F. Avanzini, Simulation of vocal fold oscillation with a pseudo-one-mass physical model, Speech Communication, vol.50, issue.2, pp.95-108, 2008.
DOI : 10.1016/j.specom.2007.07.002

URL : https://hal.archives-ouvertes.fr/hal-00499193

A. W. Bowman and A. Azzalini, Applied smoothing techniques for data analysis: The kernel approach with S-Plus illustrations, 1997.

E. Cataldo, C. Soize, and R. Sampaio, USING BAYESIAN METHOD FOR UPDATING THE PROBABILITY DENSITY FUNCTION RELATED TO THE TENSION PARAMETER IN A VOICE PRODUCTION MODEL, S481, pp.21-929070482, 2012.
DOI : 10.1016/S0021-9290(12)70482-7

URL : https://hal.archives-ouvertes.fr/hal-00734154

E. Cataldo and C. Soize, Jitter generation in voice signals produced by a two-mass stochastic mechanical model, Biomedical Signal Processing and Control, vol.27, pp.87-95, 2016.
DOI : 10.1016/j.bspc.2016.02.003

URL : https://hal.archives-ouvertes.fr/hal-01279812

E. Cataldo and C. Soize, Voice Signals Produced With Jitter Through a Stochastic One-mass Mechanical Model, Journal of Voice, vol.31, issue.1, pp.111-120, 2017.
DOI : 10.1016/j.jvoice.2016.01.001

URL : https://hal.archives-ouvertes.fr/hal-01276465

L. Cveticanin, Review on Mathematical and Mechanical Models of the Vocal Cord, Journal of Applied Mathematics, vol.114, issue.4, 2012.
DOI : 10.1121/1.2835435

P. H. Dejonckerea, A. Giordano, J. Schoentgen, S. Fraj, L. Bocchid et al., To what degree of voice perturbation are jitter measurements valid? A novel approach with synthesized vowels and visuo-perceptual pattern recognition, Biomedical Signal Processing and Control, vol.7, issue.1, pp.37-42, 2012.
DOI : 10.1016/j.bspc.2011.05.002

B. D. Erath, M. Zañartu, K. C. Stewart, M. W. Plesniak, and S. D. Peterson, A review of lumped-element models of voiced speech, Speech Communication, vol.55, issue.5, pp.55-667, 2013.
DOI : 10.1016/j.specom.2013.02.002

J. Flanagan and L. Landgraf, Self-oscillating source for vocal-tract synthesizers, IEEE Transactions on Audio and Electroacoustics, vol.16, issue.1, pp.16-57, 1968.
DOI : 10.1109/TAU.1968.1161949

H. E. Gunter, Modeling mechanical stresses as a factor in the etiology of benign vocal fold lesions, Journal of Biomechanics, vol.37, issue.7, pp.1119-1124, 2004.
DOI : 10.1016/j.jbiomech.2003.11.007

C. F. Luzan, J. C. Mihaescu, S. M. Khosla, and E. Gutmark, Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx, Journal of Biomechanics, issue.7, pp.48-1248, 2015.

K. Ishizaka and J. Flanagan, Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords, Bell System Technical Journal, vol.51, issue.6, pp.1233-1268, 1972.
DOI : 10.1002/j.1538-7305.1972.tb02651.x

J. J. Jiang, Y. Zhang, J. Maccallum, A. Sprecher, and L. Zhou, Objective Acoustic Analysis of Pathological Voices from Patients with Vocal Nodules and Polyps, Folia Phoniatrica et Logopaedica, vol.61, issue.6, pp.342-349, 2009.
DOI : 10.1159/000252851

P. Krée and C. Soize, Mathematics of Random Phenomena, 1986.
DOI : 10.1007/978-94-009-4770-2

P. K. Mongia and R. K. Sharma, Estimation and Statistical Analysis of Human Voice Parameters to Investigate the Influence of Psychological Stress and to Determine the Vocal Tract Transfer Function of an Individual, Journal of Computer Networks and Communications, vol.65, issue.6, pp.1-17, 2014.
DOI : 10.1016/j.specom.2006.04.003

M. Pradeep and M. Tech, Improving Sound Quality by Bandwidth, International Journal of Scientific & Engineering Research, vol.3, issue.9, pp.1-9, 2012.

D. Talkin, A robust algorithm for pitch tracking (rapt). Speech coding and synthesis, pp.495-518, 1995.

A. Pavo, Glottal wave analysis with pitch synchronous iterative adaptive inverse filtering, Speech Communication, V, vol.1123, pp.109-118, 1992.

B. A. Pickup and S. L. Thomson, Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models, Journal of Biomechanics, vol.42, issue.14, pp.2219-2225, 2009.
DOI : 10.1016/j.jbiomech.2009.06.039

A. P. Pinheiro and G. Kerschen, Vibrational dynamics of vocal folds using nonlinear normal modes, Medical Engineering & Physics, vol.35, issue.8, pp.1079-1088, 2013.
DOI : 10.1016/j.medengphy.2012.11.002

L. Rabiner and R. Schafer, Theory and Application of Digital Signal Processing, IEEE Transactions on Systems, Man, and Cybernetics, vol.8, issue.2, 2011.
DOI : 10.1109/TSMC.1978.4309918

J. Schoengten and R. De-guchteneere, Predictable and random components of jitter, Speech Communication, vol.21, pp.255-272, 1997.

M. Silva, M. M. Vellasco, and E. Cataldo, Evolving Spiking Neural Networks for Recognition of Aged Voices, Journal of Voice, vol.31, issue.1, pp.25-33, 2016.
DOI : 10.1016/j.jvoice.2016.02.019

C. Soize, Uncertainty Quantification -An accelerated Course with Advanced Applications in Computational Engineering, Interdisciplinary Applied Mathematics Series, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01498996

I. R. Titze, Mechanical stress in phonation, Journal of Voice, vol.8, issue.2, pp.99-105, 1994.
DOI : 10.1016/S0892-1997(05)80302-9

D. Wong, M. R. Ito, N. B. Cox, and I. R. Titze, Observation of perturbations in a lumped???element model of the vocal folds with application to some pathological cases, The Journal of the Acoustical Society of America, vol.89, issue.1, pp.383-394, 1991.
DOI : 10.1121/1.400472

Y. Zhang and J. J. Jiang, Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations, Journal of Sound and Vibration, vol.316, issue.1-5, pp.1-5, 2008.
DOI : 10.1016/j.jsv.2008.02.026