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A CLT FOR LINEAR SPECTRAL STATISTICS OF LARGE RANDOM

INFORMATION-PLUS-NOISE MATRICES

MARWA BANNA, JAMAL NAJIM, AND JIANFENG YAO

Abstract. Consider a matrix Yn = σ√
n
Xn + An, where σ > 0 and Xn = (xn

ij) is a N × n random

matrix with i.i.d. real or complex standardized entries and An is a N × n deterministic matrix with
bounded spectral norm. The fluctuations of the linear spectral statistics of the eigenvalues:

Trace f(YnY
∗
n) =

N∑

i=1

f(λi), (λi) eigenvalues of YnY
∗
n,

are shown to be Gaussian, in the case where f is a smooth function of class C3 with bounded support,
and in the regime where both dimensions of matrix Yn go to infinity at the same pace.

The CLT is expressed in terms of vanishing Lévy-Prohorov distance between the linear statistics’
distribution and a centered Gaussian probability distribution, the variance of which depends upon N
and n and may not converge. The proof combines ideas from Bai and Silverstein [3], Hachem et al.
[18] and Najim and Yao [32].

1. Introduction

The model. Consider a N × n random matrix Yn = (ynij) given by:

Yn =
σ√
n
Xn +An ,

where σ > 0 and Xn is a N × n matrix whose entries (xn
ij ; i, j, n) are real or complex, independent and

identically distributed (i.i.d.) with mean 0 and variance 1. Matrix An has the same dimensions and is
deterministic. Matrix Yn is sometimes coined as "Information-plus-noise" type matrix in the literature.

The purpose of this article is to study the fluctuations of linear spectral statistics of the form:

Tr f(YnY
∗
n) =

N∑

i=1

f(λi) , (1.1)

where Tr (M) refers to the trace of M, the λi’s are the eigenvalues of YnY
∗
n, and f is a smooth function,

under the regime where the dimensions n and N = N(n) go to infinity at the same pace:

N, n→ ∞ and 0 < lim inf
N

n
≤ lim sup

N

n
< ∞ . (1.2)

This condition will simply be referred to as N,n→ ∞ in the sequel.
Large information-plus-noise matrices, and more generally large non-centered random matrices, have

recently attracted a lot of attention. Under mild conditions over the moments of the entries of Xn and the
spectral norm of matrix An the asymptotic behavior of the empirical distribution of YnY

∗
n’s eigenvalues

(also called spectral distribution of YnY
∗
n) defined as:

FYnY∗
n(B) =

#{i, λi ∈ B}
N

for B a Borel set in R , (1.3)

has been studied by Girko [16, chapter 7], Dozier and Silverstein [13], Hachem et al. [21], etc. Following
these results, various properties of the asymptotic spectrum were studied, see for instance [12, 29, 1, 8].

From an applied point of view, information-plus-noise matrices are versatile models in many contexts,
from Rice channels in wireless communication to noisy data and small rank perturbations [31, 15, 19, 20].
From a theoretical standpoint, hermitian non-centered models of the type

(
σ√
n
Xn − zIN

)(
σ√
n
Xn − zIN

)∗
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are a key device to understand the spectrum of large N × N non-hermitian matrices σ√
n
Xn via Girko’s

hermitization trick.
While fluctuations of functionals of large random covariance matrices have attracted a lot of attention,

see for instance [26, 25, 7, 17, 3, 22, 18, 33, 5, 11, 30, 34, 32] and the references therein, there seems to be
very few results (in fact one to the authors’ knowledge) for large information-plus-noise type matrices. In

the specific case of a non-centered matrix with a separable variance profile, i.e. Σn = 1√
n
D

1/2
n XnD̃

1/2
n +An,

with Dn, D̃n deterministic diagonal matrices, the fluctuations have been described for the specific functional
(known as the mutual information in wireless communications)

log det (In + ΣnΣ
∗
n) =

N∑

i=1

log (1 + λi(ΣnΣ
∗
n)) , (1.4)

first at a physical level of rigor by Moustakas et al. [31] for complex Gaussian entries, then for general
entries by Hachem et al. in [18]. This shortage of results might be related to the fact that the addition of
a deterministic component An to a large random matrix σ√

n
Xn substantially increases the complexity of

the computations needed to establish the CLT. Equation (3.20) in [18] illustrates this fact.

Fluctuations and representation of linear spectral statistics. We now present the main object of
interest:

Ln(f) =

N∑

i=1

f(λi)− E

N∑

i=1

f(λi)

as N,n → ∞. In the case where f is a function of class Ck+1 with compact support, denote by Φk(f) :

C
+ → C its so-called almost analytic extension defined as Φk(f)(x + iy) =

∑k
ℓ=0

(iy)ℓ

ℓ!
f (ℓ)(x)χ(y) , where

χ : R → R
+ is a smooth, compactly supported function with value 1 in the neighbourhood of 0 and

∂̄ = 1
2
(∂x + i∂y). Helffer-Sjöstrand’s formula yields that:

N∑

i=1

f(λi)−
N∑

i=1

E f(λi) =
2

π
Re

∫

C+

∂̄Φk(f)(z) {TrQn(z)−TrEQn(z)} ℓ(dz) (1.5)

where Qn(z) = (YnY
∗
n − zIN)−1 stands for the resolvent of YnY

∗
n and ℓ(dz) = dx dy for the Lebesgue

measure over C
+. It is clear from (1.5) that in order to describe the fluctuations of Ln(f), a natural

approach is to study the fluctuations of the process (Tr(Qn(z)− EQn(z)) ; z ∈ Γ) where Γ ⊂ C is some
given compact set. In order to proceed, we define

Mn(z) := TrQn(z)− ETrQn(z) (1.6)

and handle this term by martingale techniques, a strategy successfully applied in [3, 33, 22, 27, 18, 32, 5].

Entries with non-null fourth cumulant and a family of Gaussian random variables. It is well
known since the paper by Khorunzhiy et al. [28] that if the fourth moment of the entries differs from its
Gaussian counterpart, then other terms may appear in the variance of the trace of the resolvent, one being
proportional to the fourth cumulant κ of the entries:

κ = E |xn
11|4 − |ϑ|2 − 2 where ϑ = E(xn

11)
2 . (1.7)

The same phenomenon will occur here but the convergence of these additional terms may fail to happen

under usual assumptions such as the convergence of the spectral distribution FAnA∗
n of matrix AnA

∗
n to a

probability measure as N,n→ ∞.
As we shall see later, the reason for this lack of convergence lies in the fact that these additional terms

not only depend on the spectrum of AnA
∗
n, but also on the spectrum of AnA

T
n and on AnA

∗
n’s eigenvectors.

In order to avoid cumbersome assumptions enforcing the joint convergence of these quantities, we shall
express our fluctuation results in the same way as in [32] and prove that the distribution of the linear
statistics Ln(f) becomes close to a family of centered Gaussian distributions, whose variance might not
converge. Namely, we shall establish that there exists a Gaussian random variable N(0,Θn(f)) such that:

dLP (Ln(f),N(0,Θn(f))) −−−−−→
N,n→∞

0 , (1.8)

where dLP denotes the Lévy-Prohorov distance (and in particular metrizes the convergence of laws).
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A simple expression for the variance (for real An and real or circular xij’s). We first introduce
some key quantities whose properties will be recalled and studied in Section 2. The following equations
admit a unique solution (δn, δ̃n) in the class of Stieltjes transforms of nonnegative measures with supports

Sn and S̃n in R
+ (see for instance [21, 18], see also [16, Section 7.11]).





δn(z) = σ

n
Tr
(
−z(1 + σδ̃n(z))IN +

AnA∗
n

1+σδn(z)

)−1

δ̃n(z) = σ
n
Tr
(
−z(1 + σδn(z))In +

A∗
nAn

1+σδ̃n(z)

)−1 , z ∈ C
+ . (1.9)

Associated to δn and δ̃n are the N ×N and n× n matrices:



Tn(z) :=

(
−z(1 + σδ̃n(z))IN +

AnA∗
n

1+σδn(z)

)−1

= [tij(z)]

T̃n(z) :=
(
−z(1 + σδn(z))In +

A∗
nAn

1+σδ̃n(z)

)−1

= [t̃ij(z)]
, (1.10)

and the quantity

sn(z) := z(1 + σδn(z))(1 + σδ̃n(z)) . (1.11)

With these quantities at hand, the variance Θn(f) which appears in (1.8) takes a remarkably simple form,
to be compared with [3, Eq. (1.17)] and [32, Eq. (4.7)], if matrix An is real and the xij ’s are real (ϑ = 1)
or circular1 (ϑ = 0).

Θn(f) =
1 + ϑ

2π2

∫

S2
n

f ′(x)f ′(y) ln

∣∣∣∣∣
sn(x)− sn(y)

sn(x)− sn(y)

∣∣∣∣∣ dxdy

+
σ4κ

π2n2

N∑

i=1

n∑

j=1

(∫

Sn

f ′(x)Im
(
x tii(x)t̃jj(x)

)
dx

)2

. (1.12)

The quantities sn(x), tii(x), t̃jj(x) are the limits of the corresponding quantities sn, tii, t̃jj , evaluated at
z ∈ C

+, as z → x ∈ R. In the case where matrix An is not real or ϑ /∈ {0, 1}, then the term proportional
to ϑ above is substantially more complicated.

While the heart of the computations needed to establish the CLT is a (substantial) variation of those
performed in [18], the identification of the variance is an important contribution of this article. In particular
one may notice that the quantity sn defined in (1.11) is central to express the variance in (1.12) while it
does not appear in the formula of the variance of the mutual information (1.4).

Organization of the paper. The main results of the paper are introduced in Section 2. Central Limit
Theorems are stated in Theorem 1 for the trace of the resolvent and in Theorem 2 for general linear
statistics. Simplified expressions for the variance are provided in Theorem 3. Sections 3 and 4 are devoted
to the proofs. Useful estimates are recalled in Appendix A.

2. Statement of the Central Limit Theorem

2.1. Notations and assumptions. Throughout the paper, i =
√
−1, R

+ = {x ∈ R : x ≥ 0} and

C
+ = {z ∈ C : Im z > 0}. Denote by

a.s.−−→ (resp.
P−→,

D−→) the almost sure convergence (resp. in
probability, in distribution). Denote by diag(ai; 1 ≤ i ≤ k) the k × k diagonal matrix whose diagonal
entries are the ai’s. Element (i, j) of the matrix M will be denoted by mij or [M]ij .

For a matrix M, denote by MT its transpose, M∗ its Hermitian adjoint, M its entry-wise conjugate,
det(M) its determinant and vdiag(M) the vector whose entries are the diagonal elements (mii). When
dealing with vectors and matrices, ‖.‖ refers to the Euclidean and the spectral norm respectively.

We shall denote by K a generic constant that does not depend on N,n but whose value may change
from line to line. Function 1A denotes the indicator function of the set A.

