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eAbstra
tThe multidimensional Gaussian kernel-density estimation (G-KDE) is apowerful tool to identify the distribution of random ve
tors when the max-imal information is a set of independent realizations. For these methods, akey issue is the 
hoi
e of the kernel and the optimization of the bandwidthmatrix. To optimize these kernel representations, two adaptations of the
lassi
al G-KDE are presented. First, it is proposed to add 
onstraints onthe mean and the 
ovarian
e matrix in the G-KDE formalism. Se
ondly, itis suggested to separate in di�erent groups the 
omponents of the randomve
tor of interest that 
ould reasonably be 
onsidered as independent. Thisblo
k by blo
k de
omposition is 
arried out by looking for the maximum ofa 
ross-validation likelihood quantity that is asso
iated with the blo
k for-mation. This leads to a tensorized version of the 
lassi
al G-KDE. Finally, itis shown on a series of examples how these two adaptations 
an improve thenonparametri
 representations of the densities of random ve
tors, espe
iallywhen the number of available realizations is relatively low 
ompared to theirdimensions.Key words:Kernel density estimation, optimal bandwidth, nonparametri
representation, data-driven samplingEmail addresses: guillaume.perrin2�
ea.fr (G. Perrin)Preprint submitted to Journal of Computational Statisti
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1. Introdu
tionThe generation of independent realizations of a se
ond-order R
d-valuedrandom ve
tor X, whose distribution, PX(dx), is unknown but 
an only beapproximated from a �nite set of N ≥ 1 realizations, is a 
entral issue inun
ertainty quanti�
ation, signal pro
essing and data analysis. One possibleapproa
h to address this problem is to suppose that the sear
hed distribu-tion belongs to an algebrai
 
lass of distributions, whi
h 
an be mappedfrom a relatively small number of parameters (for instan
e, the multidimen-sional Gaussian distribution). Generating new realizations of random ve
tor

X amounts therefore at identifying the parameters that best suit the avail-able data and then, at sampling independent realizations asso
iated with theidenti�ed parametri
 distribution. However, when the dependen
e stru
tureasso
iated with the 
omponents of X is 
omplex, su
h that its distribution
an be 
on
entrated on an unknown subset of R
d, the de�nition of a rele-vant parametri
 
lass to represent PX(dx) 
an be
ome very di�
ult. In that
ase, nonparametri
 approa
hes are generally preferred to these parametri

onstru
tions [16, 11℄. In parti
ular, the multidimensional Gaussian kernel-density estimation (G-KDE) method approximates the probability densityfun
tion (PDF) of X, if it exists, as a sum of N multidimensional Gaus-sian PDFs, whi
h are 
entred at ea
h available independent realization of

X. Optimizing the 
ovarian
e matri
es asso
iated with these N PDFs is a
entral issue, as they 
ontrol the in�uen
e of ea
h realization of X on the�nal approximation of PX(dx). Even if there are many 
ontributions onthis subje
t (see for instan
e [5, 4, 3, 6, 18℄), when the dimension d of X ishigh (d ∼ 10− 100), 
onstant 
ovarian
e matri
es parametrized by a uniques
aling parameter are generally 
onsidered. In parti
ular, the Silverman ruleof thumb [12℄ for 
hoosing this s
aling parameter is widely used be
ause ofits simpli
ity and its good asymptoti
 behaviour when N tends to in�nity.However, for �xed values of N , this Silverman 
hoi
e often overestimates thes
attering of PX(dx), and 
an have di�
ulties to 
orre
tly 
on
entrate thenew generated realizations of X on their regions of high probability.To over
ome this problem, a two-step pro
edure is introdu
ed. First, wesuggest to 
enter and to un
orrelate the random ve
tor X (using a Prin
ipalComponent Analysis for instan
e). Then, based on the maximization of aglobal "Leave-One-Out" likelihood, the idea is to separate in di�erent blo
ksthe elements of X, whi
h 
ould reasonably be 
onsidered as statisti
allyindependent. A tensorized version of the 
lassi
al G-KDE that is adapted2



to this dependen
e stru
ture is eventually proposed. Indeed, for a �nitenumber of realizations of X, the less elements there are in ea
h group, themore 
han
e we have to 
orre
tly infer the multidimensional distribution ofea
h sub-ve
tor 
onstituted of ea
h group elements, and so the better shouldbe the estimation of the PDF of X. Nevertheless, the identi�
ation of this(unknown) blo
k de
omposition is a di�
ult 
ombinatorial problem. Thispaper presents therefore two algorithms to �nd relevant blo
k de
ompositionsin a reasonable 
omputational time.The outline of this work is as follows. Se
tion 2 presents the theoreti
alframework asso
iated with the G-KDE and the optimization of the 
ovarian
ematri
es on whi
h it is based. The blo
k de
omposition we propose is thendetailed in Se
tion 3. At last, the e�
ien
y of the method is illustrated on aseries of analyti
 and industrial examples in Se
tion 4.2. Theoreti
al frameworkLet X := {X(ω), ω ∈ Ω} be a se
ond-order random ve
tor de�ned ona probability spa
e (Ω, T , P), with values in R
d. We assume that the prob-ability density fun
tion (PDF) of X exists. By de�nition, this PDF, whi
his denoted by pX, is an element of M1(R

