
HAL Id: hal-01710920
https://hal.science/hal-01710920

Submitted on 1 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for hierarchical segmentation based on the
Felzenszwalb-Huttenlocher dissimilarity

Edward Jorge Yuri Cayllahua Cahuina, Jean Cousty, Yukiko Kenmochi,
Arnaldo de Albuquerque Araujo, Guillermo Cámara-Chávez

To cite this version:
Edward Jorge Yuri Cayllahua Cahuina, Jean Cousty, Yukiko Kenmochi, Arnaldo de Albu-
querque Araujo, Guillermo Cámara-Chávez. Algorithms for hierarchical segmentation based on the
Felzenszwalb-Huttenlocher dissimilarity. International Conference on Pattern Recognition and Arti-
ficial Intelligence, May 2018, Montreal, Canada. �hal-01710920�

https://hal.science/hal-01710920
https://hal.archives-ouvertes.fr


Algorithms for hierarchical segmentation based on
the Felzenszwalb-Huttenlocher dissimilarity

Edward Cayllahua Cahuina∗‡, Jean Cousty∗†, Yukiko Kenmochi∗, Arnaldo de Albuquerque Araujo ‡,
Guillermo Cámara-Chávez §

∗ Université Paris-Est, LIGM, ESIEE Paris - CNRS, France
†Université Paris Descartes, Laboratoire MAP5, UMR CNRS 8145, France
‡Universidade Federal de Minas Gerais, Computer Science Dept., Brazil
§Universidade Federal de Ouro Preto, Computer Science Dept., Brazil

Abstract—Hierarchical image segmentation provides a region-
oriented scale-space, i.e., a set of image segmentations at different
detail levels in which the segmentations at finer levels are nested
with respect to those at coarser levels. Most image segmentation
algorithms, such as region merging algorithms, rely on a criterion
for merging that does not lead to a hierarchy. Guimarães et al.
proposed in 2012 a hierarchical graph-based image segmentation
method relying on a criterion popularized by Felzenszwalb
and Huttenlocher in 2004, hence hierarchizing the popular
Felzenszwalb-Huttenlocher method. However, Guimarães et al.
did not provide an algorithm to compute the proposed hierarchy.
We propose a series of algorithms to compute the result of this
hierarchical graph-based image segmentation method. For an
image of size 321 × 481 pixels, the most efficient algorithm
produces the result in half a second whereas the most naive
one requires more than four hours.

I. INTRODUCTION

A hierarchical image segmentation is a series of image seg-
mentations at different detail levels where the segmentations
at higher detail levels are produced by merging regions from
segmentations at finer detail levels. Consequently, the regions
at finer detail levels are nested in regions at coarser levels. A
hierarchical image segmentation is illustrated in Fig. 1.

Hierarchical image segmentation provides a multi-scale
approach to image analysis. Hierarchical image analysis was
pioneered by [1] and has received a lot of attention since
then, as attested by the popularity of [2]. In [3], the global
information is used to create the initial regions and then the
region merging process is treated as a series of optimization
problems. Mathematical morphology is also used in hierarchi-
cal image analysis with, e.g., hierarchical watersheds [4, 5],
binary partition trees [6], scale-set theory [7], or quasi-flat
zones hierarchies [8].

In [9] (see [10] for its preliminary version), the quasi-
flat zone hierarchy is used to perform a hierarchical image
segmentation. This work relies on the graph-based (GB) image
segmentation algorithm proposed in [11]. GB algorithm uses a
merging predicate to decide if, at a certain scale parameter, two
adjacent regions of an image should be merged into a single
one, thus, producing a segmented image. In its original form,
GB algorithm does not directly lead to a hierarchical image
segmentation. In [9], the merging predicate of GB algorithm
is used along with the quasi-flat zone hierarchy to produce a
hierarchical version of GB method called HGB.

(a) Original image (b) Hierarchical segmentation de-
picted as a saliency map

(c) Some levels of this hierarchical segmentation

Fig. 1: Illustration of a hierarchical image segmentation.