Notations un = O(vn) and un = o(vn) stand for the usual big O and little o notations when N,n→ ∞.
We might also use Oz or Oε to underline the dependence of the constant in O on z or ε. If Xn and Yn are
sequences of random variables, Xn = oP (Yn) stands for the fact that there exists a sequence Zn such as
Xn = ZnYn and Zn converges to zero in probability.

Denote by dLP (P,Q) the Lévy-Prohorov distance between two probability measures P,Q defined as:

dLP (P,Q) = inf{ε > 0 : P (A) ≤ Q(Aε) + ε for all Borel sets A ⊂ R
d},

where Aε is an ε-blow up of A (see [6, Chapter 1, Section 6] for more details). If X and Y are random
variables with distributions L(X) and L(Y ), we simply write (with a slight abuse of notations) dLP (X,Y )

1By circular, we mean that xij has decorrelated real and imaginary part, each with the same variance 1/2, i.e. E|xij|
2 =

1 and ϑ = E(xij)
2 = 0.
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instead of dLP (L(X),L(Y )). It is well-known that the Lévy-Prohorov distance metrizes the convergence
in distribution (see for instance [14, Chapter 11]).

The set Ck
c (R) denotes the class of functions with k continuous derivatives and compact support.

We now state the main assumptions of the article. Recall the fact that N = N(n) and the asymptotic
regime (1.2) where N,n→ ∞ and denote by

cn :=
N

n
, c− := lim inf

N

n
and c+ := lim sup

N

n
.

Assumption 1. The random variables (xn
ij ; 1 ≤ i ≤ N(n), 1 ≤ j ≤ n, n ≥ 1) are real or complex,

independent and identically distributed (i.i.d.). They satisfy

Exn
ij = 0 , E|xn

ij |2 = 1 and E|xn
ij |16 < ∞ .

Remark 2.1. The 16th moment assumption above could be relaxed to an optimal 4th moment assumption
as in [3, 32], with extra work involving the improvement of some estimates from [23]. We do not pursue in
this direction here.

Associated to these moments are the quantities introduced in (1.7). We mention two important special
cases: The case where ϑ = 1 corresponding to real xij ’s and the case where ϑ = 0, corresponding to
complex xij ’s with decorrelated real and imaginary part of equal variance.

Assumption 2. The family of deterministic N × n complex matrices (An) is bounded for the spectral
norm:

amax = sup
n≥1

‖An‖ <∞ .

2.2. Resolvent, canonical equations and deterministic equivalents. Denote by Qn(z) and Q̃n(z)
the resolvents of matrices YnY

∗
n and Y∗

nYn:

Qn(z) = (YnY
∗
n − zIN )

−1
, Q̃n(z) = (Y∗

nYn − zIn)
−1

. (2.1)

Their normalized traces 1
N
TrQn(z) and 1

n
Tr Q̃n(z) are respectively the Stieltjes transforms of the empirical

distribution of YnY
∗
n’s eigenvalues and of Y∗

nYn’s eigenvalues.
Recall the definition of the Stieltjes transforms δn and δ̃n as solutions of the canonical equations (1.9)

and those of matrices Tn and T̃n:





δn(z) = σ

n
Tr
(
−z(1 + σδ̃n(z))IN +

AnA∗
n

1+σδn(z)

)−1

= σ
n
TrTn(z)

δ̃n(z) = σ
n
Tr
(
−z(1 + σδn(z))In +

A∗
nAn

1+σδ̃n(z)

)−1

= σ
n
Tr T̃n(z)

, z ∈ C
+ .

The measures associated to δn and δ̃n have respective total masses given by

lim
y→∞

−iy δn(iy) =
N

n
σ and lim

y→∞
−iy δ̃n(iy) = σ .

Matrix Tn(z) defined in (1.10) is a deterministic equivalent of the resolvent Qn in the sense that for
z ∈ C\R+:

1

N
Tr(Qn(z)− Tn(z))

a.s.−−−−−→
N,n→∞

0 and u∗
nQnvn − u∗

nTnvn
a.s.−−−−−→

N,n→∞
0 ,

where un and vn are deterministic N × 1 vectors with uniformly bounded euclidian norms (in n), see for

instance [13, 23]. A symmetric result holds for Q̃n and T̃n.

We will often drop the subscript n and when dealing with δn, δ̃n, Tn and T̃n, we may emphasize the
z-dependence by writing δz, δ̃z, Tz and T̃z instead.

Remark 2.2. In the sequel, we will handle Tz, Tz, T
T

z and T∗
z . Beware that these quantities are a priori

different. Definition (1.10) yields

TT

z =

(
−z
(
1 + σδ̃z

)
IN +

ĀĀ∗

1 + σδz

)−1

hence the identities T∗
z = Tz̄ and Tz = TT

z̄ .
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2.3. Expression of the variance and statement of the main results. In order to express the variance,
we need to introduce a number of auxiliary quantities. Let

ν(z1, z2) =
σ2

n

TrTz1AA∗Tz2

(1 + σδz1)(1 + σδz2)
, γ(z1, z2) =

σ2

n
TrTz1Tz2 , γ̃(z1, z2) =

σ2

n
Tr T̃z1 T̃z2 . (2.2)

The following quantity will be instrumental in the sequel.

∆n(z1, z2) = (1− ν)2 − z1z2 γ γ̃ . (2.3)

Consider now

γ†(z1, z2) =
σ2

n
TrTz1T

T

z2 ,

γ̃†(z1, z2) =
σ2

n
Tr T̃z1 T̃

T

z2 ,

ν†(z1, z2) =
σ2

n

TrTT

z2 ĀA∗Tz1

(1 + σδz1)(1 + σδz2)
,

ν̃†(z1, z2) =
σ2

n

TrTz2AATTT

z1

(1 + σδz1)(1 + σδz2)
.

(2.4)

and the following counterpart to ∆n

∆ϑ
n(z1, z2) =

(
1− ϑν†

)(
1− ϑ̄ν̃†

)
− |ϑ|2 z1z2 γ†γ̃† . (2.5)

Proposition 2.3 (Properties of sn, ∆n and ∆ϑ
n). The following properties hold:

(1) Function sn : C+ → C
+ is analytic and if z1, z2 ∈ C

+ and z1 6= z2 then sn(z1) 6= sn(z2).
(2) Function ∆n : C+ × C

+ → C never vanishes and the following identity holds:

∆n(z1, z2) =
z1 − z2

sn(z1)− sn(z2)
. (2.6)

(3) Function ∆ϑ
n : C+ × C

+ → C never vanishes.

Proposition 2.3 follows from Proposition 3.1 below.

Remark 2.4. Formula (2.6) is a non-trivial representation of ∆n which seems to first appear here (to the
authors’ knowledge). It plays a key role in this paper (a) at a technical level to establish stability conditions
when proving the CLT (see proof of Lemma 3.10-(ii)) and (b) to obtain important formulas for the variance
(see (1.12) and (2.7)). The absence of such a representation for ∆ϑ

n prevents us from obtaining a good
representation formula for Θ2,n(κ, f, g) (see Theorem 3 and Remark 2.7).

Remark 2.5 (Simplifications). Simplifications may occur depending on the values of A and ϑ:

(1) If matrix A has real entries, then TT

z = Tz , γ = γ†, γ̃ = γ̃†. Moreover

ν†(z1, z2) = ν̃†(z1, z2) =
σ2

n

TrTz2AATTz1

(1 + σδz1)(1 + σδz2)
.

(2) In the case where ϑ = 1 (real entries (xij)) and A has real entries then ∆n = ∆ϑ
n .

(3) In the case where ϑ = 0 then ∆ϑ
n = 1.

We are now in position to introduce the covariance function. Denote by Θn the quantity:

Θn(z1, z2) := Θ0,n(z1, z2) + Θ1,n(ϑ, z1, z2) + Θ2,n(κ, z1, z2) , z1, z2 ∈ C
+ (2.7)

where

Θ0,n(z1, z2) := − ∂

∂z2

(
1

∆n

∂∆n

∂z1

)
=

s′n(z1)s
′
n(z2)

(sn(z1)− sn(z2))2
− 1

(z1 − z2)2
, (2.8)

Θ1,n(ϑ, z1, z2) := − ∂

∂z2

(
1

∆ϑ
n

∂∆ϑ
n

∂z1

)
, (2.9)

Θ2,n(κ, z1, z2) := κ
∂2

∂z1∂z2

{
σ4z1z2
n2

N∑

i=1

tii(z1)tii(z2)

n∑

j=1

t̃jj(z1)t̃jj(z2)

}
. (2.10)

Consider the following subsets of C, with A > 0

D = [0, A] + i[0, 1] ,
D+ = [0, A] + i(0, 1] ,

D± = {z ∈ D+} ∪ {z̄ ∈ D+} ,
Dε = [0, A] + i[ε, 1] , (ε > 0) .

(2.11)

We first study the Gaussian fluctuations for the trace of the resolvent.

Theorem 1 (CLT for the trace of the resolvent). Recall the definition of Mn in (1.6) and let Assumptions
1 and 2 hold. Then for every ε > 0,
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(1) There exists z0 ∈ C
+ such that

sup
n≥1

E|Mn(z0)|2 <∞ and sup
z1,z2∈Dε,n≥1

E|Mn(z1)−Mn(z2)|2
|z1 − z2|2

< ∞ .

In particular, the process (Mn(z), z ∈ Dε) is tight.
(2) There exists a sequence (Gn(z), z ∈ D±) of centered Gaussian processes such that for any z1, z2 ∈

D±:

cov(Gn(z1), Gn(z2)) = Θn(z1, z2) and cov(Gn(z1), Gn(z2)) = cov(Gn(z1), Gn(z2)) ,

where Θn is defined in (2.7). Moreover, (Gn(z), z ∈ Dε) is tight.
(3) For any continuous and bounded functional F from C(Dε;C) to C, EF (Mn)−EF (Gn) −−−−−→

N,n→∞
0 .

Theorem 1 is an extension of Bai and Silverstein’s master lemma [3, Lemma 1.1] to the non-centered
case. The proof2 is postponed to Section 3.

Having the CLT for the trace of the resolvent at hand, we can now extend it to non-analytic functions
via Helffer-Sjöstrand’s formula (1.5).

Theorem 2 (CLT for general linear statistics). Let Assumptions 1 and 2 hold. Let f1, . . . , fk ∈ C3
c (R)

and let Ln(f) = (Ln(f1), . . . , Ln(fk)) with

Ln(f) = Tr f(YY∗)− ETr f(YY∗) , f ∈ {f1, · · · , fk} .
Then there exists an R

k-valued sequence of centered Gaussian vectors

Zn(f) = (Zn(f1), . . . , Zn(fk)) (2.12)

with covariance given by

Cov (Zn(f), Zn(g)) =
2

π2
Re

∫

(C+)2
∂̄Φ2(f)(z1)∂̄Φ2(g)(z2)Θn(z1, z̄2)ℓ(dz1)ℓ(dz2)

+
2

π2
Re

∫

(C+)2
∂̄Φ2(f)(z2)∂̄Φ2(g)(z1)Θn(z1, z2)ℓ(dz1)ℓ(dz2) ,

for f, g ∈ {f1, . . . , fk}. Moreover, the sequence (Zn(f), n ≥ 1) is tight and

dLP (Ln(f), Zn(f)) −−−−−→
N,n→∞

0 ,

or equivalently for every continuous bounded function F : Rk → C,

EF
(
Ln(f)

)
− EF

(
Zn(f)

)
−−−−−→
N,n→∞

0 .