d, R+), the set of positive-valuedfun
tions, whose integral over R
d is 1. It is assumed that the maximalavailable information about pX is a set of N > d independent and dis-tin
t realizations of X, whi
h are gathered in the deterministi
 set S(N) :=

{X(ωn), 1 ≤ n ≤ N}. Given these realizations of X, the kernel estimatorof pX iŝ
pX(x; H ,S(N)) =

det(H)−1/2

N

N∑

n=1

K
(
H−1/2 (x−X(ωn))

)
, (1)where det(·) is the determinant operator, K is any fun
tion ofM1(R

d, R+),and H is a (d × d)-dimensional positive de�nite symmetri
 matrix that isgenerally referred as the "bandwidth matrix". In the following, we fo
us onthe 
lassi
al 
ase when K is the Gaussian multidimensional density. Hen
e,the PDF pX is approximated by a mixture of N Gaussian PDFs, for whi
hthe means are the available realizations of X and the 
ovarian
e matri
esare all equal to H : 3



p̂X(x; H ,S(N)) =
1

N

N∑

n=1

φ (x; X(ωn), H) , x ∈ R
d, (2)where for any R

d-dimensional ve
tor µ and for any (Rd × R
d)-dimensionalsymmetri
 positive de�nite matrixC, φ(·; µ, C) is the PDF of an R

d-dimensionalGaussian random ve
tor with mean µ and 
ovarian
e matrix C:
φ (x; µ, C) :=

exp
(
−1

2
(x− µ)T

C−1 (x− µ)
)

(2π)d/2
√det(C)

, x ∈ R
d. (3)By 
onstru
tion, the matrix H in Eq. (2) 
hara
terizes the lo
al 
on-tribution of ea
h realization of X. Thus, its value has to be optimized tominimize the di�eren
e between pX, whi
h is unknown, and p̂X(·; H ,S(N)).The mean integrated squared error (MISE) performan
e 
riterionMISE(H ; d, N) = E

[∫

Rd

(pX(x)− p̂X(x; H ,S(N)))2 dx

] (4)is generally 
onsidered to quantify su
h a di�eren
e. Here E [·] is the mathe-mati
al expe
tation. For this 
riterion, it 
an be noti
ed that the set S(N) israndom, whereas in the rest of this paper it is deterministi
. Given su�
ientregularity 
onditions on pX, an asymptoti
 approximation of this 
riterion
an be derived. In low dimension, the value of H that minimizes this asymp-toti
 
riterion 
an be expli
itly 
al
ulated, but its value depends on the un-known PDF pX and its derivatives (see [10℄ for more details). Studies havetherefore been 
ondu
ted to estimate these fun
tions (generally iteratively)from the only available information given by S(N) (see for instan
e [11, 5℄).However, the 
onvergen
e of these methods is rather slow in high dimension,su
h that in pra
ti
e, a widely used value for H is given by the Silvermanbandwidth matrix
HSilv(d, N) := (hSilv(d, N))2




σ̂2
1 0 · · · 0

0 σ̂2
2

. . . ...... . . . . . . 0
0 · · · 0 σ̂2

d


 (5)where for all 1 ≤ i ≤ d, σ̂2

i is the empiri
al estimation of the varian
e of Xi,and where 4



hSilv(d, N) :=

(
1

N

4

(d + 2)

) 1
d+4

. (6)This expression, whi
h is derived from a Gaussian assumption on pX, isthought to be a good 
ompromise between 
omplexity and pre
ision. How-ever, it is generally observed that, for �xed values of N , when the distributionof X is 
on
entrated on an unknown subset of R
d, the more 
omplex anddis
onne
ted this subset, the less relevant the value of HSilv(d, N). To fa
ethis problem, the di�usion maps theory [14℄ 
an be used to bias the gener-ation of independent realizations under p̂X(·; HSilv(d, N),S(N)) and makethem 
loser to the ones we 
ould have got if they had been generated underthe true PDF pX. Indeed, di�usion maps are a very powerful mathemati-
al tool to dis
over and 
hara
terize sets on whi
h the distribution of X is
on
entrated, and their 
oupling to nonparametri
 statisti
al representationshas shown promising results, even when dealing with very high values of d[2℄. From another point of view, the likelihood L(S(N)|H) asso
iated with

