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Abstract

We introduce a new class of subshifts of sequences, called k-graph shifts, which
expresses nested constraints on k symbols instead of on two symbols like for
Dyck shifts. These shifts share many properties with Markov-Dyck shifts but
are generally not conjugate to them. We prove that they are conjugate to sofic-
Dyck shifts. We give a computation of the multivariate zeta function for this
class of shifts.

Keywords: Dyck shifts, Markov-Dyck shifts, sofic-Dyck shifts, sofic shifts,
symbolic dynamics, visibly-pushdown languages, zeta function.

1. Introduction

Dyck shifts were introduced by Krieger in [12]. They are sets of bi-infinite
sequences over symbols of opening and closing parentheses where no mismatch-
ing appears, i.e. where each finite factor is a factor of a well-parenthesized word.
These shifts are examples of coded systems defined by Blanchard and Hansel [8].

Dyck shifts were generalized to Markov-Dyck shifts by Matsumoto [15] and
Krieger and Matsumoto [13] (see also [16], [10]), and to sofic-Dyck shifts (see
[2], [3]) which are exactly the sets of sequences avoiding a visibly pushdown
language (or a regular language of nested-words) [1]. All these shifts express
nesting constraints of arity 2.

In this paper we consider nesting constraints of higher arity. We consider
expressions of the form (a; (b; c)), where the symbol ; is a middle tag separating
two parts enclosed by parentheses, a generalization of Dyck-like expressions
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of the form (a(b)). We define a class of shifts of sequences called shifts of
k-nested sequences, where k is the nesting arity, and subshifts called k-graph
shifts defined by structures called k-graphs. The sets of forbidden factors of
such shifts are clearly deterministic context-free languages and Markov-Dyck
shifts form a subclass of k-graph shifts.

We prove that k-graph shifts are not conjugate to Markov-Dyck shifts but
are conjugate to sofic-Dyck shifts. Two conjugate shifts are considered to be
essentially the same after some recoding but it is not known whether conjugacy
is decidable or not even for shifts of finite type.

We investigate the computation of the zeta function of k-graph shifts. The
zeta function of a shift is a formal series allowing to count its periodic sequences.
It is a powerful invariant of conjugacy.

The zeta function has been computed for Dyck shifts by Keller in [11] and
for Markov-Dyck shifts by Krieger and Matsumoto in [13]. A formula for the
zeta function of sofic-Dyck shifts is given in [3]. All computations are based on
an encoding of the periodic patterns of the shift. It was proved by Reutenauer
in [17] that the multivariate and ordinary zeta functions of a sofic shift are N-
rational series. The multivariate and ordinary zeta functions of sofic-Dyck shifts
(and thus Markov-Dyck shifts) are N-algebraic series [4].

Since k-graph shifts are conjugate to sofic-Dyck shifts, a formula of their zeta
function can be obtained from [3]. Nevertheless, as a consequence of the recoding
into sofic-Dyck shifts, the formula would involve (m ×m)-matrices where m is
exponential in the number of states of the k-graph. We give here a computation
of the multivariate and ordinary zeta functions of a k-graph shift based directly
on the k-graph structure, the size of the computed matrices staying equal to
n × n where n is the number of states of the k-graph. The proof is obtained
using Keller’s results and an encoding of periodic patterns similar to one used
for sofic-Dyck shifts in [4].

In Section 2 we give a quick background on shifts of sequences. We define
the class of shifts of k-nested sequences in Section 3 and the k-graph shifts in
Section 4. Section 5 contains the computation of the zeta functions. In Section 6
we generalize the k-graph to v-graph shifts to express constraints mixing several
nesting arities.

2. Background on shifts

We refer to [14] for basic notions in symbolic dynamics. Let A be a finite
alphabet. A shift of sequences X is defined as the set of bi-infinite sequences of
symbols of A avoiding some set F of finite words (i.e. having no finite factor in
F ). The set F is called a set of forbidden factors of X. The shift X is denoted
X = XF . The set of finite factors of a shift X of bi-infinite sequences is denoted
by B(X). It is also called the set of blocks of the shift. The set of blocks of X of
length l is denoted by Bl(X). A shift X is irreducible if whenever u, v ∈ B(X)
there is a block w such that uwv ∈ B(X).
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When F can be chosen finite (resp. regular, visibly pushdown), X is called
a shift of finite type (resp. a sofic shift, a sofic-Dyck shift). The full shift over
A is the set AZ.

Shifts of sequences may be defined as closed subsets of AZ invariant by the
shift transformation σ, where σ((xi)i∈Z) = (xi+1)i∈Z. Sets of bi-infinite sequences
which are invariant by the shift transformation without being necessarily closed
subsets of AZ are called σ-invariant sets. The orbit of a sequence x ∈ AZ is the
set of all σi(x) for i ∈ Z. A period of a sequence x ∈ AZ is a positive integer p
such that σp(x) = x.

