H. Bannai, I. , T. Inenaga, S. Nakashima, Y. Takeda et al., A new characterization of maximal repetitions by Lyndon trees, 2014.
DOI : 10.1137/1.9781611973730.38

F. Blanchet-sadri, M. Bodnar, J. Nikkel, J. D. Quigley, and X. Zhang, Squares and primitivity in partial words, Discrete Applied Mathematics, vol.185, pp.26-37, 2015.
DOI : 10.1016/j.dam.2014.12.003

F. Blanchet-sadri, I. Choi, and R. Mercas, Avoiding large squares in partial words, Theoretical Computer Science, vol.412, issue.29, pp.3752-3758, 2011.
DOI : 10.1016/j.tcs.2011.04.009

URL : https://doi.org/10.1016/j.tcs.2011.04.009

F. Blanchet-sadri, Y. Jiao, J. M. Machacek, J. D. Quigley, and X. Zhang, Squares in partial words, Theoretical Computer Science, vol.530, pp.42-57, 2014.
DOI : 10.1016/j.tcs.2014.02.023

F. Blanchet-sadri, J. I. Kim, R. Mercas, W. Severa, S. Simmons et al., Abelian squarefree partial words, pp.94-105
DOI : 10.1007/978-3-642-13089-2_8

F. Blanchet-sadri and R. Mercas, A note on the number of squares in a partial word with one hole, RAIRO - Theoretical Informatics and Applications, vol.380, issue.4, pp.767-774, 2009.
DOI : 10.1016/j.tcs.2007.03.025

F. Blanchet-sadri and R. Mercas, The three-squares lemma for partial words with one hole, Theoretical Computer Science, vol.428, pp.1-9, 2012.
DOI : 10.1016/j.tcs.2012.01.012

URL : https://doi.org/10.1016/j.tcs.2012.01.012

F. Blanchet-sadri, R. Mercas, and G. Scott, Counting distinct squares in partial words, Acta Cybern, vol.19, issue.2, pp.465-477, 2009.
DOI : 10.1016/j.tcs.2014.02.023

F. Blanchet-sadri, J. Nikkel, J. D. Quigley, and X. Zhang, Computing Primitively-Rooted Squares and Runs in Partial Words, Combinatorial Algorithms -25th International Workshop, pp.86-97978, 2014.
DOI : 10.1007/978-3-319-19315-1_8

M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu et al., A note on the longest common compatible prefix problem for partial words, Journal of Discrete Algorithms, vol.34, pp.49-53, 2015.
DOI : 10.1016/j.jda.2015.05.003

M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter et al., Extracting powers and periods in a word from its runs structure, Theoretical Computer Science, vol.521, pp.29-41, 2014.
DOI : 10.1016/j.tcs.2013.11.018

M. Crochemore and W. Rytter, Squares, cubes, and time-space efficient string searching, Algorithmica, vol.67, issue.3, pp.405-425, 1995.
DOI : 10.1145/116825.116845

URL : https://hal.archives-ouvertes.fr/hal-00619583

A. Dediu, H. Fernau, and C. Martín-vide, Language and Automata Theory and Applications, 4th International Conference Proceedings, Lecture Notes in Computer Science, pp.978-981, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01313585

A. Deza, F. Franek, and A. Thierry, How many double squares can a string contain?, Discrete Applied Mathematics, vol.180, pp.52-69, 2015.
DOI : 10.1016/j.dam.2014.08.016

URL : https://hal.archives-ouvertes.fr/hal-01723187

A. Diaconu, F. Manea, and C. Tiseanu, Combinatorial Queries and Updates on Partial Words, 17th International Symposium, pp.96-108, 2009.
DOI : 10.1007/3-540-44683-4_57

A. S. Fraenkel and J. Simpson, How Many Squares Can a String Contain?, Journal of Combinatorial Theory, Series A, vol.82, issue.1, pp.112-120, 1997.
DOI : 10.1006/jcta.1997.2843

URL : https://doi.org/10.1006/jcta.1997.2843

D. Gusfield and J. Stoye, Linear time algorithms for finding and representing all the tandem repeats in a string, Journal of Computer and System Sciences, vol.69, issue.4, pp.525-546, 2004.
DOI : 10.1016/j.jcss.2004.03.004

URL : https://doi.org/10.1016/j.jcss.2004.03.004

V. Halava, T. Harju, and T. Kärki, Square-free partial words, Information Processing Letters, vol.108, issue.5, pp.290-292, 2008.
DOI : 10.1016/j.ipl.2008.06.001

URL : http://www.tucs.fi/publications/attachment.php?fname=TR893.pdf

V. Halava, T. Harju, and T. Kärki, On the number of squares in partial words. RAIRO -Theor, Inf. and Applic, vol.44, issue.1, pp.125-138, 2010.

L. Ilie, A simple proof that a word of length n has at most <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:math> distinct squares, Journal of Combinatorial Theory, Series A, vol.112, issue.1, pp.163-164, 2005.
DOI : 10.1016/j.jcta.2005.01.006

T. Kociumaka, Minimal suffix and rotation of a substring in optimal time, 27th Annual Symposium on Combinatorial Pattern Matching:12. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, pp.1-28, 2016.

R. M. Kolpakov and G. Kucherov, Finding maximal repetitions in a word in linear time, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), pp.596-604, 1999.
DOI : 10.1109/SFFCS.1999.814634

URL : https://hal.archives-ouvertes.fr/inria-00098853

M. G. Main and R. J. Lorentz, An O(n log n) algorithm for finding all repetitions in a string, Journal of Algorithms, vol.5, issue.3, pp.422-432, 1984.
DOI : 10.1016/0196-6774(84)90021-X

F. Manea, R. Mercas, and C. Tiseanu, An algorithmic toolbox for periodic partial words, Discrete Applied Mathematics, vol.179, pp.174-192, 2014.
DOI : 10.1016/j.dam.2014.07.017

F. Manea, C. Tiseanu, and . Dediu, Hard Counting Problems for Partial Words, pp.426-438978
DOI : 10.1007/978-3-642-13089-2_36