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Abstract. We consider Sherali-Adams linear programming relaxations
for solving valued constraint satisfaction problems to optimality. The
utility of linear programming relaxations in this context have previously
been demonstrated using the lowest possible level of this hierarchy under
the name of the basic linear programming relaxation (BLP). It has been
shown that valued constraint languages containing only finite-valued
weighted relations are tractable if, and only if, the integrality gap of
the BLP is 1. In this paper, we demonstrate that almost all of the known
tractable languages with arbitrary weighted relations have an integrality
gap 1 for the Sherali-Adams relaxation with parameters (2, 3). The re-
sult is closely connected to the notion of bounded relational width for the
ordinary constraint satisfaction problem and its recent characterisation.

1 Introduction

The constraint satisfaction problem provides a common framework for many
theoretical and practical problems in computer science. An instance of the con-
straint satisfaction problem (CSP) consists of a collection of variables that must
be assigned labels from a given domain subject to specified constraints. The
CSP is NP-complete in general, but tractable fragments can be studied by, fol-
lowing Feder and Vardi [13], restricting the constraint relations allowed in the
instances to a fixed, finite set, called the constraint language. The most success-
ful approach to classifying the language-restricted CSP is the so-called algebraic
approach [5, 3].

An important type of algorithms for CSPs are consistency methods. A con-
straint language is of bounded relational width if any CSP instance over this
language can be solved by establishing (k, `)-minimality for some fixed integers
1 ≤ k ≤ ` [1]. The power of consistency methods for constraint languages has
recently been fully characterised [21, 3] and it has been shown that any con-
straint language that is of bounded relational width is of relational width at
most (2, 3)[1].

The CSP deals with only feasibility issues: Is there a solution satisfying cer-
tain constraints? In this work we are interested in problems that capture both

? The authors were supported by London Mathematical Society grant 41355. Stanislav
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feasibility and optimisation issues: What is the best solution satisfying certain
constraints? Problems of this form can be cast as valued constraint satisfaction
problems [16].

An instance of the valued constraint satisfaction problem (VCSP) is given
by a collection of variables that is assigned labels from a given domain with the
goal to minimise an objective function given by a sum of weighted relations,
each depending on some subset of the variables [8]. The weighted relations can
take on finite rational values and positive infinity. The CSP corresponds to the
special case of the VCSP when the codomain of all weighted relations is {0,∞}.

Like the CSP, the VCSP is NP-hard in general and thus we are interested
in the restrictions which give rise to tractable classes of problems. We restrict
the valued constraint language; that is, all weighted relations in a given instance
must belong to a fixed set of weighted relations on the domain. Languages that
give rise to classes of problems solvable in polynomial time are called tractable,
and languages that give rise to classes of problem that are NP-hard are called
intractable. The computational complexity of Boolean (on a 2-element domain)
valued constraint languages [8] and conservative (containing all {0, 1}-valued
unary weighted relations) valued constraint languages [18] have been completely
classified with respect to exact solvability.

Every VCSP problem has a natural linear programming (LP) relaxation,
proposed independently by a number of authors, e.g. [6], and referred to as the
basic LP relaxation (BLP) of the VCSP. It is the first level in the Sheralli-
Adams hierarchy [24], which provides successively tighter LP relaxations of an
integer LP. The BLP has been considered in the context of CSPs for robust
approximability [20, 10] and constant-factor approximation [12, 9]. Higher lev-
els of Sheral-Adams hierarchy have been considered for (in)approximability of
CSPs [11, 30] but we are not aware of any results related to exact solvability of
(valued) CSPs. Semidefinite programming relaxations have also been considered
in the context of CSPs for approximability [23] and robust approximability [2].

Consistency methods, and in particular strong 3-consistency has played an
important role as a preprocessing step in establishing tractability of valued con-
straint languages. Cohen et al. proved the tractability of valued constraint lan-
guages improved by a symmetric tournament pair (STP) multimorphism via
strong 3-consistency preprocessing, and an involved reduction to submodular
function minimisation [7]. They also showed that the tractability of any valued
constraint language improved by a tournament pair multimorphism via a pre-
processing using results on constraint languages invariant under a 2-semilattice
polymorphism, which relies on (3, 3)-minimality, and then reducing to the STP
case. The only tractable conservative valued constraint languages are those ad-
mitting a pair of fractional polymorphisms called STP and MJN [18]; again, the
tractability of such languages is proved via a 3-consistency preprocessing reduc-
ing to the STP case. It is natural to ask whether this nested use of consistency
methods are necessary.

