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Abstract

The paper describes a theoretical apparatus and an algorithmic part of application

of the Green matrix-valued functions for time-domain analysis of systems of lin-

ear stochastic integro-differential equations. It is suggested that these systems are

subjected to Gaussian nonstationary stochastic noises in the presence of model pa-

rameter uncertainties that are described in the framework of the probability theory.

If the uncertain model parameter is fixed to a given value, then a time-history of

the system will be fully represented by a second-order Gaussian vector stochastic

process whose properties are completely defined by its conditional vector-valued

mean function and matrix-valued covariance function. The scheme that is pro-

posed is constituted of a combination of two subschemes. The first one explicitly

defines closed relations for symbolic and numeric computations of the conditional

mean and covariance functions, and the second one calculates unconditional char-

acteristics by the Monte Carlo method. A full scheme realized on the base of

Wolfram Mathematica and Intel Fortran software programs, is demonstrated by

an example devoted to an estimation of a nonstationary stochastic response of a

mechanical system with a thermoviscoelastic component. Results obtained by us-

ing the proposed scheme are compared with a reference solution constructed by

using a direct Monte Carlo simulation.
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1. Introduction

1.1. Subject area, models, review of tools, and structure of the paper

Deterministic ordinary integral differential equations (OIDE) and stochastic

ordinary integral differential equations (SOIDE) are interesting from both aca-

demic scientific and technical points of view because these equations are models

of phenomena in a huge number of different sectors. A common theory and pri-

mary classification of deterministic partial integral differential equations (PIDE)

was developed by Vito Volterra in the first half of twentieth century. General ideas

of stochastic dynamics have been considered, for instance, in [1, 2, 3, 4, 5, 6].

In many cases, sources of models in the form of SOIDE in stochastic me-

chanics are results of space discretizations of stochastic partial integro-differential

equations (SPIDE) that describe continuous viscoelastic media [7]. Techniques of

such discretizations are usually based on well-known ideas of the finite element

method, the finite difference method and another computation schemes for solu-

tion of space-time problems.

The first investigations of viscoelastic behavior were made by W.E. Weber,

R. and F. Kohlrausch, L. Boltzmann, O. Meyer, D.K. Maxwell, W. Thomson

(Lord Kelvin), W. Voigt, P. Duhem, L. Natanson, S. Zaremba, A.E. Green and

R.S. Rivlin (1957), B.D. Coleman and W. Noll (1958, 1961, 1964), mainly in the

second half of nineteenth century. Historical remarks about developments in the

viscoelastic domain can be found in [8].

Foundations of modern theory of viscoelasticity were expounded in [8]. An

important part of this theory is an apparatus for investigation of time-nonhomo-

geneous systems [9]. In the case of linear aging viscoelasticity, where the term

aging means that the mechanical properties of a given material are changed with

its age, the constitutive equations for linear viscoelastic media with infinitesimal

strains can be expressed as Stieltjes integrals (according to Riesz’s representation

theorem [8]), and are written as

σij(r, t) =
3∑

k,ℓ=1

∫ t

t0

Fijkℓ(r, t, τ) dεkℓ(r, τ), σij(r, t0) = 0, (1)

εij(r, t) =
3∑

k,ℓ=1

∫ t

t0

Gijkℓ(r, t, τ) dσkℓ(r, τ), εij(r, t0) = 0, (2)

εij(r, t) =
1

2

[∂ui(r, t)

∂xj
+

∂uj(r, t)

∂xi

]
, i, j = 1, 2, 3, (3)
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where t is a current time, t0 6 t 6 T < +∞, r = (x1, x2, x3) is the vector of

material (Lagrangian) coordinates of a material point of the system under investi-

gation, u(r, t) = {ui(r, t)} is the vector of spatial displacements of material points

as a function of the reference position, r, and t, ǫ(t) = {εij(r, t)} is the strain ten-

sor, and σ(r, t) = {σij(r, t)} is the stress tensor. Correspondingly, Fijkℓ(r, t, τ) is

the tensorial creep function and Gijkℓ(r, t, τ) is the tensorial relaxation function.

These kernels of integral operators depend on t and τ separately but not on dif-

ference t− τ and describe a relationship of the current stress with the whole time

history of strain. After transformation of PIDE or SPIDE into OIDE or SOIDE, a

time-dependent structure of the kernels is preserved in target equations of motion.

An important part of studies in stochastic viscoelasticity includes: (i) an anal-

ysis of a weak solvability of initial-boundary value problems [10], (ii) an exami-

nation of a stochastic stability [11, 9], (iii) solution of reliability problems, etc.

It is well-known, that the solution of integral differential equations (IDE) is

a very difficult problem even for the deterministic case. These difficulties are

even greater for the linear and nonlinear stochastic cases. In spite of the existence

of a few results concerning solvers for SOIDE (see for instance, [7]), it is very

useful to adapt the existing methods for solving deterministic IDE to the stochastic

case, because the main part of methods for qualitative and quantitative analysis of

phenomena described by SOIDE consists of deterministic schemes.

A number of schemes have been developed for constructing numerical approx-

imations for solution of deterministic and stochastic IDE. As for examination of

stochastic problems, approximate algorithms are usually used for direct genera-

tion of time histories. Among these schemes there are:

(i) purely numerical methods (classical and modified hybrid variants) such as

explicit and implicit (backward) Euler schemes, a discontinuous Galerkin method,

energy methods [12], general, standard and Galerkin finite element methods for

PIDE, the Tau method [13], the one-step Runge–Kutta and multi-step methods

[14, 15, 16], the Runge–Kutta method [17] for calculation of covariance functions,

extrapolation methods [18], Galerkin methods [19], the method of iterations at the

last step, a usage of wavelets [20], globally defined Sinc basis functions [21], an

approximate transformation of SOIDE into SODE on the base of replacements of

kernels with respect to second arguments by piecewise constant functions [22, 7],

and gamma-distribution expansions;

(ii) approximate analytic methods, including methods of Taylor series [23],

the successive approximation method for the computation of the Green function

[24], the asymptotic method [25], the stochastic averaging method, the collocation

method [26], the perturbation theory [27].

The main objective of this paper is to present a new tool for a statistical es-

timation of the solution of a class of IDE with random parameters and Gaus-

sian stochastic processes as input. Stochastic linear viscoelastic problems are de-
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scribed by this class. The paper explains a theoretical apparatus and an algorith-

mic part of an application of the Green matrix-valued functions for time-domain

analysis of systems of linear SOIDE effected by Gaussian nonstationary noises in

the presence of model parameter uncertainties that are described in the framework

of the probability theory.

This paper is organized as follows. Section 2 deals with the formulation of

the problem under investigation. Section 3 is devoted to the construction of the

equations for calculating the first- and second-order conditional moment functions

of the stochastic solution. In Section 4, we give a short review of an application

of the Green matrix-valued function for calculation of solution of linear IDE, and

schemes for its approximate computation. Section 5 yields relations for Green

matrix-valued functions for the first- and second-order conditional moment func-

tions, and formal schemes for calculation of the conditional vector-valued mean

function and the conditional matrix-valued covariance function. Section 6 deals

with some approximations for the first- and second-order conditional moment

functions obtained on the base of Green matrix-valued functions. In Section 7,

we present a stochastic solver that produces the first- and second-order uncon-

ditional moment functions on the base of the first- and second-order conditional

moment functions. Section 8 deals with an application devoted to a linear second-

order dynamical system with a thermoviscoelastic component. We conclude the

paper with Section 9. Appendix A consists of a few Green function components.