Let A,B be two finite alphabets and X a shift over A. A sliding block code
is a map Φ ∶X Ð→ BZ for which there is a positive integer R = 2r + 1 and a map
φ ∶ BR(X) Ð→ B such that Φ(x)i = φ(xi−r⋯xi⋯xi+r). Such a map is called an
R-block code.

A (topological) conjugacy from X ⊆ AZ to Y ⊆ BZ is a bijective sliding block
code from X onto Y . It is known that its inverse is also a sliding block code
[14]. Observe that a conjugacy preserves the periods of a sequence.

3. Shifts of k-nested sequences

In this section we define shifts of sequences of symbols satisfying some nesting
constraints of arity greater than 2. We will denote by k a positive integer
representing a nesting arity as explained below.

Let A be a finite set of symbols of size n. We consider the alphabets A(i) for
1 ≤ i ≤ k defined by A(i) = {e(i) ∣ e ∈ A}. We set Ak = ⊔1≤i≤kA

(i). We consider
the free monoid generated by Ak with a zero 0 quotiented by the following
relations

e(i)f (j) = 0, if i ≠ k, j ≠ 1, e ≠ f
e(i)e(j) = 0, if i ≠ k, j ≠ 1, j ≠ i + 1

e(1)e(2)⋯e(k) = 1,

where e, f ∈ A and 1 is the unity of the monoid. The third relation expresses a
nesting relation of arity k on the symbols e(1), e(2), . . . , e(k). The symbols e(1)

may be seen as opening parentheses, the symbols e(k) as closing parenthesis,
and the other symbols e(i) as middle tags.

For a word w = w0⋯wn−1 over Ak, we denote by w̃ ∈ A∗
k ∪ {0,1} its reduced

form which is the unique word obtained by applying the above relations.
We denote by F the set of finite words over the alphabet Ak whose reduced

form is 0. We set XAk
= XF , which is the shift avoiding all words in F . The

shift XAk
is called the shift of k-nested sequences over Ak.

Note that two such shifts XAk
and XBk

are conjugate if and only if A and
B have the same cardinal. This justifies the notation of X(k,n) standing for the
shift XAk

up to renaming of the symbols of the alphabet A of size n.
We denote by Dyck(Ak) the set of finite words whose reduced form is 1 and

we call these words the Dyck words over Ak. Finite and infinite words avoiding
the above set F of forbidden words have a natural nested structure.
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Example 1. Let A = {e, f} and k = 1. The shift XA1 is the full shift over A1,
that is, the set AZ

1 .

Example 2. Let A = {e, f} and k = 2. The shift XA2 is the Dyck shift with
two types of parentheses introduced by Krieger in [12] where e(1), f (1) represent
the opening parentheses (, [, and e(2), f (2) represent the closing parentheses ), ].
The Dyck shift is the set of bi-infinite sequences of symbols in {(, [, ), ]} where
each finite factor is a factor of some well-parenthesized word, i.e. contains no
mismatching. For instance the bi-infinite sequence ⋯( ( ) [ [ ]( ( ( ⋯ belongs to
the Dyck shift while ⋯( [ [ ] ) ( ( ⋯ does not since it contains a mismatching.

Example 3. Let A = {e, f} and k = 3. The nontrivial monoid relations are the
following:

e(i)f (j) = f (i)e(j) = 0, if i ≠ 3, j ≠ 1

e(1)e(3) = e(2)e(2) = f (1)f (3) = f (2)f (2) = 0,

e(1)e(2)e(3) = f (1)f (2)f (3) = 1,

Imagine that e(1), e(2), e(3) correspond to the parenthesis symbols (1, ∣1, )1 and
f (1), f (2), f (3) correspond to the parenthesis symbols (2, ∣2, )2. The monoid
relations express a natural constraint on composition of parentheses representing
two kinds of pairs of objects which have to be separated by some symbol in the
middle.

Let G = (V,E) be the directed multigraph where V is the set of vertices
containing a unique vertex 1 and E = {e(1), e(2), e(3), f (1), f (2), f (3)} is the set
of edges from 1 to 1. The shift XA3 may be seen as the set of bi-infinite paths
in G avoiding factors whose reduced form is 0, the alphabet being the set of
edges E.

1

e(3)

e(2)

e(1)

f (3)

f (2)

f (1)

Figure 1: The graph G defining the shift XA3
.

For instance, the reduced form of w = e(1) e(2) f (1) f (2) f (3) e(3) e(1) e(2) e(3)
is 1. The word w is thus a Dyck word over A3. The reduced form of the word
z = e(1) f (1) f (2) f (3) e(3) is 0. The word z is hence a forbidden factor of the
shift XA3 .

