]. S. Li, J. Matthews, and A. Sinha, Atmospheric Hydroxyl Radical Production from 473, Hydroxyl Radicals ( ? OH), pp.13051-13092, 2015.

H. Jungwirth, . Radical, J. The-air-water-interface, . M. Am-]-l, G. E. Dorfman et al., Riley, Free radicals in biology: oxidative stress and the effects of ionizing 480 radiation Reactivity of the hydroxyl radical in aqueous solutions Oxidation potentials Stabilities of hydroxyl radical spin of PBN-type 485 spin traps, Free Radic The chemistry of water-treatment processes 487 involving ozone, hydrogen-peroxide and ultraviolet-radiation, [10] M.A. Oturan, J.-J. Aaron, Advanced Oxidation Processes in Water, pp.478-16308, 1952.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras et al., 493 review on the visible light active titanium dioxide photocatalysts for environmental 495 applications, Appl. Catal. B Environ. Critical Review of Rate, vol.12512, issue.497, pp.331-349, 2012.

C. Ccl4, Novel complexation between ferric ions and nonionic 503 surfactants (Brij) and its visible light activity for CCl 4 degradation in aqueous micellar 504 solutions, Appl. Catal. B Environ. J. Photochem. Photobiol. A Chem, vol.501, issue.165, pp.52-75, 2004.

M. Lee and J. Oh, Sonolysis of trichloroethylene and carbon tetrachloride in aqueous solution, Ultrasonics Sonochemistry, vol.17, issue.1, pp.207-212, 2010.
DOI : 10.1016/j.ultsonch.2009.06.018

M. Lim, Y. Son, and J. Khim, Frequency effects on the sonochemical degradation of chlorinated compounds, Ultrasonics Sonochemistry, vol.18, issue.1, pp.460-465, 2011.
DOI : 10.1016/j.ultsonch.2010.07.021

H. Che and W. Lee, Selective redox degradation of chlorinated aliphatic compounds by 513

]. A. Teel, R. J. Watts-]-b, A. L. Smith, R. J. Teel, J. L. Watts et al., Degradation of carbon tetrachloride by modified Fenton's 515 reagent Mechanism for the destruction of carbon 517 tetrachloride and chloroform DNAPLs by modified Fenton's reagent Facile degradation by superoxide ion of carbon 520 tetrachloride, chloroform, methylene chloride, DDT in aprotic media, J. Am, pp.82-1103, 1920.

M. A. Rodrigo, N. Oturan, and M. A. Oturan, Electrochemically assisted remediation of 529 pesticides in soils and water: a review, Chem. Rev. Chem. Rev, vol.1098745, issue.530, pp.6570-527, 2009.

]. I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo, M. Panizza et al., Electrochemical advanced 534 oxidation processes: today and tomorrow. A review, Pollutants : A Critical Review, pp.13362-13407, 2014.

. Appl, . Catal, E. Environ, L. Mousset, G. Frunzo et al., A 540 complete phenol oxidation pathway obtained during electro-Fenton treatment and 541 validated by a kinetic model study Degradation of trimethoprim 543, Cost-effective electro-Fenton using modified graphite felt that 546 dramatically enhanced on H 2 O 2 electro-generation without external aeration, pp.217-261, 2016.

M. A. Oturan-]-d, C. De-araújo, C. A. Sáez, P. Martínez-huitle, M. A. Cañizares et al., Impact of electrochemical treatment of soil washing solution on PAH 550 degradation efficiency and soil respirometry Influence 552 of mediated processes on the removal of Rhodamine with conductive-diamond 553 electrochemical oxidation Degradation of trimethoprim 555 antibiotic by UVA photoelectro-Fenton process mediated by Fe(III)?carboxylate 556 complexes, Environ. Pollut. Appl. Catal. B Environ. Appl. Catal. B Environ, vol.211, issue.162, pp.354-362, 2015.

N. Oturan, E. Brillas, and M. A. Oturan, Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene 559 degradation by electro-Fenton process -Study of soil washing recycling possibilities 560 and environmental impact Unprecedented total mineralization of atrazine and 562 cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond 563 anode, Mousset, N. Oturan, E.D. van Hullebusch, G. Guibaud, G. Esposito, M.A. Oturan, pp.306-316, 2012.