1.2. Comments concerning notation used

In this paper, the following notations are used:

(1) lower case letters for real deterministic variables and vectors (e.g. x, x =
(x1, . . . , xn)), f , f = (f1, . . . , fn));

(2) upper case letters for real random variables and vectors (e.g. X , X =
(X1, . . . , Xn));

(3) double lined upper case letters for sets or spaces (e.g. R).

(4) upper case letters and script (calligraphic) math upper case letters (the Zapf

Chancery font) for real deterministic matrices (e.g. A, A = {aij}, A , A = {aij});

(5) calligraphic upper case letters for real random matrices (e.g. A = {Aij});

(6) any deterministic quantity above (e.g. x, A) with an underline (e.g. x,

A) means that this deterministic quantity is related to the mean model (or to the

nominal model).

2. Formulation of the problem

In this paper, the following system of stochastic integro-differential equations

is considered,
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Ẋ(t) = A(t;Q)X(t) +

∫ t

t0

B(t, τ ;Q)X(τ) dτ + G(t;Q)
[
V (t) + v(t)

]
,

t0 < t 6 T , X(t0) = X0 , (4)

where t is time and t0 is the initial time such that t0 < T < +∞. An up-

per dot denotes the symbol of derivative with respect to t. The vector X(t) =(
X1(t), . . . , Xn(t)

)
is the state vector in R

n. The initial condition X0 is a random

vector and the input V is a stochastic process which is independent of X0.

The vector X0 is a Gaussian second-order random variable with values in

R
n. Its mean value is mX0

= E{X0} and its covariance matrix is CX0X0
=

E{(X0 −mX0
)(X0 −mX0

)⊺} which is assumed to be invertible. In this pa-

per, E{ } denotes the mathematical expectation. The input {V (t) =
(
V1(t), . . . ,

Vm(t)
)
, t > t0} is a stochastic process with values in R

m, which is governed by

the linear Itô stochastic differential equation,

dV (t) = H V (t) dt+RdW (t) , t > t0 , V (t0) = V0 , (5)

where V0 is a vector random variable. In Eqs. (5), H and R are deterministic real

matrices in R
m×m and R

m×r respectively, {W (t) = (W1(t), . . . ,Wr(t)
)
, t > t0}

is the R
r-valued Wiener stochastic process with independent components. Its

generalized derivative with respect to t, denoted by {Ẇ (t) =
(
Ẇ1(t), . . . , Ẇr(t)

)
,

t > t0}, is the vector Gaussian white noise with independent components such

that

E

{
Ẇ (t)

}
= 0, E

{
Ẇ (t) Ẇ ⊺(t′)

}
= 2 π E δ0(t− t′) . (6)

In Eqs. (6), E is the identity matrix inRr×r and δ0 is the Dirac generalized function

at 0 in R.

The initial vector V0 is a Gaussian, second-order, centered random variable

with values in R
m. Its probability distribution is the Gaussian invariant measure

associated with Eqs. (5) such that the mean value is mV0
= E{V0} = 0 and

the covariance matrix is CV0V0
= E{V0 V

⊺

0 }. In Eqs. (5), matrices H and R are

assumed to be such that V is a second-order stochastic process. Consequently,

{V (t), t > t0} is a Gaussian, stationary (for the right translation), second-order,

centered and mean-square continuous stochastic process such that the mean func-

tion and the covariance function are

mV (t) = E{V (t)} = mV0
= 0 ,

CV V (t1 − t2) = CV V (t1, t2) = E{V (t1) V
⊺(t2)} , CV V (0) = CV0V0

.

In Eqs. (4), Q = (Q1, . . . , Qs) is a random vector with values in DQ ⊂ R
s

for which its probability distribution PQ(dq) is given. Matrices A(·; ·) ∈ R
n×n,
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B(·, ·; ·) ∈ R
n×n, and G(·, ·; ·) ∈ R

n×m depend on Q and consequently, are ran-

dom matrices. For Q fixed to q = (q1, . . . , qs) in R
s, and for all t and τ fixed such

that t0 < τ 6 t 6 T , A(t; q), B(t, τ ; q), and G(t; q) are deterministic matrices.

The given deterministic function t 7→ v(t) = (v1(t), . . . , vm(t)) with values in

R
m is assumed to be continuous. For all q fixed in DQ, the matrix-valued functions

t 7→ A(t; q) and t 7→ B(t, τ ; q) are assumed to be continuous and piecewise

differentiable until necessary order, and the matrix-valued function t 7→ G(t; q) is

assumed to be continuous.

For all Q = q fixed in DQ, the stochastic process X is rewritten as XQ and

the notation XQ means that we consider stochastic process X for given Q. Since

Eqs. (4) are linear, the vector X0 and the stochastic process V are Gaussian be-

cause of the introduced hypotheses, it can easily be proved that stochastic process

{XQ(t), t ∈ [t0, T ] } is a Gaussian, second-order and mean-square continuous

stochastic process.

For all finite nonempty and ordered subset t = {t1, t2, ..., tp} of [t0, T ], the

p-dimensional conditional probability distribution, PX Q(dx ; t |Q), given Q, of the

random vector X Q =
(
XQ(t1), . . . , X

Q(tp)
)
, is a Gaussian measure that is en-

tirely defined by its mean vector,

m
Q
X
(t ) = (mQ

X(t1), . . . , m
Q
X(tp)) with mQ

X(ti) = E
{
XQ(ti)

}
,

and its covariance matrix CQ
X
(t ) =

{
CQ

X
(ti, tj)

}
such that, for all i and j in

{1, . . . , p},

CQ
X
(ti, tj) = E

{{
XQ(ti)−mQ

X(ti)
}{

XQ(tj)−mQ
X(tj)

}⊺
}
.

Consequently, the non-Gaussian probability distribution, PX (dx ; t ), of the ran-

dom vector X =
(
X(t1), . . . , X(tp)

)
can be calculated by

PX (dx ; t ) =

∫

DQ

PX Q(dx ; t |q)PQ(dq) . (7)

Let us now define the mean functions and the covariance functions of the

stochastic process X and the stochastic process XQ for given Q, together with

the cross-covariance functions of X and XQ with the stochastic process V :

mX(t) = E{X(t)} , mQ
X(t) = E

{
XQ(t)

}
, (8a)

CXX(t1, t2) = E{X(t1)X
⊺(t2)} −mX(t1)m

⊺

X(t2) , (8b)

CQ
XX(t1, t2) = E

{
XQ(t1)X

Q⊺(t2)
}
−mQ

X(t1)m
Q ⊺

X (t2) , (8c)

CXV (t1, t2) = E{X(t1) V
⊺(t2)} , CQ

XV (t1, t2) = E
{
XQ(t1) V

⊺(t2)
}
. (8d)
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In Eqs. (8), for fixed Q = q in DQ, the conditional moments mQ
X(t), CQ

XX(t1, t2)

and CQ
XV (t1, t2), given Q, are rewritten as mX(t; q), CXX(t1, t2; q) and CXV (t1, t2;

q). Therefore, the mean function and the covariance function of stochastic process

X , and the cross-covariance functions with the stochastic process V , are given by

mX(t) =

∫

DQ

mX(t; q)PQ(dq) , (9a)

CXX(t1, t2) =

∫

DQ

CXX(t1, t2; q)PQ(dq) , (9b)

CXV (t1, t2) =

∫

DQ

CXV (t1, t2; q)PQ(dq) . (9c)

Taking into account previous definitions and notations, it is possible to state

that the problem being solved in this paper consists in constructing a scheme for

the calculation of the vector-valued function mX(t) and the matrix-valued func-

tion CXX(t1, t2) for all t, t1 and t2 in [t0, T ]. The scheme proposed consists of two

stages: (i) calculation of the first- and second-order conditional moment functions

of stochastic process XQ given Q and then, (ii) calculation of the unconditional

first- and second-order moment functions of stochastic process X .