Proof of Theorem 2 is skipped as it closely follows the proof of [32, Theorem 2]. It relies on [32, Lemma
6.3] and on the following estimates of the variance

VarTrQn(z) = O
(
|Imz|−4) and VarTrGn(z) = O

(
|Imz|−4) .

which is a variation of [32, Proposition 6.4].
Due to the decomposition of Θn(z1, z2) in (2.7), the covariance Cov (Zn(f), Zn(g)) can be split into

three terms
Cov (Zn(f), Zn(g)) := Θ0,n(f, g) + Θ1,n(ϑ, f, g) + Θ2,n(κ, f, g)

where (we drop the dependence in ϑ, κ), for i = 0, 1, 2,

Θi,n(f, g) =
2

π2
Re

∫

(C+)2
∂̄Φ2(f)(z1)∂̄Φ2(g)(z2)Θi,n(z1, z̄2)ℓ(dz1)ℓ(dz2)

+
2

π2
Re

∫

(C+)2
∂̄Φ2(f)(z2)∂̄Φ2(g)(z1)Θi,n(z1, z2)ℓ(dz1)ℓ(dz2) .

In order to provide simplified formulas, we evaluate various quantities defined on C
+ along the real axis.

Proposition 2.6 (cf. Theorem 2.1 in [12]). Let x ∈ R \ {0}, then the following limits exist

sn(x) := lim
ε↓0

sn(x+ iε) , tii(x) := lim
ε↓0

tii(x+ iε) , t̃jj(x) := lim
ε↓0

t̃jj(x+ iε) .

Recall that Sn denotes the support of the measure associated to the Stieltjes transform δn(z). Alterna-
tively, Sn is the support of the probability distribution Pn associated to the Stieltjes transform N−1TrTn(z).

We can now express simplified formulas.

2Proofs of the tightness of the processes (Mn(z), z ∈ Dε) and (Gn(z), z ∈ Dε) are left to the reader as the arguments
are standard. For the latter (tightness of (Gn)), a meta-model argument can be used, see [32, Section 5.2.2].



FLUCTUATIONS FOR FUNCTIONALS OF LARGE RANDOM MATRICES 7

Theorem 3 (Alternative expression for the covariance formula). Let Assumptions 1 and 2 hold and
f, g ∈ C3

c (R). Then

Θ0,n(f, g) =
1

2π2

∫

S2
n

f ′(x)g′(y) ln

∣∣∣∣∣
sn(x)− sn(y)

sn(x)− sn(y)

∣∣∣∣∣ dxdy =
1

2π2

∫

S2
n

f ′(x)g′(y) ln

∣∣∣∣
∆n(x, y)

∆n(x, y)

∣∣∣∣ dxdy ,

where ∆n(x, y) := limε↓0 ∆n(x+ iε, y + iε) and ∆n(x, y) := limε↓0 ∆n(x+ iε, y − iε), and

Θ2,n(κ, f, g) =
σ4κ

π2n2

N∑

i=1

n∑

j=1

∫

Sn

f ′(x)Im
(
x tii(x)t̃jj(x)

)
dx

∫

Sn

g′(y)Im
(
y tii(y)t̃jj(y)

)
dy .

Proof of Theorem 3 is postponed to Section 4.

Remark 2.7 (about the term Θ1,n(ϑ, f, g)). We have not succeeded so far to establish the natural formula:

Θ1,n(ϑ, f, g)
?
=

ϑ

2π2

∫

S2
n

f ′(x)g′(y) ln

∣∣∣∣
∆ϑ

n(x, y)

∆ϑ
n(x, y)

∣∣∣∣ dxdy .

We could only prove the following boundary value representation in Proposition 4.2:

Θ1,n(ϑ, f, g) = − 1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f(x)g(y)Θ1,n(ϑ, x±1 iε, y ±2 iε)dxdy ,

where ±1,±2 ∈ {+,−} and ±1±2 is the sign resulting from the product ±11 by ±21.

Remark 2.8 (more simplifications). The following simplifications occur:

(1) If ϑ = 0, then
Θ1,n(ϑ, f, g) |ϑ=0= 0 .

(2) If κ = 0 (Gaussian moments of order 1, 2, 4) then

Θ2,n(κ, f, g) |κ=0= 0 .

(3) For real entries (xij) (corresponding to ϑ = 1) and real matrix A, then

Θ1,n(ϑ, f, g) |ϑ=1 = Θ0,n(f, g) and Cov (Zn(f), Zn(g)) = 2Θ0,n(f, g) + Θ2,n(κ, f, g) .

Remark 2.9 (relaxing the support compactness of test functions). Let the framework of Remark 2.8-(1)
or (3) holds, so that an explicit expression of the variance as provided in Theorem 3 is available. Then
combining Theorem 2 and an argument of spectrum confinement (see for instance [1], [9, Theorem 5.2]),
one can obtain the following fluctuation result: let f ∈ C3(R) (notice that f has no longer a bounded
support) and let h : R → [0, 1] a C∞

c (R) function with value 1 on Sn, then

dLP

(
N∑

i=1

f(λi)−
N∑

i=1

E(fh)(λi) , Zn(f)

)
−−−−−→
N,n→∞

0 ,

where Zn(f) is a Gaussian random variable with variance given by 2Θ0,n(f, f) + Θ2,n(κ, f, f). A similar
extension for a different matrix model is available in [32, Corollary 4.3].

2.4. Remarks concerning the bias. We have provided so far fluctuation results for quantities
∑N

i=1 f(λi)−
E
∑N

i=1 f(λi). Let Pn be the probability distribution associated to the Stieltjes transform 1
N
TrTn(z).

The study of the biases

ETrQn(z)− TrTn(z) and E

N∑

i=1

f(λi)−N

∫

R+

f(λ)Pn(dλ)

is an interesting question, computationally challenging, that we only superficially address hereafter, for the
simple case of complex standard Gaussian entries.

Proposition 2.10. Assume that the random variables (xij , 1 ≤ i ≤ N, 1 ≤ j ≤ n) are i.i.d. complex
standard Gaussian entries, that is xij = 2−1(Uij + iVij) where Uij and Vij are real standard Gaussian
entries. Assume moreover that Assumption 2 holds. Then

ETrQn(z)−TrTn(z) =
1

n
Π1(|z|)Π2

(
1

Im(z)

)
,

where Π1 and Π2 are polynomials with fixed degree independent from n. Denote by k0 the degree of Π2.
Let f ∈ Ck0+1

c (R), then

E

N∑

i=1

f(λi)−N

∫

R+

f(λ)Pn(dλ) = O

(
1

n

)
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The first part of the proposition can be proved as in [15, Theorem 2], [10], [29, Lemma 4] and one can
track down the minimal value of k0 by carefully following these proofs. The second part of the proposition
is a mere application of Helffer-Sjöstrand formula.

Remark 2.11 (relaxing the support compactness of test functions - continued). Combining the previous
proposition and Remark 2.9, one obtains the following fluctuation result for an information-plus-noise
matrix with standard complex Gaussian entries: let f ∈ Ck0+1(R) then

dLP

(
N∑

i=1

f(λi)−N

∫

Sn

f(λ)Pn(dλ) , Zn(f)

)
−−−−−→
N,n→∞

0 ,

where Zn(f) is a centered Gaussian random variable with variance given by Θ0,n(f, f).

3. Proof of Theorem 1: The CLT for the trace of the resolvent

3.1. General properties of sn, ∆n and ∆ϑ
n. Recall the definitions of s, γ, γ̃, ν and ∆ introduced in

(1.11), (2.2)-(2.3). We provide hereafter various important properties from which Proposition 2.3 follows.

Proposition 3.1. Let δ and δ̃ be the Stieltjes transforms solution of (1.9) and recall that

sz = z(1 + σδz)(1 + σδ̃z) , z ∈ C
+ .

(1) Function s : C+ → C
+ is analytic.

(2) Let z, z1, z2 ∈ C
+, then

δz = δ̃z +
σ(1− cn)

z
.

In particular, if sz1 = sz2 then z1 = z2.
(3) Let z1, z2 ∈ C

+ with z1 6= z2, then the following identities hold

γ(z1, z2) = σ
δz1 − δz2
sz1 − sz2

, γ̃(z1, z2) = σ
δ̃z1 − δ̃z2
sz1 − sz2

,

1− ν(z1, z2) =
z1(1 + σδ̃z1)− z2(1 + σδ̃z2)

sz1 − sz2
, ∆(z1, z2) =

z1 − z2
sz1 − sz2

.

(4) Let z ∈ C
+ and A 6= 0 then the following inequalities hold

0 < ν(z, z̄) < 1 , ∆(z, z̄) > 0 , 0 < |z|2γ(z, z̄)γ̃(z, z̄) < 1 . (3.1)

(5) Let z ∈ C
+. If cn ≤ 1 then

γ(z, z̄) <
1

|z| and |δz| ≤
√
cn√
|z|

.

If cn = 1 then γ(z, z̄) = γ̃(z, z̄) and γ̃(z, z̄) ≤ |z|−1.

Recall the definition of ∆ϑ
n in (2.5).

(6) Let z1, z2 ∈ C
+ then

|z1z2γ(z1, z2)γ̃(z1, z2)| < 1 , |∆(z1, z2)| > 0 , |∆ϑ(z1, z2)| > 0 .

Proof. Function s is obviously analytic. The mere definition of δ and δ̃ yields

δz
1 + σδz

=
σ

n
Tr (−sz +AA∗)−1 and

δ̃z

1 + σδ̃z
=
σ

n
Tr (−sz +A∗A)−1 (3.2)

from which we deduce that for all z ∈ C
+, sz does not belong to the spectrum of AA∗. Taking the

conjugate and applying the resolvent identity, we obtain

Im(δz)

|1 + σδz|2
= Im(sz)

σ

n
Tr (−sz +AA∗)−1(−sz +AA∗)−1 ,

that is sz ∈ C
+. Item (1) is proved.

Comparing the spectra of AA∗ and A∗A we obtain

σ

n
Tr (−sz +A∗A)−1 =

σ

n
Tr (−sz +AA∗)−1 − σ

sz
(1− cn) ,

hence using (3.2) we get

δz
1 + σδz

=
δ̃z

1 + σδ̃z
+
σ

sz
(1− cn)
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from which we deduce the desired identity. Applying (3.2) to z = z1 and z = z2 and substracting yields

δz1
1 + σδz1

− δz2
1 + σδz2

= (sz1 − sz2)
σ

n
Tr (−sz1 +AA∗)−1(−sz2 +AA∗)−1 , (3.3)

from which we deduce that sz1 = sz2 implies that δz1 = δz2 . Assume that δz1 = δz2 = δ∗ then

sz1,2 = z1,2(1 + σδz1,2)(1 + σδ̃z1,2) = z1,2(1 + σδ∗)2 − σ2(1− cn)(1 + σδ∗) .