Contributions In [26, 17], the authors showed that the BLP of the VCSP can be
used to solve the problem for many valued constraint languages. In [27], it was
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then shown that for VCSPs with weighted relations taking only finite values, the
BLP precisely characterises the tractable (finite-)valued constraint languages;
i.e., if BLP fails to solve any instance of some valued constraint language of this
type, then this language is NP-hard.

In this paper, we show that a higher-level Sherali-Adams linear program-
ming relaxation [24] suffices to solve most of the previously known tractable
valued constraint languages with arbitrary weighted relations, and in particu-
lar, all known valued constraint languages that involve some optimisation (and
thus do not reduce to constraint languages containing only relations) except for
valued constraint languages of generalised weak tournament pair type [29]; such
languages are known to be tractable [29] but we do not know whether they are
tractable by our linear programming relaxation.

Our main result, Theorem 4, shows that if the support clone of a valued
constraint language Γ of finite size contains weak near-unanimity operations of
all but finitely many arities, then Γ is tractable via the Sherali-Adams relax-
ation with parameters (2, 3). This tractability condition is precisely the bounded
relational width condition for constraint languages of finite size containing all
constants [21, 3], and our proof fundamentally relies on the results of Barto and
Kozik [3] and Barto [1].

It is folklore that the kth level of Sherali-Adams hierarchy establishes k-
consistency for CSPs. We demonstrate that one linear programming relaxation is
powerful enough to establish consistency as well as solving an optimisation prob-
lem in one go without the need of nested applications of consistency methods. For
example, valued constraint languages having a tournament pair multimorphism
were previously known to be tractable using ingenious application of various
consistency techniques, advanced analysis of constraint networks using modu-
lar decompositions, and submodular function minimisation [7]. Here, we show
that an even less restrictive condition (having a binary conservative commuta-
tive operation in some fractional polymorphism) ensures that the Sherali-Adams
relaxation solves all instances to optimum.

Finally, we also give a short proof of the dichotomy theorem for conservative
valued constraint languages [18], which previously needed lengthy arguments
(although we still rely on Takhanov [25] for a part of the proof).

2 Preliminaries

Valued CSPs Throughout the paper, let D be a fixed finite set of size at least
two. We call D the domain, the elements of D labels and say that weighted
relations take values. Let Q = Q∪ {∞} denote the set of rational numbers with
(positive) infinity.

Definition 1. An m-ary relation over D is any mapping φ : Dm → {c,∞} for
some c ∈ Q. We denote by RD the set of all relations on D.

Definition 2. An m-ary weighted relation over D is any mapping φ : Dm → Q.
We write ar(φ) = m for the arity of φ. We denote by ΦD the set of all weighted
relations on D.
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For any m-ary weighted relation φ ∈ ΦD, we denote by Feas(φ) = {x ∈
Dm |φ(x) <∞} ∈ RD the underlying m-ary feasibility relation, and by Opt(φ) =
{x ∈ Feas(φ) | ∀y ∈ Dm : φ(x) ≤ φ(y)} ∈ RD the m-ary optimality relation,
which contains the tuples on which φ is minimised. A weighted relation φ :
Dm → Q is called finite-valued if Feas(φ) = Dm.

Definition 3. Let V = {x1, . . . , xn} be a set of variables. A valued constraint
over V is an expression of the form φ(x) where φ ∈ ΦD and x ∈ V ar(φ). The
number m is called the arity of the constraint, the weighted relation φ is called
the constraint weighted relation, and the tuple x the scope of the constraint.

Definition 4. An instance of the valued constraint satisfaction problem, VCSP,
is specified by a finite set V = {x1, . . . , xn} of variables, a finite set D of labels,
and an objective function I expressed as follows: I(x1, . . . , xn) =

∑q
i=1 φi(xi),

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can
appear multiple times in I. The goal is to find an assignment (or solution) of
labels to the variables minimising I.

A solution is called feasible (or satisfying) if it is of finite value. A VCSP
instance I is called satisfiable if there is a feasible solution to I. CSPs are a
special case of VCSPs with (unweighted) relations with the goal to determine
the existence of a feasible solution.