The HGB method produces satisfactory segmentation re-
sults (see [9]). Nonetheless, a precise algorithm to compute
efficiently the result of HGB method is not provided in [9].
The core of HGB method is based on solving a minimization
problem whose solution is the minimum observation scale at
which adjacent regions in the image have to be merged. To
solve this minimization, the method considers all positive real
values to find such minimum observation scale.

In this article, we study HGB method and we focus on two
problems that make difficult its implementation. A first diffi-
culty is related to solving the minimization problem of HGB
method for which a precise algorithmic solution is not given in
[9]. We analyze this minimization process and propose three
algorithms that solve it. The first one solves the minimization
by searching the result in a large space of possible values, we
then reduce this search space to avoid redundant computations,
leading to two efficient algorithms. The second problem is
related to the quasi-flat zone computation. One approach can



be to use an efficient algorithm, such as [12], to compute it
at every step of HGB method. However, efficiency can be
improved by only updating at each iteration the existing quasi-
flat zone hierarchy instead of recomputing it from scratch.
This is done with a procedure similar to the one proposed
in [13, 14]. Overall, the most efficient proposed algorithm
computes the result of HGB method for an image of size 321
× 481 pixels in about half a second whereas it takes over four
hours with the most naive algorithm.

II. HIERARCHICAL GRAPH-BASED IMAGE SEGMENTATION

This section aims at explaining the method of hierarchical
graph-based image segmentation (HGB) [10]. The hierarchy
is constructed from an image via a graph representation, based
on the notion of a quasi-flat zone hierarchy [8]. We first give
a series of necessary notions, and then explain HGB method.

A. Basic notions

1) Hierarchies: Given a finite set V , a partition of V is
a set P of nonempty disjoint subsets of V whose union is
V . Any element of P is a called a region of P. Given two
partitions P and P′ of V , P′ is said to be a refinement of P,
denoted by P′ � P, if any region of P′ is included in a region
of P. A hierarchy on V is a sequence H = (P0, . . . ,P`) of
partitions of V , such that Pi−1 � Pi, for any i ∈ {1, . . . , `}.

2) Graph and connected-components partition: A graph is
a pair G = (V,E) where V is a finite set and E is a subset of
{{x, y} ⊆ V |x 6= y}. Each element of V is called a vertex of
G, and each element of E is called an edge of G. A subgraph
of G is a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. If X
is a graph, its vertex and edge sets are denoted by V (X) and
E(X), respectively.

Let x and y be two vertices of a graph G. A path from x
to y in G is a sequence (x0, . . . , xm) of vertices of G such
that x0 = x, xm = y and {xi−1, xi} is an edge of G for any
i in {1, . . . ,m}. The graph G is connected if, for any vertices
x and y of G, there exists a path from x to y. Let A be a
subset of V (G). The graph induced by A in G is the graph
whose vertex set is A and whose edge set contains any edge
of G made of two elements in A. If the graph induced by A is
connected, then we say that A is connected. The subset A of
V (G) is a connected component of G if it is connected for G
and maximal for this property. We denote by C(G) the set of
all connected components of G. Note that C(G) is a partition
of V (G), which is called the connected-components partition
induced by G.

3) Quasi-flat zones hierarchies: Let us now present the
quasi-flat zones hierarchies which provide a bijection between
an edge-weighted graph and a hierarchy (see more details in
[15]).

Given a graph G = (V,E), let w be a map from E into the
set R of real numbers. For any edge u of G, the value w(u)
is called the weight of u (for w), and the pair (G,w) is called
an edge-weighted graph.

Given an edge-weighted graph (G,w), let X be a subgraph
of G and let λ be a value of R. The λ-level edge set of X for

w is defined by wλ(X) = {u ∈ E(X) | w(u) < λ}, and the
λ-level graph of X for w is defined as the subgraph wVλ (X) of
X , such that wVλ (X) = (V (X), wλ(X)). Then, the connected-
components partition C(wVλ (X)) induced by wVλ (X) is called
the λ-level partition of X for w.