The reduced form of a finite word has always the form 0, 1, u, v, or u ⋅ v
with

u = (e(j1)1 ⋯e(k)1 )⋯(e(jn)n ⋯e(k)n )
v = (f (1)1 ⋯f (i1)1 )⋯(f (1)m ⋯f (im)m ),
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where er, fr′ ∈ A, for 1 ≤ r ≤ n, 1 ≤ r′ ≤m and 1 < jr ≤ k and 1 ≤ ir′ < k. A word
whose reduced form is v only or 1 is said to be matched-return. A word whose
reduced form is u only or 1 is said to be matched-call. The set of matched-return
(resp. matched-call) words is denoted by MR(Ak) (resp. MC(Ak)). The set of
matched-return (resp. matched-call) blocks of a subshift X of XAk

is denoted
by MR(X) (resp. MC(X)).

The following lemma shows that any block of XAk
can be extended on the

right to get some matched-call block. Similarly any block can be extended on
the left to get some matched-return block.

Lemma 1. Let X = XAk
and u a block of X. There is a block v such that uv is

a matched-call block of X.

Proof. Without loss of generality we may assume that u ∈ MR(X). Let us show
that there is a word v such that uv ∈ Dyck(X). Let ũ be the reduced form of
u in S. If u is not already in Dyck(X) we have ũ = we(1)⋯e(i) where 1 ≤ i < k
and w ∈ MR(X). Then ue(i+1)⋯e(k) reduces to w shorter than ũ. The claim is
obtained by iterating this process.

Observe that the shift XAk
is irreducible. Indeed, let X = XAk

and u, v ∈
B(X). By Lemma 1 there is a word w such that uw ∈ MC(X). Similarly there
is a word z such that zv ∈ MR(X). As a consequence uwzv ∈ B(X).

4. Shifts defined by k-graphs

In this section we define a class of shifts of nested sequences defined by finite
directed multigraphs equipped with a special structure.

Let A be a finite set of symbols and k a positive integer. We denote by [k]
the integer interval {1,2, . . . , k}.

We consider structures called k-graphs denoted by G = (V,E,A, k), where
(V,E) is a multigraph (called simply graph) with a finite set of vertices V and
a finite set of edges E, and where A is a finite set of symbols. For each edge e
we denote by s(e) its starting state and by t(e) its target state.

Further it is required that the set of edges is partitioned into k parts of equal
size E(i) = {e(i) ∣ e ∈ A} such that for each e ∈ A, each 0 ≤ i < k, t(e(i)) = s(e(i+1))
and t(e(k)) = s(e(0)). Hence each path e(1)e(2)⋯e(k) is a cyclic path in G.

The set of bi-infinite paths in G belonging to XAk
is a shift denoted by XG

and is called a k-graph shift. A Dyck path of G is a finite path of G belonging to
Dyck(Ak). Observe that by construction each Dyck path of G is a cyclic path
of G.

Example 4. The k-nested shifts defined in Section 3 are k-graph shifts defined
by graphs containing a single state.

Example 5. Let G = (V,E,A, k) be the 3-graph defined by A = {e, f, g}, k = 3
and the edges described in Figure 2. The word e(3)e(1)e(2)f (1)f (2)f (3)e(3)f (1)

is a block whose reduced form is e(3)f (1).
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1 2

e(3)

e(2)

e(1)

g(2) f (2)
f (1)

g(1)

g(3)

f (3)

Figure 2: A 3-graph G defining the shift XG with A = {e, f, g}.

In this setting, the Markov-Dyck shifts introduced by Matsumoto [15] and
Krieger and Matsumoto [13] (see also [16], [10]) may be seen as 2-graph shifts
as follows. The Markov-Dyck shift defined by some directed graph H = (V,E)
is the 2-graph shift XG with G = (V,F,E,2) where F = F (1) ⊔ F (2), F (1) being
a set of copies of the edges of H, and F (2) being a set of copies of the edges of
H in the reverse sense. Each edge e(2) in F (2) is thus a backward edge of the
e(1) in F (1) as in Markov-Dyck shifts.

The class of k-graph shifts is very close to the class of Markov-Dyck shifts
but it is a strictly larger class as is shown in the following proposition.

Proposition 1. The 3-graph shift X(3,n) is not conjugate to a Markov-Dyck
shift.

Proof. Assume that there is a 2-graph G = (V,E,B,2) defining a Markov-Dyck
shift XG which is conjugate to XA3 . Let Φ ∶ XG → XA3 be a conjugacy from XG
onto XA3 . Let us assume that Φ is an R-block code. Since XA3 is an irreducible
shift and irreducibility is invariant by conjugacy, XG is irreducible. The graph
of G is thus strongly connected.