E. Mousset, Z. T. Ko, M. Syafiq, Z. Wang, and O. Lefebvre, Electrocatalytic activity 572 enhancement of a graphene ink-coated carbon cloth cathode for oxidative treatment, p.573

]. P. Nidheesh, R. Gandhimathi, T. X. Le, M. Bechelany, S. Lacour et al., Trends in electro-Fenton process for water and 575 wastewater treatment: An overview, Desalination High 577 removal efficiency of dye pollutants by electron-Fenton process using a graphene 578 based cathode, Electrochim. Acta. N. Oturan, M. a. Oturan, M. Cretin Carbon N. Y, vol.222, issue.94, pp.1628-1641, 2015.

. Agron, . Sustain, . Dev-]-e, Z. Mousset, O. Wang et al., Electro-Fenton for control and removal of 583 micropollutants -process optimization and energy efficiency 585 [43] F. Sopaj, Study of the influence of electrode material in the application of 586 electrochemical advanced oxidation processes to removal of pharmaceutical pollutants 587 from water Electrocatalytic destruction of 589 the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation 590 processes: Effect of electrode materials, Standard Potentials in Aqueous Solutions, pp.839-846, 1985.

M. Panizza and G. Cerisola, Direct and mediated anodic oxidation of organic pollutants, p.597

]. I. Sirés, J. A. Garrido, R. M. Rodríguez, E. Brillas, N. Oturan et al., Catalytic 599 behavior of the Fe 3+ /Fe 2+ system in the electro-Fenton degradation of the antimicrobial 600 chlorophene, Chem. Rev. Appl. Catal. B Environ, vol.109, issue.72, pp.6541-6569, 2007.

M. E. Bergmann, J. Rollin, and T. Iourtchouk, The occurrence of perchlorate during drinking water electrolysis using BDD anodes, Electrochemical treatment of water 605 containing chlorides under non-ideal flow conditions with BDD anodes, pp.2102-603, 2009.
DOI : 10.1016/j.electacta.2008.09.040

]. C. Electrochem, I. Salazar, R. Sires, H. Salazar, C. Mansilla et al., Treatment of cellulose bleaching 608 effluents and their filtration permeates by anodic oxidation with H 2 O 2 production, pp.1087-1097, 2011.

]. E. Lacasa, J. Llanos, P. Cañizares, and M. A. Rodrigo, Electrochemical denitrificacion with 611 chlorides using DSA and BDD anodes, Chem. Technol. Biotechnol. Chem. Eng. J, vol.90, issue.184, pp.2017-2026, 2012.
DOI : 10.1016/j.cej.2011.12.090

G. P. Anipsitakis, M. A. Gonzalez, G. Merényi, J. Lind, S. Naumov et al., Cobalt-Mediated Activation of Peroxymonosulfate 618 Reaction of ozone with hydrogen 621 peroxide (peroxone process): a revision of current mechanistic concepts based on 622 thermokinetic and quantum-chemical considerations, Environ. Sci. Technol, pp.44-623, 2010.

]. C. Martínez-huitle and E. Brillas, Electrochemical alternatives for drinking water 625 disinfection, Einaga, An electrolyte-free 627 system for ozone generation using heavily boron-doped diamond electrodes, pp.3505-3507, 1998.

P. Christensen, T. Yonar, and K. Zakaria, The Electrochemical Generation of Ozone : A 630

O. Review, . Sci, ]. A. Eng, G. Kapa?ka, C. Fóti et al., Kinetic modelling of the electrochemical 632 mineralization of organic pollutants for wastewater treatment, J. Appl. Electrochem, vol.3561, issue.634, pp.149-167, 2008.

M. A. Oturan, Occurrence and removal of organic micropollutants in landfill leachates 636 treated by electrochemical advanced oxidation processes, Environ. Sci. Technol, vol.49, pp.637-12187, 2015.

R. Mertens, C. Von-sonntag, J. Lind, G. Merenyi, and . Kinetic, Advanced oxidation processes: Mechanistic aspects, Water Sci, pp.1159-1172