Hence
sz1 − sz2 = (z1 − z2)(1 + σδ∗)2 .

Since z 7→ δ(z) is the Stieltjes transform of a positive measure with support in R
+, so is [−z(1 + σδ)]−1.

In particular, |z(1 + σδ)|−1 ≤ Im(z)−1 and |1 + σδ| ≥ Im(z)/|z|, which guarantees that (1 + σδ∗)2 6= 0.
Necessarily, z1 = z2. Item (2) is proved.

The first formula of item (3) immediatly follows from (3.3). The second formula can be obtained
similarly. We now apply the resolvent identity to δz1 − δz2 and obtain, after simplification

δz1 − δz2 =
σ

n

(
z1(1 + σδ̃z1)− z2(1 + σδ̃z2)

)
TrTz1Tz2 + (δz1 − δz2)

σ2

n

TrTz1AA∗Tz2

(1 + σδz1)(1 + σδz2)
,

=
z1(1 + σδ̃z1)− z2(1 + σδ̃z2)

sz1 − sz2
(δz1 − δz2) + (δz1 − δz2)ν(z1, z2) .

If δz1 6= δz2 then we simply divide by δz1 − δz2 and obtain the third formula. If δz1 = δz2 , consider zn1 6= z1
with zn1 → z1. Since the zeros of the analytic function ω 7→ δω − δz2 are isolated, δzn

1
6= δz2 for n large

enough and one obtains the desired formula for (zn1 , z2) as previously. By continuity, the formula remains
true for (z1, z2).

Using the previously established formulas, we now express ∆(z1, z2).

∆(z1, z2) = (1− ν(z1, z2))
2 − z1z2γ(z1, z2)γ̃(z1, z2) ,

=
(z1(1 + σδ̃z1)− z2(1 + σδ̃z2))

2 − σ2z1z2(δz1 − δz2)(δ̃z1 − δ̃z2)

(sz1 − sz2)
2

.

We focus on the numerator
(
z1(1 + σδ̃z1)− z2(1 + σδ̃z2)

)2
− σ2z1z2(δz1 − δz2)

(
δ̃z1 − δ̃z2

)

= z21(1 + σδ̃z1)
2 + z22(1 + σδ̃z2)

2 − 2z1z2(1 + σδ̃z1)(1 + σδ̃z2)

−σ2z1z2

(
δ̃z1 + (1− cn)

σ

z1
− δ̃z2 − (1− cn)

σ

z2

)
(δ̃z1 − δ̃z2) ,

= z21(1 + σδ̃z1)
2 + z22(1 + σδ̃z2)

2 − 2z1z2(1 + σδ̃z1)(1 + σδ̃z2)

−z1z2
(
1 + σδ̃z1 − (1 + σδ̃z2)

)2
+ σ3(1− cn)(z1 − z2)(δ̃z1 − δ̃z2) ,

= z21(1 + σδ̃z1)
2 + z22(1 + σδ̃z2)

2 − z1z2
(
(1 + σδ̃z1)

2 + (1 + σδ̃z2)
2
)

+σ3(1− cn)(z1 − z2)(δ̃z1 − δ̃z2) ,

= (z1 − z2)
(
z1(1 + σδ̃z1)

2 + σ2(1− cn)(1 + σδ̃z1)
)

−(z1 − z2)
(
z2(1 + σδ̃z2)

2 + σ2(1− cn)(1 + σδ̃z2)
)
.

It remains to notice that

sz = z(1 + σδz)(1 + σδ̃z) = z(1 + σδ̃z)
2 + σ2(1− cn)(1 + σδ̃z)

to conclude that the numerator writes (z1 − z2) (sz1 − sz2). The formula for ∆(z1, z2) immediatly follows,
and item (3) is proved.

Let z ∈ C
+, then the mere definition of ν yields ν(z, z̄) > 0 for A 6= 0. Recall that since δ̃ is the Stieltjes

transform of a measure with support in R
+, then Im(zδ̃z) ≥ 0. By the formula established in (3),

1− ν(z, z̄) =
Im(z) + σIm(zδ̃z)

Im(sz)
> 0

hence ν(z, z̄) < 1. Similarly,

∆(z, z̄) =
z − z̄

sz − sz
=

Im(z)

Im(sz)
> 0 ,

from which we deduce that

0 < |z|2γ(z, z̄)γ̃(z, z̄) < (1− ν(z, z̄))2 < 1 .
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Proof of item (4) is completed.

Using the relation between δz and δ̃z, we obtain

γ̃(z, z̄) =
σ

sz − sz

(
δz − δz − σ(1− cn)

z
+
σ(1− cn)

z̄

)
= γ(z, z̄) +

σ2(1− cn)

|z|2
Im(z)

Im(sz)
.

In particular, γ(z, z̄) < γ̃(z, z̄) if cn < 1 and γ(z, z̄) = γ̃(z, z̄) if cn = 1. Plugging this into the last
inequality of (3.1), we get |z|2γ2(z, z̄) < 1 which is the desired inequality. Finally, we use the elementary

inequality |Tr (AB)| ≤
√
TrAA∗

√
TrBB∗ to obtain

|δz| =
∣∣∣σ
n
TrTz

∣∣∣ ≤
√
γ(z, z̄)

√
Tr IN√
n

≤
√
cn√
|z|

.

Item (5) is proved.
Using the mere definition of γ, we have

|γ(z1, z2)| =
∣∣∣∣
σ2

n
TrTz1Tz2

∣∣∣∣ ≤
(
σ2

n
TrTz1T

∗
z1

)1/2 (
σ2

n
TrTz2T

∗
z2

)1/2

=
√
γ(z1, z1)

√
γ(z2, z2) .

Similarly, using the definition of γ̃, we get that |γ̃(z1, z2)| ≤
√
γ̃(z1, z1)

√
γ̃(z2, z2) and hence

|z1z2γ(z1, z2)γ̃(z1, z2)| ≤
√

|z1|2γ(z1, z1)γ̃(z1, z1)|
√

|z2|2γ(z2, z2)γ̃(z2, z2)| < 1

by (3.1) and the first inequality of item (6) is proved. We now prove that

|∆(z1, z2)| ≥
√

∆(z1, z1)
√

∆(z2, z2) (3.4)

where the last quantity is positive by item (4). We have

|1− ν(z1, z2)| ≥ 1− |ν(z1, z2)| ≥ 1−
√
ν(z1, z1)

√
ν(z2, z2) > 0 .

Hence

|∆(z1, z2)| >
(
1−

√
ν(z1, z1)

√
ν(z2, z2)

)2

−
√

|z1|2γ(z1, z1)γ̃(z1, z1)|
√

|z2|2γ(z2, z2)γ̃(z2, z2)| . (3.5)

We now rely on elementary inequalities (for a proof see [23, Proposition 6.1]) to conclude:

Proposition 3.2. (1) Let a1, a2 ≥ 0, then

(1−√
a1a2)

2 > (1− a1)(1− a2) .

(2) Assume moreover that bi ≥ 0 and (1− ai)
2 − bi > 0 for i = 1, 2, then

(1−√
a1a2)

2 −
√
b1b2 >

√
(1− a1)2 − b1

√
(1− a2)2 − b2 .

Using the second inequality of the previous proposition in (3.5) yields (3.4).
In order to handle ∆ϑ, notice that

|γ†(z1, z2)| ≤
√
γ(z1, z1)

√
γ(z2, z2) , |ν†(z1, z2)| ≤

√
ν(z1, z1)

√
ν(z2, z2) ,

|γ̃†(z1, z2)| ≤
√
γ̃(z1, z1)

√
γ̃(z2, z2) , |ν̃†(z1, z2)| ≤

√
ν(z1, z1)

√
ν(z2, z2) .

Hence
∣∣∆ϑ(z1, z2)

∣∣ ≥
(
1− |ϑ|

√
ν(z1, z1)

√
ν(z2, z2)

)2

−
√

|z1|2γ(z1, z1)γ̃(z1, z1)|
√

|z2|2γ(z2, z2)γ̃(z2, z2)| . (3.6)

Since |ϑ| ≤ 1, we obtain the same lower bound as in (3.5), from which we can conclude as previously. Item
(6) is proved. Proof of Proposition 3.1 is completed. �

3.2. Technical means and outline of the proof. We first prove that under Assumptions 1 and 2 Mn(z)
defined in (1.6) can be written as the sum of martingale increments:

Mn(z) =

n∑

j=1

Pj(z) + oP (1) , (3.7)

see (3.12)-(3.14) below. This decomposition allows to establish its Gaussian fluctuations via powerful CLTs
for martingales such as [6, Th. 35.12] and [32, Lemma 5.6]. For the reader’s convenience, we recall the
latter.
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Lemma 3.3 ([32], Lemma 5.6). Suppose that for each n, (Ynj ; 1 ≤ j ≤ rn) is a C
d-valued martingale

difference sequence with respect to the increasing σ-field {Fn,j ; 1 ≤ j ≤ rn} having second moments. Write

Y T

nj = (Y 1
nj , · · · , Y d

nj) .

Assume moreover that (Θn(k, ℓ))n and (Θ̃n(k, ℓ))n are uniformly bounded sequences of complex numbers,
for 1 ≤ k, ℓ ≤ d. If

rn∑

j=1

E

(
Y k
nj Ȳ

ℓ
nj | Fn,j−1

)
−Θn(k, ℓ)

P−−−−→
n→∞

0 and

rn∑

j=1

E

(
Y k
njY

ℓ
nj | Fn,j−1

)
− Θ̃n(k, ℓ)

P−−−−→
n→∞

0 ,

(3.8)
and for each ε > 0, the following Lyapunov condition holds true:

rn∑

j=1

E
(
‖Ynj‖21‖Ynj‖>ε

)
−−−−→
n→∞

0 . (3.9)

Then dLP

(∑rn
j=1 Ynj , Zn

)
−−−−→
n→∞

0 , or equivalently for any continuous bounded function f : Cd → R:

Ef
( rn∑

j=1

Ynj

)
− Ef

(
Zn

)
−−−−→
n→∞

0 ,

where Zn is a C
d-valued centered Gaussian random vector with parameters

EZnZ
∗
n = (Θn(k, ℓ))k,ℓ and EZnZ

T

n = (Θ̃n(k, ℓ))k,ℓ .

Lemma 3.3 can be strengthened with the following lemma:

Lemma 3.4 (cf. Lemma 5.7 in [32]). Let K be a compact set in C and let X1, X2, . . . and Y1, Y2, . . . be
random elements in C(K,C). Assume that for all d ≥ 1, z1, . . . , zd ∈ K, f ∈ C(Cd,C) we have:

Ef(Xn(z1), . . . , Xn(zd))− Ef(Yn(z1), . . . , Yn(zd)) −−−−→
n→∞

0 .

