D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus, C-SPARQL, Proceedings of the 18th international conference on World wide web, WWW '09, pp.1061-1062, 2009.
DOI : 10.1145/1526709.1526856

D. Dell-'aglio, J. P. Calbimonte, M. Balduini, O. Corcho, and E. D. Valle, On correctness in rdf stream processor benchmarking, The 12th International Semantic Web Conference (ISWC2013), pp.321-336, 2013.

L. Fischer, T. Scharrenbach, and A. Bernstein, Scalable linked data stream processing via network-aware workload scheduling, Proceedings of the 9th International Workshop on Scalable Semantic Web Knowledge Base Systems, pp.81-96, 2013.

N. F. García, J. Arias-fisteus, L. Sánchez, D. Fuentes-lorenzo, and . Corcho, RDSZ: an approach for lossless RDF stream compression, The Semantic Web: Trends and Challenges -11th International Conference, pp.52-67, 2014.

M. Kolchin, P. Wetz, E. Kiesling, and A. M. Tjoa, YABench: A Comprehensive Framework for RDF Stream Processor Correctness and Performance Assessment, Web Engineering -16th International Conference, pp.280-298, 2016.
DOI : 10.1145/130283.130333

D. Le-phuoc, M. Dao-tran, J. X. Parreira, and M. Hauswirth, A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data, Proceedings of the 10th international conference on The Semantic Web -Volume Part I, ISWC'11, pp.370-388, 2011.
DOI : 10.1007/11669463_4

L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, S4: Distributed Stream Computing Platform, 2010 IEEE International Conference on Data Mining Workshops, pp.170-177, 2010.
DOI : 10.1109/ICDMW.2010.172

URL : http://www.cs.brown.edu/courses/cs227/papers/s4.pdf

D. L. Phuoc, H. N. Quoc, C. L. Van, and M. Hauswirth, Elastic and scalable processing of linked stream data in the cloud, The Semantic Web -ISWC 2013, pp.280-297, 2013.

A. Sheth, C. Henson, and S. S. Sahoo, Semantic Sensor Web, IEEE Internet Computing, vol.12, issue.4, pp.78-83, 2008.
DOI : 10.1109/MIC.2008.87

G. Wang, J. Koshy, S. Subramanian, K. Paramasivam, M. Zadeh et al., Building a replicated logging system with Apache Kafka, Proc. VLDB Endow, pp.1654-1665, 2015.
DOI : 10.14778/2824032.2824063