Example 1. In the Min-UnCut problem the goal is to find a partition of the
vertices of a given graph into two parts so that the number of edges inside
the two partitions is minimised. For a graph (V,E) with V = {x1, . . . , xn},
this NP-hard problem can be expressed as the VCSP instance I(x1, . . . , xn) =∑

(i,j)∈E φxor(xi, xj) over the Boolean domain D = {0, 1}, where φxor : {0, 1}2 →
Q is defined by φxor(x, y) = 1 if x = y and φxor(x, y) = 0 if x 6= y.

Definition 5. Any set ∆ ⊆ RD is called a constraint language over D. Any set
Γ ⊆ ΦD is called a valued constraint language over D. We denote by VCSP(Γ )
the class of all VCSP instances in which the constraint weighted relations are
all contained in Γ . For a constraint language ∆, we denote by CSP(∆) the class
VCSP(∆) to emphasise the fact that there is no optimisation involved.

Definition 6. A valued constraint language Γ is called tractable if VCSP(Γ ′)
can be solved (to optimality) in polynomial time for every finite subset Γ ′ ⊆ Γ ,
and Γ is called intractable if VCSP(Γ ′) is NP-hard for some finite Γ ′ ⊆ Γ .

Operations and Clones We recall some basic terminology from universal algebra.
Given an m-tuple x ∈ Dm, we denote its ith entry by x[i] for 1 ≤ i ≤ m. Any
mapping f : Dk → D is called a k-ary operation; f is called conservative if
f(x1, . . . , xk) ∈ {x1, . . . , xk} and idempotent if f(x, . . . , x) = x. We will apply a
k-ary operation f to k m-tuples x1, . . . ,xk ∈ Dm coordinatewise, that is,

f(x1, . . . ,xk) = (f(x1[1], . . . ,xk[1]), . . . , f(x1[m], . . . ,xk[m])) . (1)
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Definition 7. Let φ be an m-ary weighted relation on D. A k-ary operation f
on D is a polymorphism of φ if, for any x1, . . . ,xk ∈ Dm with xi ∈ Feas(φ) for
all 1 ≤ i ≤ k, we have that f(x1, . . . ,xk) ∈ Feas(φ).

For any valued constraint language Γ over a set D, we denote by Pol(Γ )
the set of all operations on D which are polymorphisms of all φ ∈ Γ . We write
Pol(φ) for Pol({φ}).

A k-ary projection is an operation of the form π
(k)
i (x1, . . . , xk) = xi for some

1 ≤ i ≤ k. Projections are polymorphisms of all valued constraint languages.
The composition of a k-ary operation f : Dk → D with k `-ary operations

gi : D` → D for 1 ≤ i ≤ k is the `-ary operation f [g1, . . . , gk] : D` → D defined
by f [g1, . . . , gk](x1, . . . , x`) = f(g1(x1, . . . , x`), . . . , gk(x1, . . . , x`)) .

We denote by OD the set of all finitary operations on D and by O(k)
D the

k-ary operations in OD. A clone of operations, C ⊆ OD, is a set of operations
on D that contains all projections and is closed under composition. It is easy to
show that Pol(Γ ) is a clone for any valued constraint language Γ .

Definition 8. A k-ary fractional operation ω is a probability distribution over

O(k)
D . We define supp(ω) = {f ∈ O(k)

D | ω(f) > 0}.

Definition 9. Let φ be an m-ary weighted relation on D and let ω be a k-ary
fractional operation on D. We call ω a fractional polymorphism of φ (and say
that φ is improved by ω) if supp(ω) ⊆ Pol(φ) and for any x1, . . . ,xk ∈ Dm with
xi ∈ Feas(φ) for all 1 ≤ i ≤ k, we have

E
f∼ω

[φ(f(x1, . . . ,xk))] ≤ avg{φ(x1), . . . , φ(xk)} . (2)

Definition 10. For any valued constraint language Γ ⊆ ΦD, we define fPol(Γ )
to be the set of all fractional operations that are fractional polymorphisms of all
weighted relations φ ∈ Γ . We write fPol(φ) for fPol({φ}).