Moreover, assume that (Xn) and (Yn) are tight, then for every continuous and bounded functional F :
C(K,C) → C, we have:

EF (Xn)− EF (Yn) −−−−→
n→∞

0 .

We can now provide an outline of the proof:

(1) The martingale decomposition Mn(z) =
∑n

j=1 Pj(z) + oP (1) is established in Section 3.3.

(2) Lyapunov’s condition (3.9) is established for Y T

nj = (Pj(z1), · · · , Pj(zd)) in Section 3.3.
(3) Convergence (3.8), the more demanding part of the proof, is performed in Sections 3.4 and 3.5.
(4) The tightness for (Mn(z), z ∈ Dε) and of the Gaussian process (Gn(z), z ∈ Dε) rely on standard

arguments and computations and are thus skipped.

3.3. Sum of martingale increments and Lyapunov’s condition. We introduce now some notations.
Denote by yj , aj , xj and rj the jth columns of the matrices Yn, An, Xn and σ√

n
Xn respectively and let

YjY
∗
j := YY∗ − yjy

∗
j =

∑

ℓ 6=j

yℓy
∗
ℓ .

Recalling that Qz = (YnY
∗
n − zIN)−1, we denote by Qz,j := Qj(z) = (YjY

∗
j − zIN )−1 and by Q̃z,j :=

Q̃j(z) = (Y∗
jYj − zIn)

−1 and finally note that the diagonal entries q̃z,jj = [Q̃z]jj of the co-resolvent are
given by

q̃jj =
−1

z(1 + y∗
jQz,jyj)

,

where this formula is obtained by combining formulas for the inverse of a partitioned matrix [24, Section
0.7.3] and Woodbury’s formula [24, Section 0.7.4]. We now introduce several notations that will be used
all along this paper. Denote by:

bz,j =
−1

z(1 + σ2

n
TrEQz,j + a∗

jEQz,jaj)
,

b̃z,j =
−1

z(1 + σ2

n
TrQz,j + a∗

jQz,jaj)
,

τz,j = y
∗
jQz,jyj − σ2

n
TrEQz,j − a

∗
jEQz,jaj ,
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τ̂z,j = y
∗
jQz,jyj − σ2

n
TrQz,j − a

∗
jQz,jaj ,

αz,j = y
∗
jQ

2
z,jyj − σ2

n
TrQ2

z,j − a
∗
jQ

2
z,jaj .

When no confusion occurs, we drop the variable z and write q̃z,jj := q̃jj(z), t̃z,jj := t̃jj(z), Tz := T(z),
etc.

Let E0 = E denote the expectation and Ej the conditional expectation with respect to the σ-field Fn,j

generated by {xℓ , 1 ≤ ℓ ≤ j}. By the rank-one perturbation formula

Q−Qj = zq̃jjQjyjy
∗
jQj , (3.10)

and the definition of Mn in (1.6), we have

Mn =
n∑

j=1

(Ej − Ej−1)Tr (Q−Qj) =
n∑

j=1

(Ej − Ej−1)zq̃jjy
∗
jQ

2
jyj .

Note that

q̃jj = b̃j + zq̃jj b̃j τ̂j = b̃j + zb̃2j τ̂j + z2b̃2j τ̂
2
j q̃jj , (3.11)

and develop Mn(z) as follows

Mn = z

n∑

j=1

(Ej−Ej−1)(b̃j+zb̃
2
j τ̂j+z

2b̃2j τ̂
2
j q̃jj)

(
αj +

σ2

n
TrQ2

j + a
∗
jQ

2
jaj

)
=

n∑

j=1

Pj(z)+

n∑

j=1

P ′
j(z) , (3.12)

where

Pj(z) := zEj

(
b̃jαj + zb̃2j τ̂j

(
σ2

n
TrQ2

j + a
∗
jQ

2
jaj

))
,

P ′
j(z) := z(Ej − Ej−1)

[
zb̃2j τ̂jαj + z2b̃2j τ̂

2
j q̃jjαj + z2b̃2j τ̂

2
j q̃jj

(
σ2

n
TrQ2

j + a
∗
jQ

2
jaj

)]
.

Since q̃z,jj and b̃z,j are Stieltjes transforms of probability measures, we have

max
(∣∣q̃z,jj

∣∣,
∣∣b̃z,j

∣∣
)
≤ (Im(z))−1 . (3.13)

We decompose P ′
j into three termes. By orthogonality, Cauchy-Schwarz’s inequality and the estimates

provided in Lemma A.2, we have

E

∣∣∣
n∑

j=1

z(Ej − Ej−1)
[
zb̃2j τ̂jαj

]∣∣∣
2

=

n∑

j=1

E

∣∣∣z(Ej − Ej−1)
[
zb̃2j τ̂jαj

]∣∣∣
2

,

≤ 4|z|2
Im(z)4

n∑

j=1

(
E|τ̂j |4E|αj |4

)1/2
= Oz

(
1

n

)
.

In the same way, we control the other terms and prove that

E

∣∣∣∣∣

n∑

j=1

P ′
j(z)

∣∣∣∣∣

2

= Oz

(
1

n

)
. (3.14)

This implies that for any z ∈ D+ ∪D+, Mn(z) verifies (3.7).
We now prove Lyapunov’s condition (3.9). First note that E|Pj(z)|4 = Oz(n

−2) by Lemma A.2. Thus
for any z1, . . . , zd ∈ C

+,

n∑

j=1

E

[( d∑

ℓ=1

|Pj(zℓ)|2
)
1{

∑
d
ℓ=1

|Pj(zℓ)|2≥ε2}

]
≤ 1

ε2

n∑

j=1

E

(
d∑

ℓ=1

|Pj(zℓ)|2
)2

≤ d

ε2

n∑

j=1

d∑

ℓ=1

E|Pj(zℓ)|4 −−−−−→
N,n→∞

0 .

Lyapunov’s condition is hence verified.

3.4. Computation of the covariance: some preparation. Recall the decomposition of Mn(z) in (3.7).
We shall prove that (Pj , 1 ≤ j ≤ n) satisfies (3.8) with Θn defined in (2.7). It is sufficient to prove that:

n∑

j=1

Ej−1Pj(z1)Pj(z2)−Θn(z1, z2)
P−−−−−→

N,n→∞
0 and

n∑

j=1

Ej−1Pj(z1)Pj(z2)−Θn(z1, z2)
P−−−−−→

N,n→∞
0 .

Due to the expression

Pj(z) = Ej

{
zb̃z,jαz,j + z2b̃2z,j τ̂z,j

(
σ2

n
TrQ2

z,j + a
∗
jQ

2
z,jaj

)}
,
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we have Pj(z) = Pj(z̄). As D+ ∪D+ is stable under conjugation, it suffices to prove the convergence of∑n
i=1 Ej−1Pj(z1)Pj(z2) for any z1, z2 ∈ D+ ∪D+.
We introduce

Γj(z) = zb̃z,j

(
y
∗
jQz,jyj − σ2

n
TrQz,j − a

∗
jQz,jaj

)
= zb̃z,j τ̂z,j ,

An(z1, z2) =
n∑

j=1

Ej−1 {EjΓj(z1)EjΓj(z2)} . (3.15)

Since
∂

∂z
(τ̂z,j) = αz,j and

∂

∂z
(zb̃z,j) = z2b̃2z,j(y

∗
jQ

2
z,jyj − αz,j) ,

we can easily prove that

∂2

∂z1∂z2
An(z1, z2) =

n∑

j=1

Ej−1Pj(z1)Pj(z2) . (3.16)

By the same arguments as in Bai and Silverstein [3, page 571] and [4, page 273], it is sufficient to study
the convergence in probability to zero of

An(z1, z2)−Υn(z1, z2) where
∂2

∂z1∂z2
Υn(z1, z2) = Θn(z1, z2)

and the uniform boundedness (in n) of Υn (the latter being easy to establish by Lemma 3.10 and similar
results). We now slightly simplify the study of An(z1, z2) and prove that:

An(z1, z2)−
n∑

j=1

z1z2t̃z1,jj t̃z2,jjEj−1

{
Ej τ̂z1,jEj τ̂z2,j

} P−−−−→
n→∞

0 . (3.17)

In the following computations, we shall use repeatedly the fact that tii and t̃jj are bounded, as Stieltjes

transforms. Indeed, by Lemma A.4, E|̃bj − t̃jj |2 ≤ 2E|̃bj − q̃jj |2 + 2E|q̃jj − t̃jj |2 = O(n−1). Using Cauchy-
Schwarz inequality and Lemma A.2, we obtain

E

∣∣∣Ej−1

{
Ej

[
b̃z1,j τ̂z1,j

]
Ej

[
b̃z2,j τ̂z2,j

]}
− t̃z1,jj t̃z2,jjEj−1

{
Ej τ̂z1,jEj τ̂z2,j

}∣∣∣

= E

∣∣∣Ej−1

{
Ej

[
(b̃z1,j − t̃z1,jj)τ̂z1,j

]
Ej

[
b̃z2,j τ̂z2,j

]}
+ t̃z1,jjEj−1

{
Ej [τ̂z1,j ]Ej [(b̃z2,j − t̃z2,jj)τ̂z2,j ]

}∣∣∣ ,

= O(n−3/2) .

Summing over j, we prove the convergence (3.17). Notice that Ej(Qz1,j) is Fn,j−1 measurable. By ap-
plying [18, Equation (3.20)] to M = Ej(Qz1,j) and P = Ej(Qz2,j) (the random vector being (x1j , . . . , xNj)),
we obtain

n∑

j=1

z1z2t̃z1,jj t̃z2,jjEj−1[Ej τ̂z1,jEj τ̂z2,j ] :=
n∑

j=1

(
ξ1j + ξ2j + ξ′2j + ξ3j + ξ4j

)
,

where

ξ1j :=
κσ4

n2
z1z2t̃z1,jj t̃z2,jj

N∑

i=1

Ej [Qz1,j ]iiEj [Qz2,j ]ii , (3.18)

ξ2j :=
σ3

n
z1z2 t̃z1,jj t̃z2,jjE(|x11|2x11)

×
(
a∗
j (EjQz1,j)vdiag(EjQz2,j)√

n
+

a∗
j (EjQz2,j)vdiag(EjQz1,j)√

n

)
, (3.19)

ξ′2j :=
σ3

n
z1z2 t̃z1,jj t̃z2,jjE(|x11|2x̄11)

×
(
vdiag(EjQz2,j)

T(EjQz1,j)aj√
n

+
vdiag(EjQz1,j)

T(EjQz2,j)aj√
n

)
, (3.20)

ξ3j :=
σ2

n
z1z2 t̃z1,jj t̃z2,jj

(σ2

n
Tr
(
EjQz1,jEjQz2,j

)

+ a
∗
jEjQz1,jEjQz2,jaj + a

∗
jEjQz2,jEjQz1,jaj

)
, (3.21)

ξ4j :=
σ2

n
z1z2 t̃z1,jj t̃z2,jj

( 1
n
|ϑ|2σ2Tr

(
EjQz1,jEjQ

T

z2,j

)

+ ϑa∗
jEjQz2,jEjQ

T

z1,j āj + ϑ̄aT

jEjQ
T

z1,jEjQz2,jaj

)
. (3.22)
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In the following series of lemmas, we describe the behaviour of each sum. Recall the formula of the
covariance in (2.7), then

∑n
j=1 ξ1j is associated to the term Θ2,n while

∑n
j=1 ξ3j and

∑n
j=1 ξ4j correspond to

Θ0,n and Θ1,n respectively. The terms
∑n

j=1 ξ2j and
∑n

j=1 ξ
′
2j have no contribution in the final expression.