3. Equations for the first- and second-order conditional moment functions

Applying the conditional mathematical expectation (given Q) to all terms of

Eqs. (4) yields

ṁ
Q
X (t) = A(t;Q)m

Q
X(t) +

∫ t

t′
B(t, τ ;Q)m

Q
X (τ) dτ + G(t;Q) v(t) , (10)

t0 6 t′ < t 6 T , m
Q
X (t

′) = m
Q
X

′ , m
Q
X (t

′) = mX0
for t′ = t0 . (11)

To derive the equation for CQ
XX(t1, t2), it is necessary to extend the state vector of

Eqs. (4) to the new random state vector with values in R
n+m defined by Y (t) =(

X(t), V (t)
)
. Then the conditional mean function with values in R

n+m of the

stochastic process Y (given Q) is written as

m
Q
Y (t) =

(
m

Q
X(t), 0

)
(12)

and the conditional covariance function with values in R
(n+m)×(n+m) is such that

CQ
Y Y (t1, t2) =

[
CQ
XX(t1, t2) CQ

XV (t1, t2)

CQ
XV (t2, t1)

⊺ CV V (t1, t2)

]
.
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The stochastic process Y indexed by t ∈ [t0, T ] with values in R
n+m is gov-

erned by the following stochastic integro-differential equation,

dY (t) =
{
Ā(t;Q) Y (t) +

∫ t

t′
B̄(t, τ ;Q) Y (τ) dτ + Ḡ(t;Q) v(t)

}
dt+ R̄ dW (t),

t0 6 t′ < t 6 T , Y (t′) = Y ′ , Y ′ = (X0, V0) for t′ = t0 . (13)

In Eqs. (13), the matrices Ā(t;Q) and B̄(t;Q) in R
(n+m)×(n+m), the matrix Ḡ(t;Q)

in R
(n+m)×m and the matrix R̄(t;Q) in R

(n+m)×r are defined by blocks as follows:

Ā(t;Q) =

[
A(t;Q) G(t;Q)

0 H

]
, B̄(t;Q) =

[
B(t;Q) 0

0 0

]
,

Ḡ(t;Q) =

[
G(t;Q)

0

]
, R̄ =

[
0

R

]
.

Let us introduce the centered stochastic process Z indexed by t ∈ [t0, T ] with

values in R
n+m such that Z(t) = Y (t)−m

Q
Y (t). Then the process Z is the solution

of the following stochastic integro-differential equation:

dZ(t) =
{
Ā(t;Q)Z(t) +

t∫

t′

B̄(t, τ ;Q)Z(τ) dτ
}
dt

+ R̄ dW (t) , t0 6 t′ < t 6 T , Z(t′) = Y ′ − m
Q
Y

′ . (14)

As previously, the conditional stochastic process Z as solution of Eqs. (14), for

given Q, will be denoted by ZQ. Since CQ
Y Y (t1, t2) = CQ ⊺

Y Y (t2, t1) = CQ
ZZ(t1, t2) =

E
{
ZQ(t1)Z

Q ⊺(t2)
}

, from Eq. (14), it can be deduced the two following equa-

tions, for t0 6 t′ < t 6 T , given CQ
Y Y (t

′, t′):

(i)
∂

∂t
CQ
Y Y (t, t

′) = Ā(t;Q) CQ
Y Y (t, t

′) +

∫ t

t′
B̄(t, τ ;Q) CQ

Y Y (τ, t
′) dτ ; (15)

(ii)
d

dt
CQ
Y Y (t, t) = Ā(t;Q) CQ

Y Y (t, t) +
{
Ā(t;Q) CQ

Y Y (t, t)
}⊺

+

∫ t

t′

[
B̄(t, τ ;Q) CQ

Y Y (τ, t) +
{
B̄(t, τ ;Q) CQ

Y Y (τ, t)
}⊺
]
dτ + 2 π R̄ R̄⊺ . (16)

Eqs. (15), (16) must be solved with the following initial conditions:

CQ
Y Y (t

′, t′) = CQ
Y Y

′, CQ
Y Y

′ = CQ
Y Y (t0, t0) = CY0Y0

=

[
0 0

0 CV0V0

]
for t′ = t0.
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4. A short review on the Green matrix-valued function for a linear integro-

differential equation and schemes for its approximate computation

Let us assume that we have to solve the following deterministic IDE,

ż(t) = A(t) z(t) +

∫ t

t′
B(t, τ) z(τ) dτ + f(t) , t0 6 t′ < t , (17)

with the initial condition,

z(t′) = z ′ , z ′ = z0 for t′ = t0 . (18)

The solution z(t) ∈ R
n of Eqs. (17) and (18) can be written as [24]

z(t) = Φ(t, t′) z ′ +

∫ t

t′
Φ(t, τ) f(τ) dτ, t > t′, (19)

where Φ(s, s0) is the Green matrix-valued function associated with Eq. (17) and

is governed by the equation,

∂

∂s
Φ(s, s0) = A(s)Φ(s, s0) +

∫ s

s0

B(s, τ)Φ(τ, s0) dτ, s > s0, (20a)

Φ(s0, s0) = E. (20b)

Solvers for deterministic integro-differential equations (see Section 1) include

schemes requiring to calculate Green functions. But the most of them requires a

great amount of analytic calculations.

It should be noted that a modern approach for building of approximate ana-

lytic solutions for problems from different scientific domains, including stochastic

ones, consists in using symbolic numerical algorithms [28], which include a ma-

jority of schemes referred in the review (Section 1), but are not suitable for the

problem that has to be solved. The successive approximation method [24] is one

of applicable schemes. Unfortunately, the use of this scheme is hindered by the

fact that a large amount of integrals has to be computed in closed form, which is

not possible even by using computer algebra programs.