Example 2. A valued constraint language on domain {0, 1} is called submodular
if it has the fractional polymorphism ω defined by ω(min) = ω(max) = 1

2 , where
min and max are the two binary operations that return the smaller and larger
of its two arguments respectively with respect to the usual order 0 < 1.

For a valued constraint language Γ we define supp(Γ ) =
⋃
ω∈fPol(Γ ) supp(ω) .

Lemma 1. For any valued constraint language Γ , supp(Γ ) is a clone.

We note that Lemma 1 has also been observed in [22] and in [14].
A special case of the following lemma has been observed, in the context of

Min-Sol problems [29], by Hannes Uppman.3

Lemma 2. Let Γ be a valued constraint language of finite size on a domain D
and let f ∈ Pol(Γ ). Then, f ∈ supp(Γ ) if, and only if, f ∈ Pol(Opt(I)) for all
instances I of VCSP(Γ ).

3 Private communication.
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Cores and Constants Let CD = {{(d)} | d ∈ D} be the set of constant unary
relations on D.

Definition 11. Let Γ be a valued constraint language with domain D and let
S ⊆ D. The sub-language Γ [S] of Γ induced by S is the valued constraint
language defined on domain S and containing the restriction of every weighted
relation φ ∈ Γ onto S.

Definition 12. A valued constraint language Γ is a core if all unary operations
in supp(Γ ) are bijections. A valued constraint language Γ ′ is a core of Γ if Γ ′

is a core and Γ ′ = Γ [f(D)] for some f ∈ supp(ω) with ω a unary fractional
polymorphism of Γ .

Lemma 3. Let Γ be a valued constraint language and Γ ′ a core of Γ . Then, for
all instances I of VCSP(Γ ) and I ′ of VCSP(Γ ′), where I ′ is obtained from I by
substituting each function in Γ for its restriction in Γ ′, the optimum of Iand I ′

coincide.

Lemma 4 ([22]). Let Γ be a core valued constraint language. The problems
VCSP(Γ ) and VCSP(Γ ∪ CD) are polynomial-time equivalent.

A special case of Lemma 4 for finite-valued constraint languages was proved
by the authors in [27], building on [15], and Lemma 4 can be proved similarly.

3 Sherali-Adams and Valued Relational Width

In this section, we state and prove our main result on the applicability of Sherali-
Adams relaxations to VCSPs. First, we define some notions concerning bounded
relational width which is the basis for our proof.

We write (S,C) for (valued) constraints that involve (unweighted) relations,
where S is the scope and C is the constraint relation. For a tuple x ∈ DS , we
denote by πS′(x) its projection onto S′ ⊆ S. For a constraint (S,C), we define
πS′(C) = {πS′(x) | x ∈ C}.

Let 1 ≤ k ≤ ` be integers. The following definition is equivalent4 to the
definition of (k, `)-minimality for CSP instances given in [1].

Definition 13. A CSP-instance J = (V,D, {(Si, Ci)}qi=1) is said to be (k, `)-
minimal if:

– For every S ⊆ V , |S| ≤ `, there exists 1 ≤ i ≤ q such that S = Si.
– For every i, j ∈ [q] such that |Sj | ≤ k and Sj ⊆ Si, Cj = πSj

(Ci).

There is a straightforward polynomial-time algorithm for finding an equiva-
lent (k, `)-minimal instance [1]. This leads to the notion of relational width:

4 The two requirements in [1] are: for every S ⊆ V with |S| ≤ ` we have S ⊆ Si for
some 1 ≤ i ≤ q; and for every set W ⊆ V with |W | ≤ k and every 1 ≤ i, j ≤ q with
W ⊆ Si and W ⊆ Sj we have πW (Ci) = πW (Cj).
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Definition 14. A constraint language ∆ has relational width (k, `) if, for every
instance J ∈ CSP(∆), an equivalent (k, `)-minimal instance is non-empty if,
and only if, J has a solution.

A k-ary idempotent operation f : Dk → D is called a weak near-unanimity
(WNU) operation if, for all x, y ∈ D, f(y, x, x, . . . , x) = f(x, y, x, x, . . . , x) =
f(x, x, . . . , x, y).

Definition 15. We say that a clone of operations satisfies the bounded width
condition (BWC) if it contains WNU operations of all but finitely many arities.