In [18], the terms above have been studied in the case where z1 = z2 = −ρ ∈ (−∞, 0) and many
computations performed there can be established for general z1, z2 ∈ C

+ by mere book keeping. A
technical issue however remains: the invertibility of systems of equations that appear when studying the
terms

∑
j ξ3j and

∑
j ξ4j . In this case, the generalization from z1 = z2 = −ρ ∈ (−∞, 0) to general

z1, z2 ∈ C
+ is not trivial and is carefully developed hereafter, cf. Lemma 3.10-(ii).

Lemma 3.5. Let Assumptions 1 and 2 hold, then

n∑

j=1

ξ1j − κσ4z1z2
n2

N∑

i=1

tz1,iitz2,ii

n∑

j=1

t̃z1,jj t̃z2,jj
P−−−−−→

N,n→∞
0 .

Proof of Lemma 3.5 is similar to the proof of [18, Lemma 4.1] and is omitted.

Lemma 3.6. Let Assumptions 1 and 2 hold, then
n∑

j=1

ξ2j
P−−−−−→

N,n→∞
0 and

n∑

j=1

ξ′2j
P−−−−−→

N,n→∞
0 .

Proof of Lemma 3.6 is similar to the proof of [18, Lemma 4.2] and is also omitted.

Lemma 3.7. Let Assumptions 1 and 2 hold, then

∂2

∂z1∂z2

n∑

j=1

ξ3j − s′n(z1)s
′
n(z2)

(sn(z1)− sn(z2))2
+

1

(z1 − z2)2
P−−−−→

n→∞
0 ,

where sn(z) = z(1 + σδz)(1 + σδ̃z).

Proof of Lemma 3.7 is provided in Section 3.5.

Lemma 3.8. Let Assumptions 1 and 2 hold, then

∂2

∂z1∂z2

n∑

j=1

ξ4j −Θ1,n
P−−−−→

n→∞
0 ,

where Θ1,n is defined in (2.7).

Proof of Lemma 3.8 is very close to the proof of 3.7 and is thus omitted.

3.5. Proof of Lemma 3.7. We first recall the definition of ξ3j and introduce an auxiliary quantity ξ̃3j :

ξ3j =
σ2

n
z1z2 t̃z1,jj t̃z2,jj

(σ2

n
Tr
(
EjQz1,jEjQz2,j

)
+ a

∗
jEjQz1,jEjQz2,jaj + a

∗
jEjQz2,jEjQz1,jaj

)
,

ξ̃3j =
σ2

n
z1z2 t̃z1,jj t̃z2,jj

(σ2

n
TrE {EjQz1EjQz2}+ a

∗
jE {EjQz1,jEjQz2,j}aj + a

∗
jE {EjQz2,jEjQz1,j} aj

)
.

By rank-one perturbation and Lemma A.5, we easily prove that
n∑

i=1

ξ3j −
n∑

j=1

ξ̃3j
P−−−−→

n→∞
0 .

Consider the following notations:

ψj(z1, z2) =
σ2

n
TrE {(EjQz1)(EjQz2)} =

σ2

n
TrE{(EjQz1)Qz2},

ζkj(z1, z2) = σE{a∗
k(EjQz1)(EjQz2)ak} = σE{a∗

k(EjQz1)Qz2ak},
θkj(z1, z2) = σE{a∗

k(EjQz1,k)(EjQz2,k)ak} = σE{a∗
k(EjQz1,k)Qz2,k ak},

φj(z1, z2) =
σ

n

j∑

k=1

z1z2 t̃z1,kk t̃z2,kkθkj(z1, z2). (3.23)

If clear from the context, we simply write ψj , ζkj , θkj and φj instead of ψj(z1, z2), ζkj(z1, z2), θkj(z1, z2)

and φj(z1, z2) respectively. With these notations at hand, ξ̃3j writes

ξ̃3j(z1, z2) =
1

n
z1z2t̃jj(z1)t̃jj(z2)

(
σ2ψj(z1, z2) + σθjj(z1, z2) + σθjj(z2, z1)

)
.

The following part of the proof is inspired from [18]: Since it seems difficult to obtain a direct expression for
the quantities ψj , ζkj , θkj and φj , we establish in the following lemma a system of (perturbed) equations
which describes the structural links between these quantities.
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Lemma 3.9. Let Assumptions 1 and 2 hold and recall that γ = γ(z1, z2) =
σ2

n
TrTz1Tz2 . Then

ζkj = ψj

( j∑

ℓ=1

σa∗
kTz1aℓa

∗
ℓTz2ak

(1 + σδz1)(1 + σδz2)
+ σ3

a
∗
kTz1Tz2ak

1

n

j∑

ℓ=1

z1z2t̃z1,ℓℓ t̃z2,ℓℓ
)

+σa∗
kTz1Tz2ak + σa∗

kTz1Tz2akφj + Oz1,z2(n
−1/2) ,

ζkj = z1z2t̃z1,kk t̃z2,kk(1 + σδz1)(1 + σδz2)θkj +
σa∗

kTz1aka
∗
kTz2ak

(1 + σδz1)(1 + σδz2)
ψj + Oz1,z2(n

−1/2) ,

ψj = ψj

(σ2

n

j∑

ℓ=1

a∗
ℓTz2Tz1aℓ

(1 + σδz1)(1 + σδz2)
+
γσ2

n

j∑

ℓ=1

z1z2t̃z1,ℓℓ t̃z2,ℓℓ
)
+
σ2

n
TrTz1Tz2 + γφj + Oz1,z2(n

−1/2) .

Lemma 3.9 is a generalization of computations performed in [18, Section 5] for z1 = z2 ∈ (−∞, 0) to
general z1, z2 ∈ C

+. Its proof is omitted.
Combining the two first equations of Lemma 3.9, we get

σz1z2t̃z1,kk t̃z2,kkθkj =
σ2a∗

kTz1Tz2ak

(1 + σδz1)(1 + σδz2)
+

σ2a∗
kTz1Tz2ak

(1 + σδz1)(1 + σδz2)
φj

+ ψj

(
j∑

ℓ=1

σ2a∗
kTz1aℓa

∗
ℓTz2ak

(1 + σδz1)
2(1 + σδz2)

2
+

σ2a∗
kTz1Tz2ak

(1 + σδz1)(1 + σδz2)

σ2

n

j∑

ℓ=1

z1z2 t̃z1,ℓℓ t̃z2,ℓℓ

)

− ψj
σ2a∗

kTz1aka
∗
kTz2ak

(1 + σδz1)
2(1 + σδz2)

2
+ Oz1,z2(n

−1/2) . (3.24)

In order to simplify the notations, we introduce the following quantities:

νj := νj(z1, z2) =
σ2

n

j∑

k=1

a∗kTz1Tz2ak
(1 + σδz1)(1 + σδz2)

,

ηj := ηj(z1, z2) =
σ2

n

j∑

ℓ=1

z1z2t̃z1,ℓℓ t̃z2,ℓℓ ,

ωj := ωj(z1, z2) =
σ2

n

j∑

k=1

j∑

ℓ=1,ℓ 6=k

a∗
kTz1aℓa

∗
ℓTz2ak

(1 + σδz1)
2(1 + σδz2)

2
.

Notice that for j = n the notation νj is consistant with the definition (2.2). Eq. (3.24) yields

(1− νj)φj − (ωj + νjηj)ψj = νj + Oz1,z2(n
−1/2)

and the last equation of Lemma 3.9 writes

−γφj + (1− νj − γηj)ψj = γ + Oz1,z2(n
−1/2) .

We finally end up with a system of two perturbed linear equations for φj and ψj :
{

(1− νj)φj − (ωj + νjηj)ψj = νj + Oz1,z2(n
−1/2) ,

−γφj + (1− νj − γηj)ψj = γ + Oz1,z2(n
−1/2) .

(3.25)

We study hereafter the properties of the determinant of the system Dj given by

Dj = (1− νj)
2 − γ(ηj + ωj) . (3.26)

Lemma 3.10. Let Assumption 2 hold and recall the definition of ∆n given in (2.3). The determinant Dj

satisfies the following properties:

(i) for any z1, z2 ∈ C
+, we have for j = n

Dn(z1, z2) = ∆n(z1, z2) =

(
1− σ2

n

TrTz1AA∗Tz2

(1 + σδz1)(1 + σδz2)

)2

− z1z2γγ̃ ,

(ii) for any z1, z2 ∈ C
+,

lim inf
n

inf
1≤j≤n

|Dj(z1, z2)| > 0 .

Proof. For 1 ≤ j ≤ n denote by A1:j the N × n matrix defined by A1:j := [a1, . . . ,aj ,0, . . . , 0] and write

ωj =
σ2

n

TrA∗
1:jTz1A1:jA

∗
1:jTz2A1:j

(1 + σδz1)
2(1 + σδz2)

2
− σ2

n

j∑

k=1

a∗
kTz1aka

∗
kTz2ak

(1 + σδz1)
2(1 + σδz2)

2
.
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Using a standard identity [24, Section 0.7.4] applied to Tz and T̃z yields the identity

T̃z = − 1

z(1 + σδz)
+

1

z(1 + σδz)2
A∗TzA (3.27)

from which we obtain (1 + σδz)
−2a∗

kTzak = (1 + σδz)
−1 + zt̃kk and thus

σ2

n

j∑

k=1

a∗
kTz1aka

∗
kTz2ak

(1 + σδz1)
2(1 + σδz2)

2
=
σ2

n

j∑

k=1

z1z2t̃z1,kk t̃z2,kk

+
σ2

n

j∑

k=1

z1t̃z1,kk
1 + σδz2

+
σ2

n

j∑

k=1

a∗
kTz2ak

(1 + σδz1)(1 + σδz2)
2
.

Introduce
−zT̃1:j(z) := (1 + σδz)

−1I1:j − (1 + σδz)
−2A∗

1:jTzA1:j

where I1:j :=
∑j

k=1 eke
T

k and (ei) is the canonical basis of Rn, one can check that

ηj + ωj =
σ2z1z2
n

Tr
(
T̃1:j(z1)T̃1:j(z2)

)
. (3.28)

In particular ηn + ωn = z1z2γ̃ hence the identity Dn = (1− νn)
2 − z1z2γγ̃ = ∆n and (i) is established.

