H. Bae and A. Biswas, Gevrey regularity for a class of dissipative equations with analytic nonlinearity, Methods and Applications of Analysis, vol.22, issue.4, pp.377-408, 2015.
DOI : 10.4310/MAA.2015.v22.n4.a3

H. Bae, A. Biswas, and E. Tadmor, Analyticity and Decay Estimates of the Navier???Stokes Equations in Critical Besov Spaces, Archive for Rational Mechanics and Analysis, vol.258, issue.10, pp.963-991, 2012.
DOI : 10.1016/j.jfa.2010.02.005

H. Bahouri and J. , Chemin and R. Danchin: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 2011.

F. Charve and R. Danchin, A Global Existence Result for the Compressible Navier???Stokes Equations in the Critical L p Framework, Archive for Rational Mechanics and Analysis, vol.145, issue.1, pp.233-271, 2010.
DOI : 10.4171/RMI/235

URL : https://hal.archives-ouvertes.fr/hal-00693008

Q. Chen, C. Miao, and Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Communications on Pure and Applied Mathematics, vol.74, issue.9, pp.1173-1224, 2010.
DOI : 10.4171/RMI/229

URL : http://arxiv.org/pdf/0907.4540v2.pdf

F. Coquel, D. Diehl, C. Merkle, and C. Rohde, Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows. Numerical Methods for Hyperbolic and Kinetic Problems, IRMA Lect. Math. Theor. Phys, vol.7, pp.239-270, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00112161

R. Danchin, Fourier Analysis Methods for the Compressible Navier-Stokes Equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 2016.

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.18, issue.1, pp.97-133, 2001.
DOI : 10.1016/S0294-1449(00)00056-1

R. Danchin and J. Xu, Optimal Time-decay Estimates for the Compressible Navier???Stokes Equations in the Critical L p Framework, Archive for Rational Mechanics and Analysis, vol.47, issue.1, pp.53-90, 2017.
DOI : 10.1002/cpa.3160470804

URL : https://hal.archives-ouvertes.fr/hal-01310295

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Archive for Rational Mechanics and Analysis, vol.94, issue.2, pp.95-133, 1985.
DOI : 10.1017/S030500410000092X

S. K. Godunov, An interesting class of quasi-linear systems, Dokl. Akad. Nauk SSSR, vol.139, pp.521-523, 1961.

B. Haspot, Existence de solutions fortes pour le syst??me de Korteweg, Annales math??matiques Blaise Pascal, vol.16, issue.2, pp.431-481, 2009.
DOI : 10.5802/ambp.274

B. Haspot, Well-posedness in critical spaces for the system of compressible Navier???Stokes in larger spaces, Journal of Differential Equations, vol.251, issue.8, pp.2262-2295, 2011.
DOI : 10.1016/j.jde.2011.06.013

URL : https://hal.archives-ouvertes.fr/hal-00778802

B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Archive for Rational Mechanics and Analysis, pp.427-460, 2011.

B. Haspot, Global strong solution for the Korteweg system with quantum pressure in dimension $$N\ge 2$$ N ??? 2, Mathematische Annalen, vol.85, issue.12, pp.667-700, 2017.
DOI : 10.1002/zamm.200410211

D. Hoff, Global Solutions of the Navier-Stokes Equations for Multidimensional Compressible Flow with Discontinuous Initial Data, Journal of Differential Equations, vol.120, issue.1, pp.215-254, 1995.
DOI : 10.1006/jdeq.1995.1111

S. Kawashima, Global Existence and Stability of Solutions for Discrete Velocity Models of the Boltzmann Equation, Recent Topics in Nonlinear PDE, pp.59-85, 1983.
DOI : 10.1016/S0304-0208(08)71492-0

P. Lemarié-rieusset, Une remarque sur l'analycité des solutions milds deséquationsdeséquations de Navier- Stokes dans R 3, C. R. Acad. Sci. Paris, Série, vol.1, issue.330, pp.183-186, 2000.

P. Lemarié-rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol.431, 2002.
DOI : 10.1201/9781420035674

. Rohde, Approximation of Solutions of Conservation Laws by Non-Local Regularization and Discretization, 2004.

Z. Tan and Y. Wang, Optimal decay rates of the compressible fluid models of Korteweg type, Zeitschrift f??r angewandte Mathematik und Physik, vol.24, issue.1, pp.256-271, 2011.
DOI : 10.1016/j.aml.2011.04.028