If a is a symbol, we denote by ωa (resp. aω) the left (resp. right) infinite
sequence ⋯aaa (resp. aaa⋯ ), and by ωaω the bi-infinite sequence ωa.aω.

Since XA3 has sequences of period 1, XG also and thus G has at least one
loop edge. Hence there is at least one symbol e ∈ B such that e(1) and e(2) are
loop edges of G. Let B′ be the subset of symbols e in B such that e(1) (and thus
e(2)) are loop edges. Let e ∈ B′. Since ωe(1)ω has period 1 we have Φ(ωe(1)ω)
has period 1. Hence, as a(2)a(2) is forbidden in XA3 for any a ∈ A,

Φ(ωe(1)ω) = ωa(1)ω or Φ(ωe(1)ω) = ωa(3)ω for some a ∈ A,
Φ(ωe(2)ω) = ωb(1)ω or Φ(ωe(2)ω) = ωb(3)ω for some b ∈ A.

If Φ(ωe(1)ω) = ωa(1)ω and Φ(ωe(2)ω) = ωb(3)ω for some a, b ∈ A, then, since Φ
is a sliding block code,

Φ(ωe(1).e(2)ω) = ωa(1)w.w′b(3)ω,

where w,w′ are finite words, a contradiction since this ωa(1)w.w′b(3)ω is not
in XA3 even if a = b, as ww′ contains only a finite number of symbols in A(2).
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If Φ(ωe(1)ω) = ωa(3)ω and Φ(ωe(2)ω) = ωb(1)ω for some a, b ∈ A, then, since Φ
is a sliding block code,

Φ(ωe(2).e(1)ω) = ωb(1)w.w′a(3)ω,

where w,w′ are finite words, a contradiction since this ωb(1)w.w′a(3)ω is not
in XA3 even if a = b.

It follows that

Φ(ωe(1)ω) = ωa(1)ω and Φ(ωe(2)ω) = ωb(1)ω for some a, b ∈ A, (1)

or

Φ(ωe(1)ω) = ωa(3)ω and Φ(ωe(2)ω) = ωb(3)ω for some a, b ∈ A. (2)

Let us denote by B′
1 the subset of symbols e in B′ satisfying Equations 1,

and by B′
3 the subset of symbols e in B′ satisfying Equations 2. Let e ∈ B′

1 and
f ∈ B′

3. Since XG is irreducible, there is a finite path w ⋅w′ such that e(2)ww′f (1)

is a block of XG . Then

Φ(ωe(2)w.w′f (1)ω) = ωa(1)w1.w2b
(3)ω,

where a, b ∈ A and where w1,w2 are finite words. This gives a contradiction
since ωa(1)w1.w2b

(3)ω is not in XA3 even if a = b.
As a consequence B′ = B′

1 or B′ = B′
3. In the former case ωa(3)ω has no

pre-image by Φ for a ∈ A. In the latter case ωa(1)ω has no pre-image by Φ for
a ∈ A, which ends the proof.

The proof can be generalized to show that X(k,n) is not conjugate to a
Markov-Dyck shift when k > 2.

We now show that k-graph shifts can be seen as sofic-Dyck shifts. This result
is obtained by expressing the nesting constraints of arity k as another regular
nesting constraints of arity 2.

Sofic-Dyck shifts may be defined as follows. We consider an alphabet B
which is a disjoint union of three finite sets of letters, the set Bc of call letters, the
set Br of return letters, and the set Bi of internal letters. The set B = Bc⊔Br⊔Bi

is called a pushdown alphabet. A Dyck word over B is a word w generated by
the grammar D → ε ∣ iD ∣ cDrD, where D is a variable and c ∈ Bc, r ∈ Br, i ∈ Bi

are terminal symbols of the grammar. We denote by Dyck(B) the set of Dyck
words over B.

A (finite) Dyck automaton A over B is a pair (G,M) of a directed labeled
graph G = (V,E) over B where V is the finite set of states, E ⊆ V ×B ×V is the
set of edges, and of a set M of pairs of edges ((p, a, q), (r, b, s)) such that a ∈ Bc

and b ∈ Br. The set M is called the set of matched edges.
A finite path π of A is said to be an admissible path if for any factor (p, a, q)⋅

π1 ⋅ (r, b, s) of π with a ∈ Bc, b ∈ Br and the label of π1 being a Dyck word
over B, ((p, a, q), (r, b, s)) is a matched pair. Hence any path of length zero is
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admissible and factors of finite admissible paths are admissible. A bi-infinite
path is admissible if all its finite factors are admissible.

A sofic-Dyck shift over B is the set labels of bi-infinite admissible paths of
a Dyck automaton over B.

