H. Farid, Image forgery detection, IEEE Signal Processing Magazine, vol.26, issue.2, pp.16-25, 2009.
DOI : 10.1109/MSP.2008.931079

J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner, Demo of Face2Face, ACM SIGGRAPH 2016 Emerging Technologies on, SIGGRAPH '16, pp.2387-2395, 2016.
DOI : 10.1145/2929464.2929475

S. Fan, T. Ng, J. S. Herberg, B. L. Koenig, and S. Xin, ?, SIGGRAPH Asia 2012 Technical Briefs on, SA '12, p.17, 2012.
DOI : 10.1145/2407746.2407763

V. Schetinger, M. M. Oliveira, R. Da-silva, and T. J. Carvalho, Humans are easily fooled by digital images, Computers & Graphics, vol.68, 2015.
DOI : 10.1016/j.cag.2017.08.010

H. Farid and S. Lyu, Higher-order Wavelet Statistics and their Application to Digital Forensics, 2003 Conference on Computer Vision and Pattern Recognition Workshop, p.94, 2003.
DOI : 10.1109/CVPRW.2003.10093

URL : http://www.cs.dartmouth.edu/~farid/publications/sacv03.ps.gz

T. Ng and S. Chang, An online system for classifying computer graphics images from natural photographs, Security, Steganography, and Watermarking of Multimedia Contents VIII, pp.607-211, 2006.
DOI : 10.1117/12.650162

A. E. Dirik, S. Bayram, H. T. Sencar, and N. Memon, New Features to Identify Computer Generated Images, 2007 IEEE International Conference on Image Processing, p.433, 2007.
DOI : 10.1109/ICIP.2007.4380047

URL : http://isis.poly.edu/~forensics/pubs/icip2007b.pdf

R. Wang, S. Fan, and Y. Zhang, Classifying computer generated graphics and natural imaged based on image contour information, J. Inf. Comput. Sci, vol.9, issue.10, pp.2877-2895, 2012.

Y. Wang and P. Moulin, On Discrimination between Photorealistic and Photographic Images, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, p.pp. II?II, 2006.
DOI : 10.1109/ICASSP.2006.1660304

X. Cui, X. Tong, G. Xuan, and C. Huang, Discrimination between photo images and computer graphics based on statistical moments in the frquency domain of histogram, Procedings of the CIHW2007, pp.276-283, 2007.

W. Chen, Y. Q. Shi, G. Xuan, and W. Su, Computer graphics identification using genetic algorithm, 2008 19th International Conference on Pattern Recognition, pp.1-4, 2008.
DOI : 10.1109/ICPR.2008.4761552

URL : http://figment.cse.usf.edu/~sfefilat/data/papers/TuBCT10.4.pdf

R. Wu, X. Li, and B. Yang, Identifying computer generated graphics VIA histogram features, 2011 18th IEEE International Conference on Image Processing, pp.1933-1936, 2011.
DOI : 10.1109/ICIP.2011.6115849

W. Li, T. Zhang, E. Zheng, and X. Ping, Identifying photorealistic computer graphics using second-order difference statistics, 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, pp.2316-2319, 2010.
DOI : 10.1109/FSKD.2010.5569821

N. Khanna, G. T. Chiu, J. P. Allebach, and E. J. Delp, Forensic techniques for classifying scanner, computer generated and digital camera images, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1653-1656, 2008.
DOI : 10.1109/ICASSP.2008.4517944

URL : http://cobweb.ecn.purdue.edu/%7Eprints/public/papers/icassp08-nitin.pdf

A. C. Gallagher and T. Chen, Image authentication by detecting traces of demosaicing, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.1-8, 2008.
DOI : 10.1109/CVPRW.2008.4562984

E. Tokuda, H. Pedrini, and A. Rocha, Computer generated images vs. digital photographs: A synergetic feature and classifier combination approach, Journal of Visual Communication and Image Representation, vol.24, issue.8, pp.1276-1292, 2013.
DOI : 10.1016/j.jvcir.2013.08.009

T. Ng and S. Chang, Discrimination of Computer Synthesized or Recaptured Images from Real Images, Digital Image Forensics, pp.275-309, 2013.
DOI : 10.1007/978-1-4614-0757-7_10

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, " in Advances in neural information processing systems, pp.1097-1105, 2012.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, Journal of Machine Learning Research, vol.11, pp.3371-3408, 2010.

V. Sedighi and J. Fridrich, Histogram Layer, Moving Convolutional Neural Networks Towards Feature-Based Steganalysis, Electronic Imaging, Media Watermarking, Security, and Forensics 2017, 2017.
DOI : 10.2352/ISSN.2470-1173.2017.7.MWSF-325

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th International Conference on Machine Learning (ICML-10 R. Duda, P. Hart, and D. Stork, Pattern Classification, pp.807-814, 2000.

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, pp.273-297, 1995.
DOI : 10.1007/BF00994018

G. P. Zhang, Neural networks for classification: a survey, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.30, issue.4, pp.451-462, 2000.
DOI : 10.1109/5326.897072

URL : https://cours.etsmtl.ca/sys843/pdf/PZhang2000.pdf

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, vol.15, issue.1, pp.1929-1958, 2014.

D. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

T. Ng, S. Chang, J. Hsu, and M. Pepeljugoski, Columbia photographic images and photorealistic computer graphics dataset, pp.205-2004, 2005.

M. Piaskiewicz, May) Level-design reference database, 2017.

D. Dang-nguyen, C. Pasquini, V. Conotter, and G. Boato, RAISE, Proceedings of the 6th ACM Multimedia Systems Conference on, MMSys '15, pp.219-224, 2015.
DOI : 10.1155/2013/496701

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, software available from tensorflow.org. [Online]. Available: http://tensorflow.org