Nevertheless, it is feasible to represent Φ(s, s0), without any integrations, in

the following form [29]:

Φ(s, s0) = E +
+∞∑

ℓ=1

Φℓ(s0, s0)

ℓ!
(s− s0)

ℓ , Φℓ(s, s0) =
∂ℓΦ(s, s0)

∂sℓ
. (21)
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Using this approach, the coefficients of the Taylor series in Eq. (21) can be ob-

tained by successive differentiations of Eq. (20) with respect to s. Limiting the

development to the L-th derivative, Eq. (21) yields

Φ̂[L](s, s0) = E +

L∑

ℓ=1

Φℓ(s0, s0)

ℓ!
(s− s0)

ℓ , (22)

with an accuracy O[(s− s0)
L] (see [23]). The coefficients for L = 4 are given in

Appendix A.

In Section 5 two forms of Eq. (22) are used for exact analytical representa-

tions of the conditional vector-valued mean function and matrix-valued covari-

ance function for all t > t0. Further, in Section 6 these forms are adapted for

approximate step-by-step analytical representations of the corresponding condi-

tional functions in mesh nodes.

5. Green matrix-valued functions for the first- and second-order conditional

moment functions

5.1. Formal scheme for calculation of the conditional vector-valued mean func-

tion

Comparing Eqs. (10) and (11) with Eqs. (17) and (18), and using Eq. (19), it

can be deduced that the conditional vector-valued mean function mQ
X(t) is explic-

itly given by

mQ
X(t) = Φ[m](t, t′)mQ

X
′ +

∫ t

t′
Φ[m](t, τ)G(τ ;Q) v(τ) dτ , (23)

where the Green matrix-valued function Φ(s, s0) associated with mQ
X(t) is rewrit-

ten as Φ[m](s, s0) and is calculated using Eqs. (20) and (21) with

A(t) = A(t;Q) , B(t, τ) = B(t, τ ;Q) . (24)

5.2. Formal scheme for calculation of the conditional matrix-valued covariance

function

Let us start with Eq. (15) satisfied by the conditional matrix-valued covariance

function CQ
Y Y (t, t

′) for t > t′. We can state that the Green matrix-valued function

Φ(s, s0) governed by Eq. (20) and associated with CQ
Y Y (t, t

′), can be rewritten as

Φ[C](t, t′) and is calculated using Eqs. (20) and (21) with

A(t) = Ā(t;Q) , B(t) = B̄(t;Q) . (25)
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From Eq. (15), it can be deduced that

CQ
Y Y (t, t

′) = Φ[C](t, t′) CQ
Y Y (t

′, t′) , t0 6 t′ < t 6 T .

Now let’s turn to the calculation of the conditional matrix-valued covariance

function CQ
Y Y (t, t) satisfying Eq. (16) for t0 6 t′ < t 6 T . Notice that the condi-

tional vector-valued stochastic process ZQ can be represented by using Φ[C](·, ·)
as the solution of Eq. (14) (for given Q) in the following form:

ZQ(t) = Φ[C](t, s)ZQ(t′) +

∫ t

t′
Φ[C](t, τ) R̄ dW (τ) , t′ < t .

This form allows the conditional matrix-valued covariance function CQ
Y Y (t, t) =

E
{
ZQ(t)ZQ⊺(t)

}
, for all t0 6 t′ < t 6 T , to be calculated by

CQ
Y Y (t, t) = Φ[C](t, t′) CQ

Y Y (t
′, t′)Φ[C]⊺(t, t′)

+ 2 π

∫ t

t′
Φ[C](t, τ) R̄

{
Φ[C](t, τ) R̄

}⊺
dτ. (26)

6. Approximations for the first- and second-order conditional moment func-

tions

The following time grid is introduced,

t0 = τ0 < τ1 < . . . < τk−1 < τk < . . . < τN = T ,

hk = τk − τk−1 for k = 1, 2, ..., N with max
k

hk = h∗ ≪ 1.

In this section, the first- and second-order conditional moment functions mQ
X,k =

mQ
X(τk) and CQ

Y Y,kν = CQ
Y Y (τk, τν) are computed at the grid nodes for k and ν in

{1, . . . , N} with the accuracy O(hL
k ).

6.1. Approximate scheme for calculation of the first-order conditional moment

function

The numerical approximation of the conditional vector-valued mean function

mQ
X(t), such that

mQ
X(t) = Φ[m](t, t′)mQ

X
′ +

∫ t

t′
Φ[m](t, τ)G(τ ;Q) v(τ) dτ ,

for t′ = τk−1, t = τk, can be written as

m̂Q
X,k = Φ̂

[m]
[L] (τk, τk−1) m̂

Q
X,k−1 +

∫ τk

τk−1

Φ̂
[m]
[L] (τk, τ)G(τ ;Q) v(τ) dτ , (27)

11



k = 1, 2, ..., N , m̂Q
X,0 = mX0

,

where Φ̂
[m]
[L] (τk, τ) = Φ̂[L](τk, τ) with taking into account Eqs. (24). The integral

in Eq. (27) can be computed by using, for instance, of the Simpson rule.

6.2. Approximate scheme for calculation of the second-order conditional moment

function

Similarly, the conditional matrix-valued covariance function that verifies the

equations, for t0 6 t′ < t 6 T ,

CQ
Y Y (t, t

′) = Φ[C](t, t′) CQ
Y Y (t

′, t′) ,

can numerically be approximated, for k = 0, 1, . . . , N − 1 and ν = k+ 1, . . . , N ,

by

Ĉ Q
Y Y,νk = Φ̂[C](τν , τν−1) Ĉ Q

Y Y,ν−1,k ,

in which Φ̂
[C]
[L] (τν , τν−1) = Φ̂[L](τν , τν−1) with taking into account Eqs. (25).

Finally, for t0 6 t′ < t 6 T , the conditional matrix-valued covariance func-

tion CQ
Y Y (t, t), that verifies the Eq. (26), can numerically be approximated, for

k = 1, . . . , N , by

ĈQ
Y Y,kk = Φ̂

[C]
[L] (τk, τk−1) ĈQ

Y Y,k−1,k−1 Φ̂
[C]⊺
[L] (τk, τk−1)

+ 2 π

τk∫

τk−1

Φ
[C]
L (τk, τ) R̄

{
Φ
[C]
L (τk, τ) R̄

}⊺
dτ, ĈQ

Y Y,00 = CY0Y0
.

7. Stochastic solver

In the previous sections, the analytic procedure has been proposed for con-

structing approximations of the first- and second-order conditional moment func-

tions mQ
X(t) = mX(t; q) and CQ

XX(t1, t2) = CXX(t1, t2; q) of stochastic state vec-

tor X , for givenQ = q. In order to obtain the first- and second-order unconditional

moment functions mX(t) and CXX(t1, t2) (the solution of the problem was formu-

lated in Section 2), it is necessary to complete the procedure using Eqs. (7), (9a)

and (9b). Clearly, this procedure can only be a numerical one because symbolic

integration for the probability distribution PQ(dq) of random vector Q, which is

assumed to be arbitrary, cannot be carried out. Therefore, the Monte Carlo nu-

merical method is used for computing the integrals in Eqs. (7), (9a), and (9b).