Proposition 2. Every k-graph shift is conjugate to a sofic-Dyck shift over some
pushdown alphabet.

Proof. Let X ⊆ EZ be a k-graph shift defined by a k-graph G = (V,E,A, k). We
define the pushdown alphabet B = Bc ⊔Bi ⊔Br with

Bc = {e(1) ∣ e ∈ A},
Bi = {e(i) ∣ e ∈ A,1 < i < k},
Br = {e(k) ∣ e ∈ A}.

We define a Dyck automaton A = (G′,M) over B where G′ = (V ′,E′) as follows.
The set V ′ is the set {qe(i) ∣ e ∈ A, i ∈ [k]}. For any e, f ∈ A, i ∈ [k], 1 ≤ j < k, we
set

qe(i)
f(1)ÐÐ→ qf(1) ∈ E′ if and only if e(i)f (1) is a path in G

qe(j)
e(j+1)ÐÐÐ→ qe(j+1) ∈ E′ (as e(j)e(j+1) is a path in G)

qe(k−1)
e(k)ÐÐ→ qf(i) ∈ E′ if and only if e(k)f (i) is a path in G

Each edge (q, e(1), qe(1)) is matched with (qe(k−1) , e(k), q) for each q ∈ V ′.
Let Y be the sofic-Dyck shift defined by A. It may be checked that the

construction implies X = Y .

5. Zeta function of shifts defined by k-graphs

5.1. Multivariate zeta functions

Recall the notion of multivariate zeta function introduced by Berstel and
Reutenauer in [7].

For K = Z or K = N we denote by K⟪A⟫ the set of noncommutative formal
power series over the alphabet A with coefficients in K. For each language L of
finite words over a finite alphabet A we define the characteristic series of L as
the series L = ∑u∈L u in N⟪A⟫.

Let K[[A]] be the usual commutative algebra of formal power series in the
variables of A and π∶K⟪A⟫ →K[[A]] be the natural homomorphism. Let S be
a commutative or noncommutative series. One can write S = ∑n≥0[S]n where
each [S]n is the homogeneous part of S of degree n. The notation extends to
matrices H with coefficients in K⟪A⟫ or K[[A]] with ([H]n)pq = [Hpq]n, where
p, q are indices of H.

Call periodic pattern of a shift X a word u such that the bi-infinite concate-
nation of u belongs to X and denote P(X) the set of periodic patterns of X.
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These definitions are extended to σ-invariant sets of bi-infinite sequences which
may not be shifts.

The multivariate zeta function Z(X) of a σ-invariant set X is the commu-
tative series in Z[[A]]

Z(X) = exp∑
n≥1

[P(X)]n
n

.

The (ordinary) zeta function of a language X is

ζX(z) = exp∑
n≥1

pn
zn

n
,

where pn is the number of sequences of X of period n, i.e. of sequences x such
that σn(x) = x.

Let θ∶Z[[A]] → Z[[z]] be the homomorphism such that θ(a) = z for any
letter a ∈ A. If S ∈ Z[[A]], θ(S) will also be denoted by S(z). Note that
ζX(z) = θ(Z(X)).

It is known that the multivariate zeta function of a shift has nonnegative in-
teger coefficients. The entropy of a language L is h(L) = lim supn→∞ 1/n log ∣L∩
An∣. The entropy of a shift X is h(B(X)). The entropy h(P(X)) of the set of
periodic patterns of a shift X is log(1/ρ) where ρ is the radius of convergence
of ζX(z).

5.2. Encoding of periodic sequences of a k-graph shift

Let A be a finite alphabet and A(i) = {e(i) ∣ e ∈ A} for 1 ≤ i ≤ k.
We say that a Dyck word w over Ak is prime if it cannot be decomposed into

a product of strictly shorter nonempty Dyck words. Note that the empty word
is a Dyck word but not prime. We denote by Prime(Ak) the set of prime Dyck
words over Ak and by Prime(X) the set of prime Dyck factors of a shift X.

Let G = (V,E,A, k) be a k-graph defining X = XG . The paths in Prime(X)
are called prime Dyck paths of G. For each p ∈ V , let us denote by Dp the set
of Dyck paths of G going from p to p. Note that there are no Dyck paths going
from p to q if p ≠ q. We define the two languages of finite paths of G

Lc = ⊔
e∈A,1≤i<k

e(1)Dt(e(1))⋯e(i−1)Dt(e(i−1))e
(i),

Lr = ⊔
e∈A,1<i≤k

e(i)Dt(e(i))e
(i+1)⋯Dt(e(k−1))e

(k),

and the following (V × V )-matrices

• C = (Cpq), where Cpq is the set of prime Dyck paths going from p to q
in G. Note that Cpq = ∅ if p ≠ q. We set Cp = Cpp.