We now prove (ii) and start by showing that for any z ∈ C
+,

lim inf
n

inf
1≤j≤n

Dj(z, z̄) > 0 . (3.29)

It is straightforward to check that

0 < νj(z, z̄) ≤ νn(z, z̄)
(a)
< 1 and 0 ≤ ωj(z, z̄) + ηj(z, z̄) ≤ ωn(z, z̄) + ηn(z, z̄) ,

where (a) follows from Proposition 3.1-(3). Hence Di(z, z̄) ≥ Dn(z, z̄). Since by (i) we have proved that

Dn(z, z̄) = ∆n(z, z̄) = (1− νn(z, z̄))
2 − γ(z, z̄)(ηn(z, z̄) + ωn(z, z̄)) ,

we obtain the following estimate
inf

1≤j≤n
Dj(z, z̄) ≥ ∆n(z, z̄) . (3.30)

Recall that δn and δ̃n are Stieltjes transforms associated to measures with respective total mass σNn−1

and σ hence

|sn(z)| ≤ |z|
(
1 +

N σ2

nIm(z)

)(
1 +

σ2

Im(z)

)
≤ Kz

uniformly in n ≥ 1. By Proposition 3.1-(3),

|∆n(z, z̄)| = Im(z)

Im(sn(z))
≥ Im(z)

Kz
.

Combining this estimate with (3.30) yields (3.29). To conclude the proof, we show that for z1, z2 ∈ C
+,

|Dj(z1, z2)| ≥ (Dj(z1, z̄1)Dj(z2, z̄2))
1/2 . (3.31)

Starting from (3.28), we have

Dj(z1, z2) = (1− νj(z1, z2))
2 − γz1z2

σ2

n
Tr T̃1:j(z1)T̃

∗
1:j(z2) .

From this identity, we can conclude as in the proof of Proposition 3.1-(6). �

We now go back to the proof of Lemma 3.7. By the above lemma, the system (3.25) has the solution
[
φj

ψj

]
=

1

Dj

[
νj(1− νj − γηj) + γ(ωj + νjηj)

γνj + γ(1− νj)

]
+ Oz1,z2(n

−1/2) . (3.32)

Notice that since Tz1 and Tz2 commute ν(z1, z2) = ν(z2, z1). Dividing by n and plugging the solution
(3.32) in (3.24) yields:

σ

n
z1z2t̃z1,jj t̃z2,jj

(
θjj(z1, z2) + θjj(z2, z1)

)

= 2(νj − νj−1) +
γ

Dj

(
(ωj − ωj−1) + 2ηj(νj − νj−1)

)

+
1

Dj
(νj − νj−1)

(
νj(1− νj) + γωj

)
+ Oz1,z2(n

−3/2) ,

=
1

Dj

(
2(νj − νj−1)(1− νj) + γ(ωj − ωj−1)

)
+ Oz1,z2(n

−3/2) ,
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where by convention we set ω0 = ν0 = η0 = 0 and D0 = 1. Therefore, we get

1

n
z1z2 t̃z1,jj t̃z2,jj

(
σ2ψj(z1, z2) + σθjj(z1, z2) + σθjj(z2, z1)

)

=
2(νj − νj−1)(1− νj) + γ(ηj − ηj−1) + γ(ωj − ωj−1)

Dj
+ Oz1,z2(n

−3/2) .

Moreover, going back to the definition (3.26) of Dj , we have

Dj−1 −Dj = 2(νj − νj−1)(2− νj−1 − νj) + γ(ηj − ηj−1) + γ(ωj − ωj−1) ,

= 2(νj − νj−1)(1− νj) + γ(ηj − ηj−1) + γ(ωj − ωj−1) + Oz1,z2(n
−2) .

Then

1

n

n∑

j=1

z1z2t̃z1,jj t̃z2,jj
(
σ2ψj(z1, z2)+σθjj(z1, z2)+σθjj(z2, z1)

)
=

n∑

j=1

Dj−1 −Dj

Dj
+Oz1,z−2(n

−1/2) , (3.33)

and

D0 = 1 and |Dj−1 −Dj | = Oz1,z2(n
−1) for 1 ≤ j ≤ n . (3.34)

For a sufficiently large fixed constant K and for any 1 ≤ j ≤ n, we denote by Bj := B(Dj ,K/n) the ball of
center Dj and radius K/n and we let [Dj ,Dj−1] ⊂ Bj be the segment joining Dj and Dj−1. We suppose
that n is large enough so that K/n < |Dj |/2. Thus for any z ∈ [Dj ,Dj−1],

|Dj |
2

< |z| ≤ |Dj |+ K

n
and |z −Dj | ≤ K

n
. (3.35)

As z 7→ z−1 is analytic over B := ∪n
j=1Bj , we write

Dj−1 −Dj

Dj
−
∫

[Dj ,Dj−1]

1

z
dz =

n∑

j=1

∫

[Dj,Dj−1]

( 1

Dj
− 1

z

)
dz =

∫

[Dj,Dj−1]

z −Dj

zDj
dz = Oz1,z2(n

−2)

where the last equality follows from (3.34) and (3.35). We finally obtain
∣∣∣∣∣

n∑

j=1

Dj−1 −Dj

Dj
−
∫ 1

∆n

1

z
dz

∣∣∣∣∣ = Oz1,z2(n
−1).

Using Lemma 3.10-(ii), one can prove that the r.h.s. above is uniformly bounded and apply [4, Lemma
2.14] to obtain the convergence of the derivative. Differentiating with respect to z2, we get

∂

∂z2

∫ 1

∆n

1

z
dz = − 1

∆n

∂∆n

∂z2
.

Differentiating again with respect to z1 and relying on the identity of Proposition 3.1-(4), we conclude the
proof of Lemma 3.7.

4. Proof of Theorem 3: Alternative expression for the covariance

We first recall some properties of sn useful in the sequel. Recall that Sn is the support of the measure
whose Stieltjes transform is δn and denote by SA the support of the empirical distribution of the eigenvalues
of AnA

∗
n.

Proposition 4.1 (Properties of sn near the real axis). The following properties hold

(1) The limit sn(x) := limε↓0 sn(x+ iε) exists and is continuous for all x ∈ R \ 0.
(2) x ∈ S

c
n implies that sn(x) ∈ S

c
A.

(3) If cn = N
n
< 1 then 0 ∈ S

c
n.

(4) The quantity sn(z) is bounded for |z| < η for some η > 0 and z 6= 0.

Proof. Items (1), (2) follow from Theorems 2.1 and 3.3 in [12]. Item (3) can be found in [8, Theorem 1.3].
To prove item (4), write

sn(z) = z(1 + σδn(z))(1 + σδ̃n(z)) = z(1 + σδn(z))
2 − σ(1− cn)(1 + σδn(z)) .

The first part of the r.h.s. is bounded by Proposition 3.1-(5). If cn = 1, the second part vanishes; if cn < 1
then 0 /∈ Sn and δn(z) is analytic in a small neighbourhood of zero. �
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4.1. A boundary value representation for the covariance.

Proposition 4.2. Let (Zn(f), Zn(g)) be the Gaussian process defined in Theorem 2, and Θn the covariance
defined in Theorem 1, then the covariance of (Zn(f), Zn(g)) admits the following representation:

cov(Zn(f), Zn(g)) = − 1

4π2
lim
εց0

∫

R2

f(x)g(y)
(
Θn(x+ iε, y + iε) + Θn(x− iε, y − iε)

)
dxdy

+
1

4π2
lim
εց0

∫

R2

f(x)g(y)
(
Θn(x+ iε, y − iε) + Θn(x− iε, y + iε)

)
dxdy ,

= − 1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f(x)g(y)Θn(x±1 iε, y ±2 iε)dxdy ,

where ±1,±2 ∈ {+,−} and ±1±2 is the sign resulting from the product ±11 by ±21.

For a proof, see [32, Proposition 4.1].

4.2. Proof of Theorem 3. Notice that due to the symmetry of equations (1.9), we only need to consider
the case where c ≤ 1, which we now assume. Recall the definition of the quantity

∆n(x, y) = lim
ε↓0

∆n(x+ iε, y − iε) .

The covariance Θn(z1, z2) splits into three parts Θn(z1, z2) = Θ0,n(z1, z2) + Θ1,n(z1, z2) + Θ2,n(z1, z2), cf.
(2.7). We first prove that

− 1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f(x)g(y)Θ0,n(x±1 iε, y ±2 iε)dxdy

=
1

2π2

∫

S2
n

f ′(x)g′(y) ln

∣∣∣∣
∆n(x, y)

∆n(x, y)

∣∣∣∣ dxdy

Taking advantage of formula (2.8) and performing a double integration by parts yields

− 1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f(x)g(y)Θ0,n(x±1 iε, y ±2 iε)dxdy

=
1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f(x)g(y)
∂

∂y

{
1

∆n(x±1 iε, y ±2 iε)

∂

∂x
∆n(x±1 iε, y ±2 iε)

}
dxdy ,

= − 1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f(x)g′(y)
1

∆n(x+ iε, y + iε)

∂

∂x
∆n(x+ iε, y + iε)dxdy ,

(a)
=

1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f ′(x)g′(y) log (∆n(x±1 iε, y ±2 iε)) dxdy ,

(b)
=

1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f ′(x)g′(y) ln |∆n(x±1 iε, y ±2 iε)|dxdy ,

(c)
=

1

2π2
lim
εց0

∫

R2

f ′(x)g′(y) ln

∣∣∣∣
∆n(x+ iε, y + iε)

∆n(x+ iε, y − iε)

∣∣∣∣ dxdy ,

(d)
=

1

2π2
lim
εց0

∫

R2

f ′(x)g′(y) ln

∣∣∣∣
sn(x+ iε)− sn(y − iε)

sn(x+ iε)− sn(y + iε)

∣∣∣∣ dxdy ,

where log(·) is any branch of the complex logarithm in (a), where (b) follows from the fact that the
covariance being real, the argument part of the complex logarithm necessarily vanishes and where (c) and
(d) follow from the representation formula for ∆n (cf. Proposition 3.1-(3)) and the fact that

∆n(z1, z2) =
z1 − z2

sn(z1)− sn(z2)
= ∆n(z1, z2) .

Write now

ln

∣∣∣∣
sn(x+ iε)− sn(y − iε)

sn(x+ iε)− sn(y + iε)

∣∣∣∣ =
1

2
ln

∣∣∣∣
sn(x+ iε)− sn(y − iε)

sn(x+ iε)− sn(y + iε)

∣∣∣∣
2

,

=
1

2
ln

(
1 +

4 Im sn(x+ iε)Im sn(y + iε)

|sn(x+ iε)− sn(y + iε)|2
)
.