12



Let M be the number of independent realizations, q1, . . . , qM , of random vec-

tor Q whose probability distribution is PQ(dq). The Monte Carlo approximations

can be written as

P̂X (dx ; t ) =
1

M

M∑

ℓ=1

PX Q(dx ; t |qℓ) ,

and, for all k and ν in {1, . . . , N}, as

m̂X(τk) =
1

M

M∑

ℓ=1

mX(τk; qℓ) , ĈXX(τk, τν) =
1

M

M∑

ℓ=1

CXX(τk, τν ; qℓ) , (28)

for which the accuracy is O(M−1/2). Moreover, using the estimators of mathemat-

ical expectations and variances for Xi(τk), for i in {1, . . . , n} and k in {1, . . . , N},

we can find approximations of their probability density functions (PDFs) as

p̂Xi
(xi, τk) =

1

M

M∑

ℓ=1

N
(
xi; m̂Xi

(τk; qℓ), ĈXiXi
(τk, τk; qℓ)

)
, (29)

where

N (x; a, σ2) =
1√
2 π σ

exp
[
−(x− a)2

2 σ2

]
.

8. Application to a dynamical system with a thermoviscoelastic medium

8.1. Definition of the dynamical system

We consider the mechanical system defined in Fig. 1, constituted of two rigid

bodies Ω1 and Ω2 with mass M1 > 0 and M2 > 0 respectively. Each body has

only one degree of freedom corresponding to its displacement in the same given

direction. Body Ω1 is linked to body Ω2 and to the moving base. The link between

Ω1 and Ω2 is made up of a linear elastic dissipative mechanical component which

is modeled by a linear spring with constant stiffnessK > 0 and by a linear dashpot

of viscous type with constant damping coefficient D > 0. The link between Ω1

and the moving base is made up of a thermoviscoelastic mechanical component

(that is characterized by two functions of time, k0(t, t) and k(t, τ), which will be

defined later with the constitutive equation).

An absolute reference frame is introduced for which the unit vector basis (cor-

responding to the considered displacement) is denoted by J0. The base is moving

in the direction J0. A relative reference frame linked to the moving base is also

13



introduced for which the unit vector basis (corresponding to the considered dis-

placement) is denoted by j.

The linear dynamics of this mechanical system is analyzed around a reference

configuration which corresponds to a static equilibrium state for which the me-

chanical components are assumed to be without prestresses. The initial time for

the time-evolution problem is chosen as t0 = 0. In the absolute reference frame

and at time t, the displacement of the moving base is written as Us(t)J . In the

relative reference frame linked to the moving base and at time t, the displacement

of body Ω1 (or Ω2) is written as U1(t)j (or U2(t)j).

J0
O

J0Us

O0

j0

O1

j1U1

M1

k0(t,t)
k(t,τ )

O2

j2U2

M2

K D

Absolute
reference
frame

Relative reference
frame linked to
the moving base Moving base

Thermoviscoelastic
mechanical component

Body Ω1

Elastic dissipative
mechanical component

Body Ω2

Figure 1: Scheme defining the mechanical system.

For defining the constitutive equation of the thermoviscoelastic mechanical

component, the bottom end of this component is assumed to be fixed and the top

end of the component is free and submitted, at time t, to a force f(t)j inducing a

displacement U1(t)j. Using the non-isothermal linear viscoelasticity theory (see,

for instance, [30, 31, 8]), the constitutive equation can then be written as

f(t) = k0(t, t;Q)U1(t) +

∫ t

0

k(t, τ ;Q)U1(τ) dτ , 0 < t 6 T ,

in which (t, τ) 7→ k0(t, τ ;Q) is a positive-valued function that is defined on 0 <
τ 6 t 6 T and is assumed to be infinitely differentiable in (t, τ). Further, (t, τ) 7→
k(t, τ ;Q) = ∂k0(t, τ ;Q)/∂τ is a negative-valued function which is defined on

0 < τ 6 t 6 T and which is then integrable in τ on ]0, t] for all t in ]0, T ].
Uncertain vector-valued parameter Q and functions k0 and k will precisely be

defined later.
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8.2. Equations for the dynamical system

For j = 1, 2, let U̇j(t) = dUj(t)/dt be the velocity and let Üj(t) = d2Uj(t)/dt
2

be the acceleration. The dynamics is studied around a reference configuration that

corresponds to a static equilibrium at rest without prestresses. At initial time, the

displacements and the velocities are thus zero. The dynamic equilibrium equation

around the reference configuration is written, for all t in ]0, T ], as

M1

(
Ü1(t) + Üs(t)

)
= −K

(
U1(t)− U2(t)

)
−D

(
U̇1(t)− U̇2(t)

)

−k0(t, t;Q)U1(t)−
∫ t

0

k(t, τ ;Q) U1(τ) dτ , (30a)

M2

(
Ü2(t) + Üs(t)

)
= −K

(
U2(t)− U1(t)

)
−D

(
U̇2(t)− U̇1(t)

)
, (30b)

with the initial conditions,

U1(0) = U̇1(0) = U2(0) = U̇2(0) = 0 . (31)

Let ω1, ω2, ξ and µ be the positive real parameters such that

ω1 =
√

K/M1 , ω2 =
√

K/M2 , ξ = D/(2M2 ω2) , µ = M2/M1 .

Further, let (t, τ) 7→ k̃0(t, τ ;Q) and (t, τ) 7→ k̃(t, τ ;Q) be the functions such that

k̃0(t, τ ;Q) = k0(t, τ, Q)/M1 , k̃(t, τ ;Q) = k(t, τ ;Q)/M1 . (32)

Then Eqs. (30a) and (30b) can be rewritten as

Ü1(t) = −2 ξ
√
µω1

(
U̇1(t)− U̇2(t)

)
− ω2

1

(
U1(t)− U2(t)

)

−k̃0(t, t;Q)U1(t)−
∫ t

0

k̃(t, τ ;Q)U1(τ) dτ − Üs(t) , (33a)

Ü2(t) = −2 ξ ω2

(
U̇2(t)− U̇1(t)

)
− ω2

2

(
U2(t)− U1(t)

)
− Üs(t) . (33b)

8.3. Stochastic modeling of the moving base acceleration

The acceleration Üs of the moving base is modeled by a second-order, Gaus-

sian, nonstationary, centered stochastic process {Üs(t), t ∈ [0, T ]} which is such

that Üs(t) = g(t) V (t). The real-valued function g is defined on [0, T ] and is such

that g(t) = (1 + (t/tg)
ag)−1, t ∈ [0, T ], in which 0 < tg < T and ag > 0. Note

that such the form is a usual model for simple nonstationary random fluctuations

in stochastic mechanics, for example, in simulation of earthquakes.

The stochastic process {V (t), t ∈ R} is a second-order, Gaussian, stationary,

centered, mean-square continuous stochastic process indexed by R with values in
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R for which the autocovariation function CV (τ) = E{V (t + τ) V (t)} is written

as

CV (τ) =

∫

R

eiωt SV (ω) dω, SV (ω) =
a2V

b2V + ω2
, aV > 0 , bV > 0 ,

where SV (ω) is the power spectral density function. For all fixed t in R, let σV be

the standard deviation of the random variable V (t) which is such that

σ2
V = CV (0) =

∫

R

SV (ω) dω.