• C∗ = (C∗
pq), where C∗

pq is the set of paths going from p to q in G being
concatenation of prime Dyck paths (i.e. being Dyck paths).

• Mc = (Mc,pq), (resp. Mr) where Mc,pq is the set of paths in Lc (resp. in
Lr) going from p to q in G.
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Let H be one of the matrices C, C∗Mc, Mr +C. We call an H-path of G a path
(ei)i∈I of G, where I is an interval or Z, which can be factorized into segments in
a way that each segment ej⋯ej′ ∈Hs(ej)t(ej′). We denote by XH the σ-invariant
set containing all orbits of bi-infinite H-paths of G.

We say that two finite words x, y are conjugate if x = uv and y = vu for some
words u, v.

The following proposition gives an encoding of the periodic patterns of a shift
defined by a k-graph. The formula is similar to the one obtained for sofic-Dyck
shifts in [4].

Proposition 3. Let X be the shift defined by a k-graph G. The set of periodic
patterns P(X) of X is

P(X) = P(XC∗Mc) ⊔ P(XMr+C).

Proof. Let z be a periodic pattern. Then x = ⋯zz.zz⋯ is a periodic sequence
of X. If z is not already in MC(X) or in MR(X), then its reduced form is

z̃ = u ⋅ v = (e(j1)1 ⋯e(k)1 )⋯(e(jn)n ⋯e(k)n ) ⋅ (f (1)1 ⋯f (i1)1 )⋯(f (1)m ⋯f (im)m ),

where er, fr ∈ A,1 < jr ≤ k and 1 ≤ ir < k. In that case z has a conjugate z′

whose reduced form is the reduced form of v ⋅ u where

v ⋅ u = (f (1)1 ⋯f (i1)1 )⋯(f (1)m ⋯f (im)m ) ⋅ (e(j1)1 ⋯e(k)1 )⋯(e(jn)n ⋯e(k)n ).

This product is either in MC(X) or in MR(X) since ⋯z′z′.z′z′⋯ ∈ X. So z
always has a conjugate z′ in MC(X) or in MR(X).

If z′ is matched-call, then it is a product of words in Prime(X) or of words
in Lr. In that case z is conjugate to an (Mr +C)-path of G.

If z′ is matched-return and not matched-call, i.e. z′ ∉ Prime(X)∗, we can
assume that it does not end with a Dyck word (if z′ = uw with w Dyck, we could
consider wu instead). In that case it is a product of words in Prime(X)∗Lc and
z is conjugate to an (C∗Mc)-path of G. As a consequence P(X) = P(XC∗Mc) ∪
P(XMr+C).

Let us finally show that P(XC∗Mc) ∩ P(XMr+C) = ∅. Assume the contrary.
Then there are nonempty conjugate words w,w′ such that w is an (C∗Mc)-path
of G and w′ is an (Mr +C)-path of G. This implies that the number of letters
in A(k) minus the number of letters in A(1) is positive in w and nonpositive in
w′, contradicting the conjugacy of w and w′.

5.3. Computation of the zeta function

As before, let X be a k-graph shift defined by the k-graph G = (V,E,A, k).
We recall below the notion of circular codes (see for instance [6]). We say

that a subset S of nonempty words over Ak is a circular code if for all n,m ≥ 1
and x1, x2, . . . , xn ∈ S, y1, y2, . . . , ym ∈ S and p ∈ A∗

k and s ∈ A+
k , the equalities

sx2x3⋯xnp = y1y2⋯ym and x1 = ps imply n = m, p = ε and xi = yi for each
1 ≤ i ≤ n.
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This following notion of circular-Markov matrix extends the classical notion
of circular codes. It corresponds to the notion of circular Markov codes of
Keller [11].

We say that the matrix (Hpq)p,q∈V , where each Hpq is a set of nonempty
words over Ak, is circular-Markov if for all n,m ≥ 1 and xi ∈Hpi−1,pi for 1 ≤ i < n,
xn ∈Hpn−1p0 , yi ∈Hqi−1,qi for 1 ≤ i <m, ym ∈Hqm−1q0 and p ∈ A∗

k and s ∈ A+
k , the

equalities sx2x3⋯xnp = y1y2⋯ym and x1 = ps imply n = m, p = ε, xi = yi and
pi = qi for each 1 ≤ i ≤ n.

Proposition 4. The sets Prime(Ak)∗Lc and Lr⊔Prime(Ak) are circular codes.

