos(U) + 2 cos(3U);sin(U) 2sin(V);2sin(4U)+ :  (31)

Once again, starting from a data set oN = 200 independent realizations,
we would like to be able to generate additional realizationsf X ™. For
this 3-dimensional case, as in the previous section, Figeid@ and[4 allow
us to underline the interest of considering G-KDE represeations that are
constrained in terms of mean and covariance, for which the bawidths are
optimized from the likelihood maximization point of view.

4.1.3. Interest of the block-by-block decomposition in higr dimensions

As explained in Section B, wherd is high, the G-KDE of px requires
very high values ofN to be able to identify the manifold on which the dis-
tribution of X is concentrated. In other words, ifN is xed, the higher d,
the higher hM'E (d; N) and the more scattered the new realizations of . As
an illustration of this phenomenon, let us consider the twootlowing random
vectors, ford 1
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