Distinguishing Computer Graphics from Natural Images Using Convolution Neural Networks

Abstract : This paper presents a deep-learning method for distinguishing computer generated graphics from real photographic images. The proposed method uses a Convolutional Neural Network (CNN) with a custom pooling layer to optimize current best-performing algorithms feature extraction scheme. Local estimates of class probabilities are computed and aggregated to predict the label of the whole picture. We evaluate our work on recent photo-realistic computer graphics and show that it outperforms state of the art methods for both local and full image classification.
Type de document :
Communication dans un congrès
IEEE Workshop on Information Forensics and Security, WIFS 2017, Dec 2017, Rennes, France
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal-upec-upem.archives-ouvertes.fr/hal-01664590
Contributeur : Vincent Nozick <>
Soumis le : vendredi 15 décembre 2017 - 08:06:33
Dernière modification le : mercredi 25 avril 2018 - 10:45:38

Fichier

without_IEEE_logo.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01664590, version 1

Citation

Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi, Isao Echizen. Distinguishing Computer Graphics from Natural Images Using Convolution Neural Networks. IEEE Workshop on Information Forensics and Security, WIFS 2017, Dec 2017, Rennes, France. 〈hal-01664590〉

Partager

Métriques

Consultations de la notice

135

Téléchargements de fichiers

200