Proof. We first show that Lr ⊔ Prime(Ak) is circular. Keeping the notation of
the definition, let x1, x2, . . . , xn ∈ S, y1, y2, . . . , ym ∈ S, p ∈ A∗

k and s ∈ A+
k . We

prove the claim by induction on n +m. Suppose that sx2x3⋯xnp = y1y2⋯ym
and x1 = ps imply n = m and xi = yi when n + m < N . Assume now that
sx2x3⋯xnp = y1y2⋯ym and x1 = ps for some n,m with n +m = N .

If p were nonempty, then, since x1 = ps where s ≠ ε, p would have some word
e(i)w with i < k and w ∈ Dyck(Ak) as a suffix. This would contradict p being
a suffix of y1y2⋯ym, which is clearly matched-return, hence we get p = ε. It
follows that x1 is a prefix of y1 or the converse, implying x1 = y1. By induction
hypothesis we obtain that n =m and xi = yi.

We now show that Prime(Ak)∗Lc is circular. Let us assume that s ≠ x1.
Since s is a prefix of y1y2⋯ym and is a suffix of x1, we have s ∈ Prime(Ak)∗Lc

and p ∈ Prime(Ak)∗. As p ≠ ε, p ∈ Prime(Ak)+ and thus p ∉ (Ak)∗Lc. This
contradicts the fact that p is a suffix of y1⋯ym. Hence s = x1 and p = ε. Now
x1⋯xn = y1y2⋯ym implies x1 = y1 since xi, yi ∈ Prime(Ak)∗Lc. By induction
hypothesis we get n =m and xi = yi.

Corollary 1. Let G = (V,E,A, k) be a k-graph defining a shift X. Let C,
Mc, Mr be the matrices defined from G as above. The matrices C, C∗Mc and
(Mr +C) are circular-Markov.

Proof. Let H = C∗Mc or (Mr +C). Let xi ∈ Hpi−1,pi for 1 ≤ i < n, xn ∈ Hpn−1p0 ,
yi ∈ Hqi−1,qi for 1 ≤ i < m, ym ∈ Hqm−1q0 and p ∈ A∗

k and s ∈ A+
k . Since

Prime(Ak)∗Lc and Lr⊔Prime(Ak) are circular codes, the equalities sx2x3⋯xnp =
y1y2⋯ym and x1 = ps imply n = m, p = ε, xi = yi for 1 ≤ i ≤ n. This implies
pi = qi for 1 ≤ i ≤ n since pi is the target of the path xi and qi is the target of
the path yi. The matrices C∗Mc and (Mr +C) are thus circular-Markov. Since
Mc +C is circular-Markov C is also circular-Markov.

Let H be a circular-Markov matrix whose coefficients are sets of words over
Ak. Then for any positive integer n we have (H)n = Hn and (H)∗ = H∗ =
1/(1 −H) (see for instance [6]).

The following proposition is a consequence of Keller’s formula of the zeta for
circular Markov-codes [11].
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Proposition 5. Let G = (V,E,A, k) be a k-graph defining a shift X. The
multivariate zeta function of X has the following expression.

Z(X) = 1

det(I − π(C∗Mc))det(I − π(Mr +C)) .

Proof. From Proposition 3 we get that the multivariate zeta function of X is
Z(X) = Z(XC∗Mc)Z(XMr+C). Since C∗Mc and (Mr + C) are circular-Markov
matrices we get from [11, Theorem 1]

Z(XC∗Mc) =
1

det(I − π(C∗Mc))
, Z(XC+Mr) =

1

det(I − π(Mr +C)) ,

hence the proposition.

Example 6. Let X =X(k,n) be the shift of k-nested sequences over Ak of size n.
Hence D1 the set of Dyck paths going from 1 to 1 in the unique-vertex graph
defining XAk

. We get

C = [C1],
Mr = [Mr,11] = [∑

e∈A

e(2)D1e
(3)D1⋯D1e

(k) +⋯ + e(k−1)D1e
(k) + e(k)],

Mc = [Mc,11] = [∑
e∈A

e(1) + e(1)D1e
(2) +⋯ + e(1)D1e

(2)D1e
(3)⋯D1e

(k−1)],

with

C1 = ∑
e∈A

e(1)D1e
(2)D1e

(3)⋯D1e
(k),

D1 = ∑
e∈A

e(1)D1e
(2)D1e

(3)⋯D1e
(k)D1 + ε

Hence

Z(X) = (C∗
1Mc)∗(Mr +C1)∗.

We get

ζX(z) = 1

(1 −D1(z)Mc(z))(1 − (Mr(z) +C1(z)))

= 1

(1 − nzD1(z)+1−D1(z)
D1(z)(1−zD1(z))

) (1 − z (n+1)−D1(z)
(1−zD1(z))

)
,

where D1(z) is the N-algebraic series defined by the above equations.
Let ρ be the radius of convergence of ζX(z). We have h(P(X)) = log(1/ρ).