Theorem 1 ([3, 21]). Let ∆ be a constraint language of finite size containing
all constant unary relations. Then, ∆ has bounded relational width if, and only
if, Pol(∆) satisfies the BWC.

Theorem 2 ([1]). Let ∆ be a constraint language. If ∆ has bounded relational
width, then it has relational width (2, 3).

Let I(x1, . . . , xn) =
∑q
i=1 φi(Si) be an instance of the VCSP, where Si ⊆

V = {x1, . . . , xn} and φi : D
|Si| → Q. First, we make sure that every non-empty

S ⊆ V with |S| ≤ ` appears in some term φi(S), possibly by adding constant-0
weighted relations. The Sherali-Adams [24] linear programming relaxation with
parameters (k, `) is defined as follows. The variables are λi(s) for every i ∈ [q]
and tuple s ∈ DSi .

min

q∑
i=1

∑
s∈Feas(φi)

λi(s)φi(s)

λj(t) =
∑

s∈DSi ,πSj
(s)=t

λi(s) ∀i, j ∈ [q] : Sj ⊆ Si, |Sj | ≤ k, t ∈ DSj

∑
s∈DSi

λi(s) = 1 ∀i ∈ [q]

λi(s) = 0 ∀i ∈ [q] , s 6∈ Feas(φi)

λi(s) ≥ 0 ∀i ∈ [q] , s ∈ DSi

The SA(k, `) optimum is always less than or equal to the VCSP optimum,
hence the program is a relaxation. In anticipation of our main theorem, we make
the following definition.

Definition 16. A valued constraint language Γ has valued relational width
(k, `) if, for every instance I of VCSP(Γ ), if the SA(k, `)-relaxation of I has
a feasible solution, then its optimum coincides with the optimum of I.

For a feasible solution λ of SA(k, `), let supp(λi) = {s ∈ DSi | λi(s) > 0}.

Lemma 5. Let I be an instance of VCSP(Γ ). Assume that SA(k, `) for I is
feasible. Then, there exists an optimal solution λ∗ to SA(k, `) such that, for
every i, supp(λ∗i ) is closed under every operation in supp(Γ ).
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Theorem 3. Let Γ be a valued constraint language of finite size containing
all constant unary relations. If supp(Γ ) satisfies the BWC, then Γ has valued
relational width (2, 3).

Proof. Let I be an instance of VCSP(Γ ). The dual of the SA(k, `) relaxation can
be written in the following form, with variables zi for i ∈ [q] and yj,t,i for i, j ∈ [q]
such that Sj ⊆ Si, |Sj | ≤ k, and t ∈ DSj . The dual variables corresponding to
λi(s) = 0 are eliminated together with the dual inequalities for i, s 6∈ Feas(φi).

max

q∑
i=1

zi

zi ≤ φi(s) +
∑

j∈[q],Sj⊆Si

yj,πSj
(s),i −

∑
j∈[q],Si⊆Sj

yi,s,j ∀i ∈ [q] , |Si| ≤ k, s ∈ Feas(φi)

zi ≤ φi(s) +
∑

j∈[q],Sj⊆Si

|Sj |≤k

yj,πSj
(s),i ∀i ∈ [q] , |Si| > k, s ∈ Feas(φi)

It is clear that if I has a feasible solution, then so does the SA(k, `) primal.
Assume that the SA(2, 3)-relaxation has a feasible solution. By Lemma 5, there
exists an optimal primal solution λ∗ such that, for every i ∈ [q], supp(λ∗i ) is
closed under supp(Γ ). Let y∗, z∗ be an optimal dual solution.

Let ∆ = {Ci}qi=1 ∪ {CD}, where Ci = supp(λ∗i ), and consider the instance
J = (V,D, {(Si, Ci)}qi=1) of CSP(∆). We make the following observations:

1. By construction of λ∗, supp(Γ ) ⊆ Pol(∆), so ∆ contains all constant unary
relations and satisfies the BWC. By Theorems 1 and 2, the language ∆ has
relational width (2, 3).

2. The first set of constraints in the primal say that if i, j ∈ [q], |Sj | ≤ 2 and
Sj ⊆ Si, then λ∗j (t) > 0 (i.e., t ∈ Cj) iff

∑
s∈DSi ,πSj

(s)=t λ
∗
i (s) > 0 (i.e.,

t ∈ πSj
(Ci)). In other words, J is (2, 3)-minimal.