Consequently, the stochastic process {V (t), t ∈ [0, T ]} can be generated as the

(stationary) solution of the following Itô stochastic differential equation with ran-

dom initial condition,

dV (t) = −bV V (t) dt+ aV dW (t) , t ∈ ]0, T ] , V (0) = V0 a.s. , (34)

in which W is the Wiener stochastic process introduced in Section 2 with m = 1
and where the probability distribution of the random variable V0 is the invariant

measure PV which is the Gaussian probability measure with zero mean and stan-

dard deviation equal to σV .

8.4. Stochastic integro-differential equations for the dynamical system

Taking n = 4, m = 1, t0 = 0 and v(t) = 0, it can be viewed that Eqs. (33a),

(33b), and (31) can then be written as Eq. (4) with

A(t;Q) =




−ξ1 ξ1 −ω̄2
1 ω2

1

ξ2 −ξ2 ω2
2 −ω2

2

1 0 0 0
0 1 0 0


, B(t, τ ;Q) =




0 0 k̄ 0
0 0 0 0
0 0 0 0
0 0 0 0


,

G(t;Q) = −




g(t)
g(t)
0
0


, X(t) =




U̇1(t)

U̇2(t)
U1(t)
U2(t)


, X0 =




0
0
0
0


,

where ξ1 = 2 ξ
√
µω1, ξ2 = 2 ξ ω2, ω̄

2
1 = ω2

1 + k̃0(t, t;Q), k̄ = −k̃(t, τ ;Q). In

addition, Eqs. (34) are written as Eqs. (5) with m = 1, t0 = 0, H = [−bV ],
R = [aV ].
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8.5. Kernel of the constitutive equation for the thermoviscoelastic mechanical

component

In this section, we define the kernel k̃0(t, τ ;Q) introduced in Section 8.1,

which is presently derived from the model proposed in [32]. Random vector Q of

the uncertain parameters will be defined in Section 8.6. Let θt be the temperature

of the mechanical component defined on [0 , T ] and written as θt = aθ + bθ t/T ,

aθ > 0, bθ > 0.

The kernel k̃0(t, τ ;Q) is then defined, for 0 < τ 6 t 6 T , by

k̃0(t, τ ;Q) = K0(θt)
[
1−

2∑

ℓ=1

µℓ(θt)
(
1− exp

{
− τ

Tℓ(θt)

})]
. (35)

For all t in [0, T ], the initial elastic property, K0(θt) > 0, which depends on the

temperature, is written as K0(θt) = aK0
/(
(
bK0

θt − 1
)

with aK0
> 0, bK0

> 0,

where the constant bK0
is such that bK0

θt − 1 > 0.

In the present application, T1(θt) will be the large relaxation time. This time

and the associated dimensionless parameter µ1(θt) are assumed to be independent

of θt and are written as T1(θt) = aT1
, µ1(θt) = aµ1

with aT1
> 0, aµ1

> 0.

The relaxation time T2(θt) will be the small relaxation time. This time and the

associated dimensionless parameter µ2(θt) are assumed to be dependent on θt and

are written as

T2(θt) =
aT2

bT2
θt + (cT2

/θt)
dT2

with aT2
> 0 , bT2

> 0 , cT2
> 0 , dT2

> 0 ,

µ2(θt) = aµ2
− bµ2

θt with aµ2
> 0 , bµ2

> 0 ,

where the constants aµ2
and bµ2

are such that aµ2
− bµ2

θt > 0. From Section 8.1

and from Eqs. (32) and (35), it can be deduced that

k̃(t, τ ;Q) = −K0(θt)
2∑

ℓ=1

µℓ(θt)

Tℓ(θt)
exp

{
− τ

Tℓ(θt)

}
.

8.6. Numerical data and definition of the probability model for the uncertain pa-

rameters

The large relaxation time T1(θt), the associated dimensionless parameter µ1(θt),
and parameter dT2

of the law of the small relaxation time T2(θt) will be the uncer-

tain parameters. These three random quantities are assumed to be independent.

For the numerical application, data and the probability models of the uncertain

parameters are defined as follows.

1. Time duration: T = 1,200 s.
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2. Mechanical properties: ω1 = 2π rad/s, ω2 = 6π rad/s, µ = 1/9, ξ = 0.01.

3. Moving base acceleration: tg = 300 s, ag = 3, aV = 19m/s5/2, bV =
19 s−1.

4. Time evolution of the temperature: aθ = 40 oC, bθ = 110 oC.

5. Parameters for the thermoviscoelastic mechanical component:

(a) Initial elastic property: Parameter aK0
is uncertain and is modeled

by the random variable AK0
= aK0

(1 + δK0
Q1) in which Q1 is a

uniform random variable on [−1 , 1]. The mean value of AK0
is aK0

=
500N × Kg−1 × m−1 and its coefficient of variation is δK0

which

belongs to the interval [0 , 0.9]. Additionally, bK0
= 0.04 oC−1.

(b) Large relaxation time T1(θt): Parameter aT1
is uncertain and is mod-

eled by the random variable AT1
= aT1

(1 + δT1
Q2) in which Q2

is a uniform random variable on [−1, 1]. The mean value of AT1
is

aT1
= 320 s and its coefficient of variation is δT1

which belongs to the

interval [0 , 0.9].

(c) Dimensionless parameter µ1(θt): Parameter aµ1
is uncertain and is

modeled by the random variable Aµ1
= aµ1

(1 + δµ1
Q3) in which Q3

is a uniform random variable on [−1 , 1]. The mean value of Aµ1
is

aµ1
= 0.08 and its coefficient of variation is δµ1

which belongs to the

interval [0 , 0.9].

(d) Small relaxation time T2(θt): The deterministic parameters are aT2
=

60 s, bT2
= 3 oC−1, cT2

= 73 oC. Parameter dT2
is uncertain and is

modeled by the random variable DT2
= dT2

(1 + δT2
Q4) in which Q4

is a uniform random variable on [−1 , 1] and where dT2
is the mean

value of DT2
, such that dT2

= 11. Its coefficient of variation is δDT2

which belongs to the interval [0 , 0.9].

(e) Dimensionless parameter µ2(θt): aµ2
= 0.63, bµ2

= 0.0013 oC−1.

With respect to the Lebesgue measure dq = dq1 dq2 dq3 dq4 on R
4, the probability

distribution of the random vector Q = (Q1, Q2, Q3, Q4) is thus defined by the

probability density function pQ(q) = p1(q1)× p2(q2)× p3(q3)× p4(q4), in which,

for ℓ = 1, 2, 3, 4, pℓ(qℓ) =
1
2
1 [−1 ,1](qℓ).

The objective of the paper is not to introduce a complex probabilistic model of

the parameters but to show how the methodology proposed is efficient when the

parameters are random. Since the stochastic solver is the Monte Carlo method for

the integration with respect to the random parameters, the methodology proposed
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is independent of the probability model chosen for the parameters. The proba-

bilistic model that has been used for the computation has been chosen voluntary

simple and could certainly be replaced by a more sophisticated informative prob-

ability model using the Maximum Entropy Principle from Information Theory,

if additional information was available. This probabilistic model has been con-

structed using the following hypotheses: the only information that is supposed to

be available consists in giving the support of each normalized random components

of the vector-valued parameter. Using the Maximum Entropy principle under the

constraints defined by this available information yields the probability model pro-

posed in the paper that is to say, each random component is uniform and all these

random components are mutually statistically independent (see for instance [5]).