As we consider only finite graphs and hierarchies, the set
of considered level values is reduced to a finite subset of R
that is denoted by E in the remaining parts of this article. In
order to browse the values of this set and to round real values
to values of E we define, for any λ ∈ R:

pE (λ) = max{µ ∈ E ∪ {−∞} | µ < λ};
nE (λ) = min{µ ∈ E ∪ {∞} | µ > λ}; and
n̂E (λ) = min{µ ∈ E ∪ {∞} | µ ≥ λ}.

Let (G,w) be an edge-weighted graph and let X be a
subgraph of G. The sequence of all λ-level partitions of X
for w ordered by increasing value of λ, namely (C(wVλ (X)) |
λ ∈ E ∪ {∞}), is a hierarchy, called the quasi-flat zone
hierarchy of X for w, denoted by QFZ(X,w). Let H be
the quasi-flat zone hierarchy of G for w. Given a vertex x of
G and a value λ in E, the region that contains x in the λ-level
partition of the graph G is denoted by Hλx .

In the remaining parts of this article, the symbol G denotes a
connected graph, the symbol w denotes a map from E into R,
and the symbol T denotes a minimum spanning tree of (G,w).
It has been shown in [15] that the quasi-flat zone hierarchy
QFZ(T,w) of T for w is the same as the quasi-flat zone
hierarchy QFZ(G,w) of G for w. This indicates that the
quasi-flat zone hierarchy for G can be handled by its minimum
spanning tree.

B. Hierarchical graph-based segmentation method

In this article, we consider that the input is the edge-
weighted graph (G,w) representing an image, where the
pixels correspond to the vertices of G and the edges link
adjacent pixels. The weight of each edge is given by a
dissimilarity measure between the linked pixels such as the
absolute difference of intensity between them.

Before explaining HGB method, we first describe the fol-
lowing observation scale dissimilarity [9], which is required by
the method and whose idea originates from the region merging
criterion proposed in [11].

1) Observation scale dissimilarity: In the case of the
Felzenszwalb-Huttenlocher image segmentation algorithm
[11], two regions of an image are merged based on a region
merging predicate. This predicate was later reformulated as
an observation scale dissimilarity measure to produce the
hierarchical segmentation of an image [9] as follows.

Let R1 and R2 be two adjacent regions, the dissimi-
larity measure compares the so-called inter-component and
within-component differences [11]. The inter-component dif-
ference between R1 and R2 is defined by ∆inter(R1, R2) =
min{w ({x, y}) |x ∈ R1, y ∈ R2, {x, y} ∈ E(T )}, while
the within-component difference of a region R is defined by
∆intra(R) = max{w ({x, y}) |x, y ∈ R, {x, y} ∈ E(T )}. It



Method 1: HGB method
Input : A minimum spanning tree T of an

edge-weighted graph (G,w)
Output: A hierarchy H = QFZ(T, f)

1 for each u ∈ E(T ) do f(u) := max{λ ∈ E} ;
2 for each u ∈ E(T ) in non-decreasing order for w do
3 H := QFZ(T, f) ;
4 f(u) := pE (λ?H(u)) ;
5 end
6 H := QFZ(T, f) ;

leads to the observation scale of R1 relative to R2, defined by
SR2

(R1) = (∆inter(R1, R2)−∆intra(R1)) |R1|, where |R1|
is the cardinality of R1. Then, a symmetric metric between R1

and R2, called the observation scale dissimilarity, is defined
by

D(R1, R2) = max{SR2(R1), SR1(R2)}. (1)

This dissimilarity is used to determine if two regions should be
merged or not at a certain observation scale in the following.

2) Method: The HGB method is presented in Method 1.
The input is an image represented by a graph G with its
associated weight function w, where the minimum spanning
tree T of G is taken indeed. From (T,w), HGB method
computes a new weight function f which leads to a new
hierarchy H = QFZ(T, f). The resulting hierarchy H is
considered as the hierarchical image segmentations of the
initial image. Thus, the core of the method is the generation
of the weight function f for T .