These two observations imply that J has a satisfying assignment σ : V → D.
By complementary slackness, since λ∗i (σ(Si)) > 0 for every i ∈ [q], we must have
equality in the corresponding rows in the dual indexed by i and σ(Si). Hence,

q∑
i=1

z∗i =

q∑
i=1

φi(σ(Si))+(

q∑
i=1

∑
j∈[q],Sj⊆Si

|Sj |≤2

y∗j,πSj
(σ(Si)),i

−
∑
i∈[q]
|Si|≤2

∑
j∈[q]
Si⊆Sj

y∗i,σ(Si),j
) (3)

By noting that πSj
(σ(Si)) = σ(Sj), we can rewrite the expression in paren-

thesis on the right-hand side of (3) as:∑
i,j∈[q],Sj⊆Si

|Sj |≤2

y∗j,σ(Sj),i
−

∑
i,j∈[q],Si⊆Sj

|Si|≤2

y∗i,σ(Si),j
= 0. (4)

Therefore,
∑q
i=1

∑
s∈Feas(φi)

λ∗i (s)φi(s) =
∑q
i=1 z

∗
i =

∑q
i=1 φi(σ(Si)),where

the first equality follows by strong LP-duality, and the second by (3) and (4).
Since I was an arbitrary instance of VCSP(Γ ), the theorem follows.
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4 Generalisations of Known Tractable Languages

In this section, we give some applications of Theorem 3. Firstly, we show that the
BWC is preserved by going to a core and the addition of constant unary relations.
Hence the BWC guarantees valued relational width (2, 3) also for languages not
necessarily containing constant unary relations, as required by Theorem 3.

Lemma 6. Let Γ be a valued constraint language of finite size on domain D
and Γ ′ a core of Γ on domain D′ ⊆ D. Then, supp(Γ ) satisfies the BWC if,
and only if, supp(Γ ′ ∪ CD′) satisfies the BWC.

Theorem 4. Let Γ be a valued constraint language of finite size. If supp(Γ )
satisfies the BWC, then Γ has valued relational width (2, 3).

Secondly, we show that for any VCSP instance over a language of valued
relational width (2, 3) we can not only compute the value of an optimal solution
but we can also find an optimal assignment in polynomial time.

Proposition 1. Let Γ be a valued constraint language of finite size and I an
instance of VCSP(Γ ). If supp(Γ ) satisfies the BWC, then an optimal assignment
to I can be found in polynomial time.

Finally, we show that testing for the BWC is a decidable problem.

Proposition 2. Testing whether a valued constraint language of finite size sat-
isfies the BWC is decidable.

Tractable Languages Here we give some examples of previously studied valued
constraint languages and show that they all have valued relational width (2, 3).

Example 3. Let ω be a ternary fractional operation defined by ω(f) = ω(g) =
ω(h) = 1

3 for some (not necessarily distinct) majority operations f , g, and h.
Cohen et al. proved the tractability of any language improved by ω by a reduction
to CSPs with a majority polymorphism [8].

Example 4. Let ω be a ternary fractional operation defined by ω(f) = 2
3 and

ω(g) = 1
3 , where f : {0, 1}3 → {0, 1} is the Boolean majority operation and

g : {0, 1}3 → {0, 1} is the Boolean minority operation. Cohen et al. proved the
tractability of any language improved by ω by a simple propagation algorithm [8].

Example 5. Generalising Example 4 from Boolean to arbitrary domains, let ω be
a ternary fractional operation such that ω(f) = 1

3 , ω(g) = 1
3 , and ω(h) = 1

3 for
some (not necessarily distinct) conservative majority operations f and g, and a
conservative minority operation h; such an ω is called an MJN. Kolmogorov and
Živný proved the tractability of any language improved by ω by a 3-consistency
algorithm and a reduction, via Example 6, to submodular function minimisa-
tion [18].
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Corollary 1. Let Γ be a valued constraint language of finite size such that
supp(Γ ) contains a majority operation. Then, Γ has valued relational width
(2, 3).