In order to apply the dominated convergence theorem, we need to majorize the right hand side above by an
integrable function of (x, y) ∈ [−K,K]2 where K is sufficiently large to contain the supports of functions f
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and g. Let ε0 > 0. Function s being continuous on a rectangle [0, K]× [0, ε0], it is bounded. In particular,
Im(s(x+ iε)) ≤ |s(x+ iε)| is also bounded on [0,K]× [0, ε0].

Let z1 = x+ iε and z2 = y + iε. Then by the definition (2.3) of ∆n,

|∆n(z1, z2)| ≤
(
1 +

√
ν(z1, z1)

√
ν(z2, z2)

)2
+
√

|z1|2γ(z1, z1)γ̃(z1, z1)|
√

|z2|2γ(z2, z2)γ̃(z2, z2)|
≤ 5

by Proposition 3.1-(4). By the representation of ∆n provided in Proposition 3.1-(3), we have

|∆n(z1, z2)|2 =
|z1 − z2|2

|s(z1)− s(z2)|2
≤ 25 ⇒ 1

|s(z1)− s(z2)|2
≤ 25

|z1 − z2|2
=

25

|x− y|2 .

In the end,

ln

∣∣∣∣
sn(x+ iε)− sn(y − iε)

sn(x+ iε)− sn(y + iε)

∣∣∣∣ ≤ ln

(
1 +

K′

|x− y|2
)

which is integrable. It remains to apply the dominated convergence theorem to conclude and obtain (??).
We now prove that

− 1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f(x)g(y)Θ2,n(x±1 iε, y ±2 iε)dxdy

=
4σ4κ

π2n2

N∑

i=1

n∑

j=1

∫

Sn

f ′(x)Im
(
x tii(x)t̃jj(x)

)
dx

∫

Sn

g′(y)Im
(
y tii(y)t̃jj(y)

)
dy .

By the mere definition of Θ2,n, we have

− 1

4π2
lim
εց0

∑

±1,±2

(±1±2)

∫

R2

f(x)g(y)Θ2,n(x±1 iε, y ±2 iε)dxdy

= − κσ4

4n2π2
lim
εց0

∑

±1,±2

(±1±2)
∑

i,j

∫

R2

f(x)g(y)
∂

∂x
(x±1 iε)tii(x±1 iε)t̃jj(x±1 iε)

× ∂

∂y
(y ±2 iε)tii(y ±2 iε)t̃jj(y ±2 iε)dxdy ,

=
κσ4

n2π2
lim
εց0

∑

i,j

∫

R

f ′(x)Im
{
(x+ iε)tii(x+ iε)t̃jj(x+ iε)

}
dx

×
∫

R

g′(y)Im
{
(y + iε)tii(y + iε)t̃jj(y + iε)

}
dy .

It remains to prove that

lim
εց0

∫

R

f ′(x)Im
{
(x+ iε)tii(x+ iε)t̃jj(x+ iε)

}
dx =

∫

R

f ′(x)Im
{
x tii(x)t̃jj(x)

}
dx . (4.1)

Let x > 0, then by [12, Theorem 2.1]

(x+ iε)tii(x+ iε)t̃jj(x+ iε) −−−→
εց0

x tii(x)t̃jj(x) .

In order to apply the dominated convergence theorem, we handle separately the cases cn = 1 and cn < 1.
If cn = 1, then δz = δ̃z (apply Prop. 3.1-(2) for instance), ‖Tz‖ = ‖T̃z‖ and

‖Tz‖ ≤
√
n

σ
√

|z|
and ‖T̃z‖ ≤

√
n

σ
√

|z|
for all z ∈ C

+ .

In fact,

‖Tz‖ =
√
λmax(TzT∗

z) ≤
√

TrTzT∗
z =

√
nσ−2γ(z, z̄) ≤

√
n

σ
√

|z|
,

where the last inequality follows from Proposition 3.1-6. Now

|ztii(z)t̃jj(z)| ≤ |z| ‖Tz‖ ‖T̃z‖ ≤ n

σ2
.

We therefore apply the dominated convergence theorem and prove (4.1) in the case where cn = 1.
Assume now that cn < 1 then 0 /∈ Sn, where Sn denotes the support of the measure associated to the

Stieltjes transform δn. In particular, there exists η > 0 such that (−η, η) ∩ Sn = ∅. In the sequel, we will
alternatively bound |ztii(z)t̃jj(z)| on the sets

D = {|z| ≤ η/2} and D
′
A = {|z| > η/2} ∩ [η/2, A]× [0, A] ,
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where A > 0 is an arbitrary constant. This will enable us to apply the dominated convergence theorem
and prove (4.1).

Let z ∈ D. One has

δz =
σ

n

N∑

i=1

tii(z) and δ̃z =
σ

n

n∑

j=1

t̃jj(z)

hence Im(tii(z)) ≤ n
σ
Im(δz) and Im(t̃jj(z)) ≤ n

σ
Im(δ̃z). We deduce from these inequalities that the

probability measure µii associated to the Stieltjes transform tii has a support included in Sn hence

|tii(z)| =
∣∣∣∣
∫

Sn

µii( dλ)

λ− z

∣∣∣∣ ≤
2

η
for z ∈ D .

By Proposition 3.1-(2), the support of the measure associated to δ̃z is {0} ∪ Sn. Let µ̃jj be the probability
distribution with Stieltjes transform t̃jj , then supp(µ̃jj) ⊂ {0} ∪ Sn. Otherwise stated, µ̃jj has a Dirac
component at zero and a component µ̌jj with support included in Sn hence

t̃jj(z) = −αj

z
+

∫

Sn

µ̌jj( dλ)

λ− z
and

∣∣zt̃jj(z)
∣∣ ≤ αj +

2

η
for z ∈ D .

combining the two previous estimates yields a bound for |ztii(z)t̃jj(z)| for z ∈ D.
Let z ∈ D

′
A. By Proposition 3.1-(5), we have

‖Tz‖ ≤
√
nσ−2γ(z, z̄) ≤

√
2n

σ2η
.

Recall the identity (3.27):

T̃z = − 1

z(1 + σδz)
+

1

z(1 + σδz)2
A∗TzA .

We now use the fact that for any set [η/2, A]× [0, A], the function z 7→ 1+ σδz is continuous [12, Theorem
2.1] and does not vanish. In fact, if z ∈ C

+ then 1 + σδz ∈ C
+ and if x ∈ [η/2, A] then Re(1 + σδx) > 0

by combining Lemma 2.1 and Theorem 2.1 in [12]. Finally

‖zT̃z‖ ≤ 1

|1 + σδz|
+

1

|1 + σδz|2
‖A‖2‖Tz‖

is bounded over D
′
A. This finally yields a bound for |ztii(z)t̃jj(z)| for z ∈ D

′
A. As a consequence of these

bounds and the dominated convergence theorem, we obtain (4.1). Proof of Theorem 3 is completed.

Appendix A. Useful identities and estimates

By a simple application of the classical identity for the inverse of a perturbated matrix:

(A+XRY )−1 = A−1 − A−1X(R−1 + Y A−1X)−1Y A−1 ,

we obtain

Q = Qj −
Qjyjy

∗
jQj

1 + y∗
jQjyj

and Qj = Q+
Qyjy

∗
jQ

1− y∗
jQyj

.

We recall a result by Bai and Silverstein [2] that allows the control of the moments of quadratic forms.

Lemma A.1. [2, Lemma 2.7] Let x = (x1, · · · , xn) be an n× 1 vector where xi are centered i.i.d. complex
random variables with unit variance. Let M be an n× n Hermitian complex matrix. Then for any p ≥ 2,
there exists a constant Kp depending only on p for which

E|x∗Mx −TrM|p ≤ Kp

(
(E|x1|4TrMM∗)p/2 + E|x1|2pTr(MM∗)p/2

)
.

The above lemma is the key for the following estimates:

Lemma A.2. Let x be defined as in Lemma A.1. Let Mn be an n×n Hermitian complex matrix independent
of xn and having a uniformly bounded spectral norm. Then for p ∈ [2, 8]

max

(
E

∣∣∣ 1
n
x
∗
nMnxn − 1

n
TrMn

∣∣∣
p

, E
∣∣∣y∗

nMnyn − σ2

n
TrMn − a

∗
nMnan

∣∣∣
p
)

= O

(‖Mn‖p
np/2

)
.

In particular,

E|τ̂j(z)|p = Oz

(
n−p/2

)
and E|α̂j(z)|p = Oz

(
n−p/2

)
.

Recall the definition of Dε = [0, A] + i[ε, 1], for A > 0 and ε ∈ (0, 1) fixed.
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Lemma A.3. Assume that Assumptions 1 and 2 hold. Let k1, k2 ∈ N and, for any z1, z2 ∈ Dε, define

Mj := Mj(z1, z2) = Qk1

j (z1)Q
k2

j (z2) .

Then for any p ∈ [2, 8],

sup
z∈Dε

‖Qj(z)‖p ≤ ε−p ,

sup
z∈Dε

E|τj(z)|p = Oε(n
−p/2) ,

sup
z∈Dε

E|y∗
jMj(z)yj |p = O(ε−(k1+k2)p) ,

sup
z1,z2∈Dε

E
∣∣y∗

jMjyj − σ2

n
TrMj − a

∗
jMjaj

∣∣p = Oε(n
−p/2) .

The estimates in Lemmas A.2 and A.3 mainly follow from Lemma A.1 and thus their proof is omitted.
For more details on the estimate supz∈Dε

E|τj(z)|p = Oε(n
−p/2), one can check Appendix A.2 in [18].

Lemma A.4. [18, Theorem 3.3] Let (un) and (vn) be two sequences of deterministic complex N×1 vectors
bounded by

sup
n≥1

max(‖un‖, ‖vn‖) <∞,

and let (Un) be a sequence of deterministic N ×N matrix with bounded spectral norm

sup
n≥1

‖Un‖ <∞.

Then, in the setting of Theorem 2:

(1) there exists a constant K such that
n∑

j=1

E|u∗
nQjaj |2 ≤ K ,

(2) there exists a constant K such that
∣∣∣∣
1

n
TrU(T− EQ)

∣∣∣∣ ≤
K

n
,

(3) there exists a constant K such that

E|TrU(Q− EQ)|2 ≤ K ,

(4) for any p ∈ [1, 2], there exists a constant Kp such that

max
{
E|u∗

n(Q− T)vn|2p, E|u∗
n(Qj − Tj)vn|2p

}
≤ Kp

np
,

(5) for any p ∈ [1, 4], there exists a constant K such that

max
{
E|q̃jj − b̃j |2p, E|q̃jj − t̃jj |2p

}
≤ K

np
.

The next result is a counterpart of [18, Lemma 5.1] and is used for the computation of the asymptotic
covariance.

Lemma A.5. For any N × 1 vector a with bounded Euclidean norm, we have

max
j

Var
{
a
∗(EjQz1)(EjQz2)a

}
= Oz1,z2

(
1

n

)
and max

j
Var
{
Tr(EjQz1)(EjQz2)

}
= Oz1,z2(1) .
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