To compute the new map f , the HGB method first initializes
all values of f to infinity (see Line 1). Then, an observation
scale value f(u) is computed for each edge u ∈ E(T ) in
non-decreasing order with respect to the original weight w
(see Line 2). Note that each iteration in the loop requires
computing the hierarchy H = QFZ(T, f) (see Line 3). Once
H is obtained, the value λ?H(u) of a finite subset E of R is
obtained by the minimization:

λ?H({x, y}) = min
{
λ ∈ E | D

(
Hλx,Hλy

)
≤ λ

}
. (2)

We first consider the regions Hλx and Hλy at a level λ. Using
the dissimilarity measure D we check if D

(
Hλx,Hλy

)
≤ λ.

Equation (2) states that λ?H({x, y}) is the minimum value λ
that fulfills this minimization. Observe that the minimization
involved in Equation (2) has a solution only if the maximum
of E is greater than the maximum possible dissimilarity value.
In the following, we assume that this assumption always holds
true. Fig. 2 illustrates an example of application of Method 1.

As mentioned above, Guimarães et al. did not provide a
practically efficient algorithm to compute Method 1. In order
to fill this gap, the problem is twofold. Indeed, it is necessary
to propose efficient (i.e., exact and fast) algorithms for (i)
solving the minimization involved in Equation (2); and (ii)
computing the quasi-flat zone hierarchy QFZ(T, f) at each
iteration of Method 1 (Lines 3 and 6).

(a) Input graph

(b) Initialization (c) Iteration 1

(d) Iteration 2 (e) Iteration 3

(f) Iteration 4 (g) Iteration 5

Fig. 2: Illustration of Method 1 with E = {0, 1, . . . , 9}: (a)
the input graph (T,w), (b-g) the graph (T, f) at each iteration
of Method 1 and (g) the resulting quasi-flat zone hierarchy
corresponding to graph (T, f).

III. ALGORITHMS FOR HGB METHOD

In this section, we investigate algorithms to compute the
results of HGB method. In Sections III-A, III-B, and III-C,
three algorithms to perform the minimization involved at
Line 4 of Method 1 are presented. In Section III-C, we
present non-incremental and incremental algorithms to obtain
the quasi-flat zone hierarchy of a weight map as requested at
Lines 3 and 6 of Method 1.

A. Naive minimization algorithm
We first present a naive algorithm, namely Algorithm 1, to

compute the value λ?H({x, y}) given a hierarchy H and an
edge {x, y}. According to Equation (2), it simply consists of
considering the values of E in increasing order until finding
a value λ ∈ E such that D

(
Hλx,Hλy

)
≤ λ. We remark that,

when E is a set of consecutive integers, for any λ in E, the
result of nE (λ) and pE (λ) can be obtained with the simple
integer instruction λ+ 1 and λ− 1, respectively.

Algorithm 1: HGB Naive minimization of Equation 2
Input : A hierarchy H, an edge u = {x, y}
Output: The value λ? such that λ? = λ?H({x, y})

1 λ? := min{λ ∈ E} ;
2 while D

(
Hλx,Hλy

)
> λ? do

3 λ? := nE (λ?) ;
4 end

B. Minimization by range
In Algorithm 1, D

(
Hλx,Hλy

)
is computed for every value

λ in E. However, it may well arise that at two successive
values of E, the regions Hλx and Hλy remain the same and
in this case so does D

(
Hλx,Hλy

)
. In this section, we present

a second algorithm to compute λ?H({x, y}) which allows us
to reduce the amount of redundant calculation compared to
Algorithm 1.

In order to obtain this reduction of redundant calculation,
we search for a partition of E (which, according to Equa-
tion (2), is the range of the possible values of λ?H({x, y}))



into a finite number of discrete intervals such that, in each
interval I =KImin, ImaxK ⊆ E, for any two values λ1 and λ2
in I the regions containing x and y at level λ1 and at
level λ2 remain unchanged. Thus, in this case, we would
have D

(
Hλ1
x ,Hλ1

y

)
= D

(
Hλ2
x ,Hλ2

y

)
= DI which means

in short that, in such interval I , the dissimilarity should be
computed only once. Then, it can be observed that, for any
value λ in I∩JDI , ImaxK, the dissimilarity between the regions
containing x and y at level λ of the hierarchy H is below
the value λ and that, for any value λ in I∩KImin, DIJ, the
dissimilarity between the regions containing x and y at level λ
of the hierarchy H is above λ. Hence, the solution λ?H({x, y})
to our optimization problem can be obtained by browsing all
the intervals of the considered partition of E.