8.7. Numerical results and discussion

In this subsection, the technique of implementation of the Green function

method (GFM) for analyzing Eqs. (33a), (33b), and (31), is described, and the

results obtained are discussed. Some details concerning the usage of GFM are

explained in Section 8.7.2. The results obtained by the new method are compared

with a solution constructed by the Monte Carlo method (MCM) that is regarded

as a reference solution. Some details of the MCM are given in Section 8.7.1. Note

that the vector mean function of X(t) is equal to zero for all t > 0 due to the prob-

lem statement. Therefore, this function have not been calculated. Additional re-

marks about values of computation parameters are presented in Section 8.7.3. Dif-

ferent figures of time histories for estimators of CY Y (t, t) components are shown

and discussed in Section 8.7.4.

8.7.1. Details of numerical calculations in the framework of pure Monte Carlo

simulations

In this section, the numerical calculations are produced in the environment of

Microsoft Visual Studio with the help of Intel Fortran program designed.

For direct simulation of the system under consideration, the following simple

semi-implicit modification of the Euler–Maruyama algorithm (or θ-method for

θ = 0.5) is used:

ŷℓ,k+1 = ŷℓ k+
h0

2

[
Āℓ k ŷℓ k + Āℓ,k+1 ŷℓ,k+1+

h0

(
B̄ℓ,k+1,k ŷℓ k + B̄ℓ,k+1,k+1 ŷℓ,k+1

)]
+ Ō ∆̂wℓ k,

k = 0, 1, 2, ..., N − 1 , ℓ = 1, 2, ...,M ,

(36)

where h0 = T/N is a constant step, τk = k h0, k ∈ {0, 1, 2, ..., N}, ŷℓ k = y[ℓ ](τk),
Āℓ k = Ā(τk; qℓ), B̄ℓ kj = B̄(τk, τj; qℓ)], ∆yℓ k = ŷ[ℓ ](τk+1) − ŷ[ℓ ](τk), ℓ is the
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number of simulation. The scheme defined in Eq. (36) requires a resolution of

these linear equalities for time histories ŷℓ,k+1. The necessary matrix inversion is

carried out using the Gauss elimination method.

The implementation of MCM requires a large amount of random or pseudo-

random numbers with different distributions. The generation of samples for Q
is based on Intel Fortran build-in pseudo-random generator for uniform (0, 1)
distributed numbers. These samples are recounted into necessary uniform (−1, 1)
distributed numbers by an affine transformation.

To model pseudo-random standard normal N (·; 0, 1) distributed numbers, the

Marsaglia–Bray algorithm is used. After converting to samples with given stan-

dard deviations, these numbers are used as initial values of V (t0) and increments

of W (t). However, as in many another practical cases, these generators produce

samples possessing statistical estimates of the mean values, variances, and covari-

ances, which deviate from theoretical ones for a reasonable number of samples.

Therefore, a normalization has been performed for all the pseudo-Gaussian sam-

ples used for the initial values and for every step of the simulation, separately. Af-

ter such the normalization, the converted samples are multiplied by σV or
√
2 π h0

due to needs.

Another procedure has been used for the pseudo-uniform samples on [−1, 1].
The matter is that it is necessary to use samples with zero estimations of the mean

vector and diagonal estimations of the covariance matrix with the value 1/3 for all

the diagonal entries. Let m̂Q and ĈQQ be the usual estimations of the mean vector

and the covariance matrix of Q, which are computed with the pseudo-uniform

samples, q[ℓ ], of Q. Then the classical equation used for the normalization, is as

follows:

q̂[ℓ] =
1√
3
S−1

(
q[ℓ ] − m̂Q

)
, ℓ = 1, 2, ...,M ,

where S is the lower-triangular matrix, calculated by the Cholesky decomposition

such that ĈQQ = S S⊺.

The step-by-step estimators for the vector-valued mean function and for the

matrix-valued covariance function of the state vector-valued stochastic process Y
are computed, for k, r in {0, 1, . . . , N} and for i and j in {1, 2, 3, 4}, as follows:

m̂Yi,k =
1

M

M∑

ℓ=1

ŷℓik , ĉYiYj ,kr =
1

M

M∑

ℓ=1

(
ŷℓ ik − m̂Yi,k

) (
ŷℓ jr − m̂Yj ,r

)
,

where cYiYj ,kr = cYiYj
(tk, tr), for i and j in {1, 2, 3, 4}, are components of the

matrix CY Y (tk, tr).
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8.7.2. Details of symbolic and numerical calculations in the framework of the

Green function scheme

An implementation of GFM consists of two stages. On the first stage, all ana-

lytic calculations have been produced to obtain symbolic expressions of Φℓ(s0, s0)
for ℓ = {1, 2, 3, 4}, suitable for further numerical calculations. These neces-

sary symbolic computations, including differentiations, substitutions, reductions

of similar terms, and so on, have been made with the use of the Mathematica pack-

age. The most complex symbolic substage has been related to the differentiations

of functions k̃0(t, τ ;Q) and k̃(t, τ ;Q) because of their complicated structures.

This substage was required for an achievement of effectiveness for Fortran com-

putations. Note that a computer automatic optimized generation of corresponding

Fortran program fragments by a package Maple was worse than the technique,

which was mentioned above.

On the second stage, numerical calculations have been produced in the same

environment of Microsoft Visual Studio with the help of other designed Intel For-

tran program. In this program, as in the first one, we have formed constant parts

of matrices before simulations and added variable parts to the last during simula-

tions. The aim was to reduce computer time for both MCM and GFM. Obtaining

samples for Q, their transformations, and statistical data processing have been

done by schemes similar to those that have been represented in the previous sec-

tion.

8.7.3. Data used in calculations

For the system under investigation, the main computation parameters has been

presented in the previous sections. Here we point only four sets of values for δK0
,

δT1
, δµ1

and δT2
from the interval [0, 0.9]. These data sets S1i, i ∈ {1, 2, 3, 4}, are

as follows:

1. δK0
= δT1

= δT2
= δµ1

= 0.0. 3. δK0
= 0.6, δT1

= δT2
= δµ1

= 0.9.

2. δK0
= δT1

= δT2
= δµ1

= 0.3. 4. δK0
= δT1

= δT2
= δµ1

= 0.9.

It should be noted that data set S11 corresponds to the mechanical system for

which there are no uncertainties of the model parameters. The following data

ensembles S2i, i ∈ {1, 2, 3, 4}, of values h0, N , and M together with J = 8 for

GFM have been selected for another parameters:

1. h0 = h
[1]
0 , N = N [1], M = 1000. 3. h0 = h

[2]
0 , N = N [2], M = 2000.

2. h0 = h
[1]
0 , N = N [1], M = 5000. 4. h0 = h

[2]
0 , N = N [2], M = 10000,

where h
[1]
0 = 0.01, h

[2]
0 = 0.01, N [1] = 120,000, N [2] = 240,000.
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Figure 2: Comparison of GFM and MCM for the function of covariance, CY1Y1
(t, t).
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Figure 3: Comparison of GFM and MCM for the function of covariance, CY3Y3
(t, t).