It can be shown that h(P(X)) = h(B(X)) and the entropy of X is thus equal
to log(1/ρ). The positive real value ρ satisfies D1(ρ)Mc(ρ) = 1 implying ρ =
1/(n+ 1). It follows that the entropy of X is log(n+ 1) which is independent of
k. We recover the entropy of the Markov-Dyck shift with n types of parentheses
(see [13]).
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Example 7. Let X = XG be the shift defined by the 3-graph G of Figure 2. With
the above notation we get

C1 = e(1)D1e
(2)D1e

(3) + f (1)D2f
(2)D2f

(3)

C2 = g(1)D1g
(2)D1g

(3)

D1 = 1 + e(1)D1e
(2)D1e

(3)D1 + f (1)D2f
(2)D2f

(3)D1

D2 = 1 + g(1)D1g
(2)D1g

(3)D2

Mc = [e
(1) + e(1)D1e

(2) f (1) + f (1)D2f
(2)

g(1) + g(1)D1g
(2) 0

]

Mr = [ e
(2)D1e

(3) + e(3) g(2)D1g
(3) + g(3)

f (2)D2f
(3) + f (3) 0

]

Thus ζX(z) = det(I −DMc(z))−1 det(I − (Mr +C)(z))−1, where

det(I −DMc(z)) = (1 −A1(1 +A1) −A1A2(1 +A2)(1 +A1))(z),
det(I − (Mr +C)(z)) = (1 − z(1 +A1 +A2

1 +A2
2)(z))(1 − zA2

1(z))
− z2((1 +A1)(1 +A2)(z)),

and A1(z) = zD1(z), A2(z) = zD2(z). Since D1(z) and D2(z) are defined by
the system of equations

D1(z) = 1 + z3D1(z)(D2
1(z) +D2

2(z))
D2(z) = 1 + z3D2

1(z)D2(z)

There is indeed a unique pair of series D1(z),D2(z) with nonnegative integer
coefficients solution of the above system (see for instance [9] or [5]).

6. Shifts defined by v-graphs

In this section we generalize the notion of k-graphs by allowing different
symbols from the alphabet to have different arities of the associated nesting
constraints. We define v-graphs where v is a finite vector giving the number of
symbols with any given arity of nesting constraint. We define shifts presented
by these structures.

Let I = [m] where m is a positive integer. Let Gi = (V,Ei,Ai, ki) be ki-graphs
on the same set of vertices V for i ∈ I with ∣Ai∣ = ni. Note that the notation
differs slightly from the previous sections. Ai here corresponds to what was
typically called A before (not Ak). We set G = (V,E,A,v) where E = ⊔i∈IEi,
A = ⊔i∈IAi, v = ((ki, ni))i∈I .

We consider the free monoid S generated by E with a zero 0 quotiented by
the following relations
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• For e ∈ Ai, f ∈ Ai′ and e ≠ f , e(j)f (j
′
) = 0 if j < ki and j′ ≠ 1.

• For e ∈ Ai, e
(j)e(j

′
) = 0 if j < ki, j′ ≠ j + 1 and j′ ≠ 1.

• For e ∈ Ai, e
(1)e(2)⋯e(ki) = 1.

In the last relation 1 stands for the unity of the monoid.
A forbidden finite path of G is a finite path which is zero in S. A Dyck path

of G is a finite path which reduces to 1. The set of bi-infinite paths in G avoiding
finite forbidden paths as factors is a shift denoted by XG and is called a v-graph
shift. The multigraph G defines XG . If v = ((ki, ni))i∈I , we denote by Xv the
v-graph shift defined by a graph having a unique state 1 and edges e(j) from 1
to 1 for each j ∈ [ki] and each e ∈ Ai.

The computation of zeta functions of v-graph shifts is similar to the com-
putation of zeta functions of k-graph shifts. The topological entropy of Xv is
log(N + 1) where N = ∑i∈I ni.

Example 8. The shift Xv with v = ((2,1), (3,1)) is defined by the graph G of Fig-
ure 3. For instance if we denote A1 = {e} and A2 = {f} then e(1)f (1)f (2)f (3)e(2)

is Dyck path of Xv.

1
e(2)

e(1)

f (3)

f (2)

f (1)

Figure 3: The v-graph shift graph Xv where v = ((2,1), (3,1)).

7. Conclusion

We have defined a class of shifts of sequences which satisfies nesting con-
straints of arity greater than 2 and is close to the class of Markov-Dyck shifts.
Since these shifts are conjugate to sofic-Dyck shifts they may also be charac-
terized by a forbidden regular set of nested words with a nesting arity equal
to 2. We have shown how to compute the zeta function for this class of shifts
avoiding the increase of complexity due to their sofic-Dyck nature.
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