In order to obtain such partition of E, we remark that if
there is no edge in E(T ) whose weight is between λ1 and λ2,
then the λ1-level edge set of T for f is equal to the λ2-
level edge set of T for f , which implies in turn that the λ1
level of H = QFZ(T, f) is equal to the λ2 level of H.
Hence, to obtain a partition of E, such as the one described
in the previous paragraph, it is sufficient to ensure that for
every considered interval KImin, ImaxK, there is no edge whose
weight is strictly between Imin and Imax. In order to find the
desired partition E, it is relevant to consider the successive
values of the range Rf = {f(u) | u ∈ E(T )} of the weight
function f . More precisely, from the above discussion, we
deduce the following property.

Property 1: Let H be a hierarchy, let f be a map from E(T )
to E such that H = QFZ(T, f) and let {x, y} be any edge
of T . Then, we have

λ?H({x, y}) = min{max
(

n̂E
(
D

(
Hλx,Hλy

))
, nE

(
pRf

(λ)
))

| λ ∈ Rf , D(Hλx,Hλy ) ≤ λ}. (3)

Thanks to Property 1, we compute λ?H({x, y}) by brows-
ing the values of Rf in increasing order until a value λ
such that D(Hλx,Hλy ) ≤ λ is found and by taking
the value λ?H({x, y}) which is simply the maximum be-
tween n̂E

(
D(Hλx,Hλy )

)
and nE

(
pRf

(λ)
)

. In order to make
such process computable, it is necessary to browse the range
of f in increasing order. To this end, we propose to store the
values of f in a sorted linked list. Algorithm 2 provides a
precise description of this process. It can be observed that
when the value pE (λ?H ({x, y})) is not yet present in the
range of f , the linked list representing this range is updated
so that it is ready for the next iteration of the main loop in
Method 1. It has to be also noted that in Method 1, the weight
of every edge is initialized to the maximal value of E. In other
words, the linked list must be initialized in Method 1 with the
singleton {max{λ ∈ E}}.

C. Minimization by branch

In the previous section, we reduce the size of the search
space of the minimization defined in Equation (2) by con-
sidering the range Rf of the function f (i.e., a characteristic
function of the considered hierarchy H) instead of the set E

Algorithm 2: HGB Minimization by range
Input : A hierarchy H, a weight map f such that

H = QFZ(T, f), an edge {x, y} of T , a linked
list L of the values of Rf in increasing order

Output: The value λ? such that λ? = λ?H({x, y}), the
updated linked list L of the values of
Rf ∪ {pE (λ?)} in increasing order

1 l := L.head; λ := l.value; λprev := −∞ ;
2 while D

(
Hλx,Hλy

)
> λ do

3 λprev := λ; l := l.next;λ := l.value;
4 end
5 λ? := max(nE (λprev) , n̂E

(
D(Hλx,Hλy )

)
;

6 if pE (λ?) 6= λprev then L.insert(pE (λ?));

of all possible scales of the hierarchy H (see Property 1).
In this section, we show that this search space can be fur-
ther reduced, leading to a third algorithm for computing the
value λ?H({x, y}), given any hierarchy H and any edge {x, y}.

In order to obtain this second reduction, we observe in
Equation (2) that the only regions of the hierarchy involved
in the minimization are those containing x and y. Therefore,
while searching for the value λ?H({x, y}), it is unnecessary to
consider a scale of H (i.e., a value in Rf ) at which the regions
containing x and y are the same as those at the preceding scale.
In other words, rather than considering the scales in Rf for
which there is a global change in the hierarchy, one can focus
on the scales for which the change of the hierarchy is local
to x and y, i.e., when the change involves a region containing
either x or y.