8.7.4. Figures and explanations

A part of the first results is presented in Figs. 2 to 7, where smooth and noisy

curves show results of GFM and MCM calculations with data ensembles S21 and

S22 respectively. In these figures, additional digits from 1 to 4 refer numbers i of

data sets S1i. Figs. 2, 3 show only a portion of curves demonstrating similar re-
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Figure 4: Time history of the functions of covariance, CY3Y1
(t, t).

sults for CY1Y1
(t, t), CY1Y2

(t, t), CY2Y2
(t, t) and CY3Y3

(t, t), CY3Y4
(t, t), CY4Y4

(t, t)
obtained by GFM and MCM. The rest part of similar GFM curves, presenting

behavior of functions of covariances with small values, are separately shown in

Figs. 4–7 because appropriate pulsating MCM estimates are too noisy. As it was

said before, the main aim of numerical experiments performed by MCM is a nu-

merical verification of the presented mathematical approach.

The figures show that the time histories, calculated by GFM and MCM, are

in a good agreement unless results for data set S14. For this data set, differences

occur for a part of covariances. Therefore, time histories for this data set have

been recalculated by the same methods with reduced time steps h0 and increased

numbers M of simulations with data ensembles S23 and S24. But such a numerical

strategy has not induced a significant improvement of convergence.

Thus a necessity to resolve a question about quality of the results has forced

to produce extra large calculations for data set S14 with the following additional

parameter ensembles S2i, i ∈ {5, 6}:

5. h0 = 0.0005, N = 2,400,000, M = 20,000.

6. h0 = 0.0001, N = 12,000,000, M = 100,000.

These calculations show the following effects:

(i) the time histories computed by GFM for data ensembles S21 and S25 are

differed insignificantly;
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Figure 5: Time history of the functions of covariance, CY3Y2
(t, t).

0 200 400 600 800 1000 1200
-0.08

-0.06

-0.04

-0.02

0.00

C
o
v
a
r
ia
n
c
e
s

1

2

3

4

Figure 6: Time history of the functions of covariance, CY4Y1
(t, t).

(ii) if to compare results of calculations for ensembles S22 and S26, then the

changes are more visible for MCM outcomes, namely, amplitudes of fluctuations

in time histories of the covariances’ estimators have reduced approximately three-

fold;

(iii) the CY1Y1
(t, t), CY1Y2

(t, t), CY2Y2
(t, t) time histories, calculated for ensem-
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Figure 7: Time history of the functions of covariance, CY4Y2
(t, t).
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Figure 8: PDFs for U̇3(1200) (curves 1 and 2) and U̇4(1200) (curves 3 and 4).

ble S25, are in a good mutual consistency as well as with results of computations

for data ensembles S2i, i ∈ {1, 2, 3, 4};

(iv) the differences between the time histories for GFM and MCM estimates of

CY3Y3
(t, t), CY4Y3

(t, t), CY4Y4
(t, t) for data set S14 have not significantly decreased.

The results displayed in Figs. 2 to 7, and produced for another data sets of
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values for δK0
, δT1

, δµ1
and δT2

, show a prevailing influence of the random variable

AK0
on the behavior of all the covariances.

The last figure, Fig. 8, clearly demonstrates an action of the random modeling

parameters, which is expressed in a non-Gaussian form of response despite the

linearity of the dynamical system under investigation and the Gaussian excitation.

The PDF curves marked ”1” and ”3”, characterize states of the system with data

ensemble 3 at t = 1,200 s. These curves have been built using Eq. (29), where

for sample PDFs, the means are equal to zero and the variances coincide with the

GFM sample variances. The graphs marked ”2” and ”4”, correspond to appro-

priate Gaussian PDFs with zero means and variances computed by Eq. (28). The

same effect is observed for U̇1(1200) and U̇2(1200).
Computational problems for the data set S14 in the MCM analysis of the sys-

tem can be explained as follows:

1. The system is stochastic and random one.

2. The multiplicative random parameter AK0
affects the variable frequency of

oscillation of the system. At the beginning of the transition, the frequency

changes almost four times for the extreme values of AK0
. This leads to the

necessity of statistical processing of substantially different time histories of

U1(t), U̇1(t), U2(t), U̇2(t).

3. Usually MCM schemes are designed without taking into account of random

parameters that can render a large effect on time histories of systems under

examinations, i.e., these histories form heterogeneous samples.

4. An implementation of MCM processes stochasticity and randomness but an

implementation of GFM deals only with randomness. Errors of statistical

treatment of randomness can be considered the same for both schemes.

5. The error of a weak approximation of semi-implicit scheme for MCM is

O(h0) and the same for GFM is O(hL
0 ). Therefore a full error for GFM is

substantially less than for MCM.

It should be noted that the results obtained are significantly different when the

transformations of pseudo-random numbers are not used. For example, in the last

case, we have observed parasitic transitional regimes that didn’t exist at the exact

adherence to the original formulation of the problem.

The small fluctuations that occur in the results are due to the number of sam-

ples used in Monte Carlo simulation method. The relative error induced by such

a method is in 1/sqrt(numer of samples) and is independent of the dimension of

the vector valued-random parameter. Consequently, such fluctutaions could be

reduced in increasing the number of samples.
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9. Conclusions

In this paper, we have presented some results of computation for CQ
Y Y (t, t),

t0 6 t 6 T , produced by the presented scheme. These results are in a good

agreement with outcomes obtained by the Monte Carlo simulation method. If it

was necessary to calculate CQ
Y Y (t, t

′), t0 6 t′ 6 t 6 T , then the computation

scheme proposed should be lightly modified for the use of parallel calculations

along layers of t′, i.e., for t′ fixed and changing t > t′.
For a given precision, the method proposed allows for considerably decreasing

the computational effort with respect to a global Monte Carlo approach.

It is important to highlight that, in the scheme proposed, the use of the Monte

Carlo method is minimal. Moreover, if the vector Q was deterministic, then the

Monte Carlo simulation method would not be required.

The proposed scheme is suitable for the analysis of linear SOIDE subjected

to an additive noise. In the case of a presence of multiplicative noises, another

schemes should be constructed for analyzing such parametric linear SODE and

SOIDE.
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Appendix A. Coefficients of the Taylor series for L = 4

For L = 4, the coefficients of the Taylor series in Eq. (22) are given by the

following equations:

Φ1(s, s) = A(s) ,

Φ2(s, s) = A ′(s) + A(s)Φ1(s, s) + B(s, s) ,

Φ3(s, s) = A ′′(s) +
[
2A ′(s) + B(s, s)

]
Φ1(s, s)

+A(s)Φ2(s, s) +
(
2
∂

∂s
+

∂

∂τ

)
B(s, τ)

∣∣∣
τ=s

,

Φ4(s, s) = A ′′′(s) +
[
3A ′′(s) +

(
3
∂

∂s
+ 2

∂

∂τ

)
B(s, τ)

∣∣∣
τ=s

]
Φ1(s, s)

+3
[
A ′(s) + B(s, s)

]
Φ2(s, s) + A(s)Φ3(s, s)

+
(
3
∂2

∂s2
+ 3

∂2

∂s ∂τ
+

∂2

∂τ 2

)
B(s, τ)

∣∣∣
s=τ

.
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