Example 6. Let ω be a binary fractional operation defined by ω(f) = ω(g) =
1
2 , where f and g are conservative and commutative operations and f(x, y) 6=
g(x, y) for every x and y; such an ω is called a symmetric tournament pair
(STP). Cohen et al. proved the tractability of any language improved by ω by
a 3-consistency algorithm and an ingenious reduction to submodular function
minimisation [7]. Such languages were shown to be the only tractable languages
among conservative finite-valued constraint languages [18].

Corollary 2. Let Γ be a valued constraint language of finite size such that
supp(Γ ) contains two symmetric tournament operations (that is, binary oper-
ations f and g that are both conservative and commutative and f(x, y) 6= g(x, y)
for every x and y). Then, Γ has valued relational width (2, 3).

Example 7. Generalising Example 6, let ω be a binary fractional operation de-
fined by ω(f) = ω(g) = 1

2 , where f and g are conservative and commuta-
tive operations; such an ω is called a tournament pair. Cohen et al. proved the
tractability of any language improved by ω by a consistency-reduction relying
on Bulatov’s result [4], which in turn relies on 3-consistency, to the STP case
from Example 6 [7].

Corollary 3. Let Γ be a valued constraint language of finite size such that
supp(Γ ) contains a tournament operation (that is, a binary conservative and
commutative operation). Then, Γ has valued relational width (2, 3).

Example 8. In this example we denote by {{. . .}} a multiset. Let ω be a bi-
nary fractional operation on D defined by ω(f) = ω(g) = 1

2 and let µ be a
ternary fractional operation on D defined by µ(h1) = µ(h2) = µ(h3) = 1

3 .
Moreover, assume that {{f(x, y), g(x, y)}} = {{x, y}} for every x and y and
{{h1(x, y, z), h2(x, y, z), h3(x, y, z)}} = {{x, y, z}} for every x, y, and z. Let Γ
be a language on D such that for every two-element subset {a, b} ⊆ D, ei-
ther ω|{a,b} is an STP or µ|{a,b} is an MJN. Kolmogorov and Živný proved the
tractability of Γ by a 3-consistency algorithm and a reduction, via Example 6,
to submodular function minimisation [18]. Such languages were shown to be the
only tractable languages among conservative valued constraint languages [18].

Corollary 4. Let Γ be a valued constraint language of finite size with fractional
polymorphisms ω and µ as described in Example 8. Then, Γ has valued relational
width (2, 3).

Dichotomy for Conservative Valued Constraint Languages A valued constraint
language Γ is called conservative if Γ contains all unary {0, 1}-valued weighted
relations. Kolmogorov and Živný gave a dichotomy theorem for such languages,
showing that they are either NP-hard, or tractable, cf. Example 8. Here we prove
this dichotomy using the SA(2, 3)-relaxation as the algorithmic tool.
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Lemma 7. Let Γ be a valued constraint language and I be any instance of
VCSP(Γ ). Then, VCSP(Γ ∪ {Opt(I)}) polynomial-time reduces to VCSP(Γ ).

The following theorem was proved by Takhanov [25] with a reduction, essen-
tially amounting to Lemma 7, added in [18].

Theorem 5 ([18, 25]). Let Γ be a conservative valued constraint language. If
Pol(Γ ) does not contain a majority polymorphism, then Γ is NP-hard.

Theorem 6. Let Γ be a conservative valued constraint language. Either Γ is
NP-hard, or Γ has valued relational width (2, 3).

Proof. Let F be the set of majority operations in Pol(Γ )\supp(Γ ). By Lemma 2,
for each f ∈ F , there is an instance If of VCSP(Γ ) such that f 6∈ Pol(Opt(If )).
Let Γ ′ = Γ ∪ {Opt(If ) | f ∈ F}. Assume that Pol(Γ ′) contains a majority
polymorphism f . Then, f 6∈ F , so f ∈ supp(Γ ). From Corollary 1, it follows
that Γ has valued relational width (2, 3). If Pol(Γ ′) does not contain a majority
polymorphism, then, since Γ is conservative, so is Γ ′, and hence Γ ′ is NP-hard
by Theorem 5. Therefore, Γ is NP-hard by Lemma 7.

5 Conclusions

We have shown that most previously studied tractable valued constraint lan-
guages that are not purely relational fall into the cases covered by Theorem 4.
In the full version of this paper, we will prove the converse of Theorem 4, thus
giving a precise characterisation of the power of valued relational width (2, 3),
as well as some computational complexity consequences.
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