Let x be any vertex of V and let us denote by BH(x) the
set which contains every region R of the hierarchy H such
that x belongs to R. The set BH(x) is called the branch of x
in H. The level of a region R, denoted by levelH(R), in H
is the lowest index of a partition that contains R in H. The
(branch) range of H for x, denoted by Rxf , is defined as the
set that contains the level of every region of the branch of x
in H: Rxf = {levelH(R) | R ∈ BH(x)}. Using this notion
of a branch range the following property can be deduced. The
difference with Property 1 is that the range of f (f being such
that H = QFZ(T, f)) is replaced by the union of the branch
ranges of H for x and for y.

Property 2: Let H be a hierarchy and let {x, y} be any edge
of T . Then, we have:

λ?H({x, y}) = min{max
(
n̂E

(
D

(
Hλx,Hλy

))
, nE (pB (λ))

)
| λ ∈ B, D(Hλx,Hλy ) ≤ λ}, (4)

where B = Rxf ∪ Ryf .
Due to Property 2, to compute λ?H({x, y}), it is sufficient

to browse in increasing order the levels of the regions in the
branches of x and of y until a value λ, such that D(Hλx,Hλy ) ≤
λ, is found. Finally, the value λ?H({x, y}) is determined
as the maximum between n̂E

(
D(Hλx,Hλy )

)
and nE (pB (λ)),

where B = Rxf ∪ Ryf . In order to propose such an algorithm,



we need to browse in increasing order the levels of the
regions in the branches of x and of y. This can be done
with a tree data structure, called a component tree, which
represents the hierarchy. The component tree is used for
various image processing tasks and is well studied in the field
of mathematical morphology (see, e.g., [16] for its definition
on vertex weighted graphs, [17] for the case of edge-weighted
graphs and quasi-flat zone, and [18] for their generalization to
directed graphs). In classification, this tree is often called the
dendrogram of the hierarchy.

As any tree, the component tree of H can be defined as a
pair made of a set of nodes and of a binary (parent) relation
on the set of nodes. More precisely, the component tree of H
is the pair TH = (N , parent) such that N is the set of all
regions of H and such that a region R1 in N is a parent of
a region R2 in N whenever R1 is a minimal (for inclusion
relation) proper superset of R2. Note that every region in N
has exactly one parent except the region V which has no parent
and is called the root of the component tree of H. Any region
which is not the parent of another one is called a leaf of the
tree. It can be observed that any singleton of V is a leaf of TH
and that conversely any leaf of TH is a singleton of V .

In order to browse the branch of x in H from its component
tree, it is enough to follow the next steps: (1) start with the
node C that is the leaf {x}, (2) consider the parent of C,
and (3) repeat step (2) until the root is found. Furthermore, it
can be observed that the levelH attribute is increasing in the
branch of x: for any non-root node C in N , the level of the
parent of C is never less than the level of C. Hence, the branch
browsing process also allows browsing the branch range of H
for x in increasing order. According to Property 2, in order
to find the value λ?H({x, y}), for any edge {x, y} of T and
any hierarchy H, we have to consider the union of the ranges
of H for x and for y, sorted in increasing order. This can be
done by simultaneously browsing in the component tree TH
the branches of x and of y. Algorithm 3 provides a precise
description of a complete algorithm to find λ?H({x, y}) using
such a simultaneous branch browsing.

Algorithm 3: HGB Minimization by branch
Input : The component tree T = (N , parent) of a

hierarchy H, an edge u = {x, y} of T , an array
level that stores the level of every region of H

Output: The value λ? such that λ? = λ?H({x, y})
1 Cx := {x}; Cy := {y}; λ := −∞;λprev := −∞;
2 while D (Cx, Cy) > λ do
3 λprev := λ ;
4 λ := min(level[parent[Cx]], level[parent[Cy]]);
5 if level[parent[Cx]] = λ then Cx := parent[Cx];
6 if level[parent[Cy]] = λ then Cy := parent[Cy];
7 end
8 λ? := max(nE (λprev) , n̂E

(
D(Hλx,Hλy )

)
;

(a) Input graph

(b) Initialization (c) Iteration 1

(d) Iteration 2 (e) Iteration 3

(f) Iteration 4 (g) Iteration 5

Fig. 3: Tree representations of the quasi-flat zones hierarchies
of the graphs of Fig. 2; (g) shows the output hierarchy
computed by HGB Method.

D. QFZ computation

In this section, we focus on Lines 3 and 6 of Method 1
that is, on computing the quasi-flat zone hierarchy of a weight
map f . This computation is repeated at every iteration of the
method (i.e., for every edge of the tree T ). Hence, finding an
efficient way to perform this task in the context of Method 1
presents a high speedup potential.

A first implementation for this task consists simply of
computing, at every iteration, the quasi-flat zone hierarchy of f
using an efficient algorithm such as the one presented in [12].
However, from one iteration of the main loop of Method 1
to the next one, only one weight of the graph is updated and
therefore most parts of the component tree remain unchanged
(see, for instance, Fig. 3). Hence, rather than recomputing
from scratch the whole component tree at each iteration,
one can guess that an important speedup can be reached
by updating only the part of the component tree which is
affected by the single weight update considered at the present
iteration. Such computation is referred to as an incremental
quasi-flat zone update. In [13] and [14], the authors propose
an algorithm to merge the component trees of two disjoint
(adjacent) image blocks in order to obtain the component
tree of the image consisting of these two blocks. Since the
weight of an edge is updated only once during the whole
execution of Method 1, from the initial value max{λ ∈ E}
to its final value, the algorithms described in [13] and [14]
can be adapted to the problem of this article. The update
algorithm modifies the tree structure in the following manner:
first, given an edge u = {x, y} of updated weight λ = f(u),
the componentsHλx andHλy are identified in the tree and then a



TABLE I: Execution times from the image of Fig. 4(a) (321×
481 pixels). The resulting hierarchy contains 5218 levels.

QFZ Minimization Execution times (seconds)
Algorithm Algorithm Total QFZ Minimization

Non-
Incremental

Algorithm 1 14666.08 13186.31 1479.56
Algorithm 2 13392.51 13375.29 17.02
Algorithm 3 13166.25 13165.54 0.49

Incremental
Algorithm 1 1487.96 0.13 1487.75
Algorithm 2 15.42 0.13 15.21
Algorithm 3 0.49 0.10 0.32

new node is created in the tree structure at level λ+ 1, which
represents the union of these two components. Finally, the
algorithm identifies the ancestors of these components in the
tree, and updates the parenthood relationship of these nodes.
This is done until the root is found. Consequently, only the
components containing x and y are involved in the update
algorithm and we do not need to recompute a whole hierarchy
at every iteration.

IV. ASSESSMENTS

The experiment aims at measuring and comparing the
execution times of all the variations of our algorithms, which
are previously presented for HGB method; as we have three
variations for the minimization step (Line 4 in Method 1),
Algorithms 1, 2 and 3, and two variations for quasi-flat zone
computation (Lines 3 and 6 in Method 1), the non-incremental
one [12] and the incremental one [13, 14], the total number of
all the combinations is six. The algorithms were implemented
in C and executed on a computer with a 3.2 GHz CPU,
8GB RAM. The six algorithms were executed on the image
of Fig. 4 (a). Fig. 4 (b) shows the resulting hierarchical
segmentation, from which we see that a large number of
regions and hierarchical levels were produced.

Table I shows the results for all the variations. We ob-
serve that using the incremental quasi-flat zone computation
provides a great gain in efficiency compared to the non-
incremental approach. For the minimization step, Algorithm 1
is the least efficient of all. It is important to notice that
Algorithm 3 is much faster than Algorithm 2, which validates
that minimization by branch is the most efficient of the three
algorithms to solve the minimization problem. For further
assessment, we tested our fastest algorithm on the 500 images
of the Berkeley dataset leading to an average execution time
of 0.19 ± 0.02 seconds.

V. CONCLUSIONS

We first investigated the HGB method [10] with the aim
of proposing practical algorithms for its implementation on
images. We focused on two steps for improving efficiency:
(i) the minimization involved in Equation (2), and (ii) the
computation of the quasi-flat zones hierarchies. Concerning
(i), we presented two properties which allow us to improve an
algorithm to compute the minimum value λ?H({x, y}) step by
step. The most efficient one is Algorithm 3, as confirmed by
the assessments (see Table I). In order to compute efficiently

(a) Input image (b) Hierarchical segmentation

Fig. 4: Image used for the algorithm assessment and the
resulting HGB hierarchy represented as a saliency map.

the quasi-flat zone hierarchy (ii), the incremental update strat-
egy [13] was used. The improvement over the non-incremental
strategy is also confirmed by the experiment.

REFERENCES

[1] T. Pavlidis, Structural Pattern Recognition. Springer, 1977.
[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection

and hierarchical image segmentation,” TPAMI, pp. 898–916, 2011.
[3] J.-H. Syu, S.-J. Wang, and L. Wang, “Hierarchical image segmentation

based on iterative contraction and merging,” TIP, pp. 2246 – 2260, 2017.
[4] S. Beucher, “Watershed, hierarchical segmentation and waterfall algo-

rithm,” in ISMM, 1994, pp. 69–76.
[5] L. Najman and M. Schmitt, “Geodesic saliency of watershed contours

and hierarchical segmentation,” TPAMI, pp. 1163–1173, 1996.
[6] P. Salembier and L. Garrido, “Binary partition tree as an efficient

representation for image processing, segmentation, and information
retrieval,” TIP, pp. 561–576, 2000.

[7] L. Guigues, J. P. Cocquerez, and H. Le Men, “Scale-sets image analysis,”
IJCV, pp. 289–317, 2006.

[8] F. Meyer and P. Maragos, “Morphological scale-space representation
with levelings,” in Scale-Space Theories in Computer Vision, 1999, pp.
187–198.

[9] S. Guimarães, Y. Kenmochi, J. Cousty, Z. Patrocinio Jr., and L. Naj-
man, “Hierarchizing graph-based image segmentation algorithms relying
on region dissimilarity - the case of the Felzenszwalb-Huttenlocher
method,” Math. Morphol. Theory Appl., pp. 1–22, 2017.

[10] S. Guimarães, J. Cousty, Y. Kenmochi, and L. Najman, “A hierarchical
image segmentation algorithm based on an observation scale,” in SSPR,
2012, pp. 116–125.

[11] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” IJCV, pp. 167–181, 2004.

[12] L. Najman, J. Cousty, and B. Perret, “Playing with kruskal: algorithms
for morphological trees in edge-weighted graphs,” in ISMM, 2013, pp.
135–146.

[13] J. Havel, F. Merciol, and S. Lefèvre, “Efficient tree construction for
multiscale image representation and processing,” JRTIP, pp. 1–18, 2016.

[14] M. H. Wilkinson, H. Gao, W. H. Hesselink, J.-E. Jonker, and A. Meijster,
“Concurrent computation of attribute filters on shared memory parallel
machines,” TPAMI, pp. 1800–1813, 2008.

[15] J. Cousty, L. Najman, Y. Kenmochi, and S. Guimarães, “Hierarchical
segmentations with graphs: Quasi-flat zones, minimum spanning trees,
and saliency maps,” JMIV, pp. 1–22, 2017.

[16] P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive connected
operators for image and sequence processing,” TIP, pp. 555 – 570, 1998.

[17] J. Cousty, L. Najman, and B. Perret, “Constructive links between some
morphological hierarchies on edge-weighted graphs,” in ISMM, 2013,
pp. 135–146.

[18] B. Perret, J. Cousty, O. Tankyevych, H. Talbot, and N. Passat, “Directed
connected operators: asymmetric hierarchies for image filtering and
segmentation,” TPAMI, pp. 1162–1176, 2015.