H 
an also dire
tly be used to identify relevant values of H . From Eq. (1),it follows that
L(S(N)|H) :=

N∏

n=1

p̂X(X(ωn); H ,S(N)) =
1

NN

N∏

n=1

N∑

m=1

φn,m(H), (7)
φn,m(H) := φ (X(ωn); X(ωm), H) , 1 ≤ n, m ≤ N. (8)The fun
tion L(S(N)|H) uses twi
e the same information (to 
ompute

p̂X(·; H ,S(N)) and to evaluate it). Hen
e, it tends to in�nity when H tendsto zero, whi
h 
an be seen as an over�tting of the available data. In order toavoid this phenomenon, it is proposed in [15℄ to 
onsider its "Leave-One-Out"(LOO) expression
LLOO(S(N)|H) :=

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φn,m(H) (9)instead. Given this approximate likelihood obtained from an LOO 
ross-validation, and an a priori density pH for H , Bayesian approa
hes 
an beused to 
ompute the posterior density of H [6℄:5



pH(H|S(N)) := c LLOO(S(N)|H)pH(H), H ∈M
+(d). (10)Here, c is a normalizing 
onstant and M

+(d) is the set of all (d×d)-dimensionalsymmetri
 positive de�nite matri
es. In parti
ular, the maximum likelihoodestimate of H is denoted by
HMLE(d, N) := arg max

H∈M+(d)
LLOO(S(N)|H). (11)Additionally, 
onsidering that the best available approximations of thetrue mean and 
ovarian
e matrix of X are given by their empiri
al estima-tions

µ̂X :=
1

N

N∑

n=1

X(ωn),

R̂X :=
1

N − 1

N∑

n=1

(X(ωn)− µ̂X)⊗ (X(ωn)− µ̂X),the expression given by Eq. (1) 
an be slightly modi�ed to ensure thatthe mean and the 
ovarian
e matrix of the G-KDE approximation of X areequal to these estimations. Following [13℄, this 
an be done by 
onsideringthe subsequent proposition. The proof is given in Appendix.Proposition 1. If the PDF of X̃ is equal to
p̃X(·; H ,S(N)) :=

1

N

N∑

n=1

φ (·; AX(ωn) + β, H) , (12)
β := (Id −A)µ̂, H := R̂X −

N − 1

N
AR̂XAT , (13)where A is any (d× d)-dimensional matrix su
h that H is positive de�nite,then the mean and the 
ovarian
e matrix of X̃ are equal to µ̂ and R̂X re-spe
tively.Given S(N), the G-KDE of the PDF of X under 
onstraints on its meanand its 
ovarian
e matrix is denoted by p̃X(·; HMLE(d, N),S(N)). Here,

HMLE(d, N) is the argument that maximizes the LOO likelihood of H asso-
iated with p̃X. 6



Given µ̂, R̂X, and HMLE(d, N), the generation of independent realiza-tions of X̃ ∼ p̃X(·; HMLE(d, N),S(N)) is straightforward. Indeed, forany M ≥ 1, the Algorithm 1 (de�ned below) 
an be used to generate a
(d×M)-dimensional matrix Z, whose 
olumns are independent realizationsof X̃. There, U {1, . . . , N} denotes the dis
rete uniform distribution over
{1, . . . , N} and N (0, 1) denotes the standard Gaussian distribution.1 Let Q(ω′

1), . . . , Q(ω′
M) be M independent realizations that are drawnfrom U {1, . . . , N} ;2 Let M be a (d×M)-dimensional matrix whose 
olumns are allequal to µ̂ ;3 Compute A su
h that H := R̂X −

N−1
N

AR̂XAT ;4 De�ne X̄ :=
[
X(ωQ(ω′

1)
) · · · X(ωQ(ω′

M
))

] ;5 Let Ξ be a (d×M)-dimensional matrix, whose 
omponents are dMindependent realizations that are drawn from N (0, 1) ;6 Assemble Z = M + A(X̄ −M) + HMLE(d, N)1/2
Ξ.Algorithm 1: Generation of M independent realizations of X̃.Finally, this se
tion has presented the general framework to nonparamet-ri
ally approximate the PDF of a random ve
tor when the maximal infor-mation is a set of N independent realizations. Some adjustments of the
lassi
al formulation have been proposed to take into a

ount 
onstraints onthe �rst and se
ond statisti
al moments of the approximated PDF, and ithas been proposed to sear
h the kernel density bandwidth as the solution ofa 
omputationally demanding LOO likelihood maximization problem.However, from the analysis of a series of test 
ases, it appears that R̂X isa rather good approximation of HMLE(d, N) for the nonparametri
 modellingof high dimensional random ve
tors (d ∼ 10− 100) with limited information(N ∼ 10d for instan
e). From Eqs. (12) and (13), this means that we areapproximating the PDF of X as a unique Gaussian PDF, whose parameters
orrespond to the empiri
al mean and 
ovarian
e matrix of X:

lim
H→bRX

p̃X(·; H,S(N)) = φ(·; µ̂, R̂X). (14)This 
ould prevent us from re
overing the subset of R
d on whi
h X is7



a
tually 
on
entrated. To fa
e this problem, we 
an be tempted to imposesmaller values for the 
omponents of H in the nonparametri
 model. If allthe 
omponents of X are a
tually dependent, there is however no reasonto do so without biasing the �nal 
onstru
ted distribution in fo
using toomu
h on the available data. Thus, instead of arti�
ially de
reasing the mostlikely value of H (a

ording to the available data), the next se
tion proposesseveral adaptations of this G-KDE formalism.3. Data-driven tensor-produ
t representationThis se
tion presents some adaptations of the 
lassi
al G-KDE to improvethe nonparametri
 representations of pX when the number N of availablerealizations of X is relatively small 
ompared to its dimension d. Following[16℄ and [17℄, we �rst suggest to pre-pro
ess the realizations of X (from aPrin
ipal Component Analysis for instan
e) su
h that X is now supposed tobe 
entred and un
orrelated:̂
µX = 0, R̂X = Id.Here, Id is the (d× d)-dimensional identity matrix. This makes independentthe 
omponents of X that were only linearly dependent. Then, the idea isto identify groups of 
omponents of X that 
an reasonably be 
onsideredas statisti
ally independent, if they exist. Instead of using statisti
al tests,we propose to sear
h these groups by looking for the maximum of a 
ross-validation likelihood quantity that is asso
iated with ea
h blo
k formation.Thus, given a blo
k by blo
k de
omposition of the 
omponents of X, the PDF

pX is approximated as the produ
t of the nonparametri
 estimations of thePDFs asso
iated with ea
h sub-ve
tor of X. For instan
e, if the d 
omponentsof X are sorted in d distin
t groups, the approximation of pX 
orrespondsto the produ
t of the d nonparametri
 estimations of the marginal PDFsof X. Indeed, if the identi�ed blo
k de
omposition is 
orre
tly adapted tothe (unknown) dependen
e stru
ture of X, there are good 
han
es for thenonparametri
 representation of pX to be improved.More details about this blo
k de
omposition are presented in the rest ofthis se
tion. First, we introdu
e the notations and the formalism on whi
hthis de
omposition is based. Then, several algorithms are proposed for itspra
ti
al identi�
ation. 8



3.1. Blo
k by blo
k de
ompositionFor any b in {1, . . . , d}d and for all 1 ≤ i ≤ d, bi 
an be used as a blo
kindex for the ith 
omponent Xi of X. This means that if bi = bj , Xi and
Xj are supposed to be dependent and have to belong to the same blo
k. Onthe 
ontrary, if bi 6= bj , Xi and Xj are supposed to be independent and they
an belong to two di�erent blo
ks. In order to avoid any redundan
y in theblo
k by blo
k parametrization of X, the following subset of {1, . . . , d}d is
onsidered:

B(d) :=

{
b ∈ {1, . . . , d}d | b1 = 1, 1 ≤ bj ≤ 1 + max

1≤i≤j−1
bi, 2 ≤ j ≤ d

}
.(15)Additionally, for any b in B(d), let

• Max(b) be the maximal value of b,
• s(ℓ)(X ; b) be the random ve
tor that gathers all the 
omponents of Xwith a blo
k index equal to ℓ,
• dℓ be the number of elements of b that are equal to ℓ,
• Sℓ(N) be the set that gathers the N independent realizations of s(ℓ)(X; b)that have been extra
ted from the N independent realizations of X in
S(N).There exists a bije
tion between B(d) and the set of all blo
k by blo
k de-
ompositions of X. For instan
e, for d = 5, all the elements of {(i, j, i, k, k), 1 ≤ i 6= j 6= k ≤ 5}
orrespond to the same blo
k de
omposition of X, but only b = (1, 2, 1, 3, 3)is in B(d). We 
an also identify

s(1)(X; b) = (X1, X3), s(2)(X; b) = X2, s(3)(X; b) = (X4, X5), (16)Max(b) = 3, d1 = 2 d2 = 1, d3 = 2. (17)A

ording to Eq. (12), for any Hℓ in M
+(dℓ), the PDF of s(ℓ)(X; b) 
anbe approximated by p̃s(ℓ)(X;b)(·; Hℓ,Sℓ(N)). It follows that the PDF of X
an be 
onstru
ted as the produ
t of these Max(b) PDFs:9



p̃X(x; H1, . . . , HMax(b),S(N), b) :=

Max(b)∏

ℓ=1

p̃s(ℓ)(X;b)(s
(ℓ)(x; b); Hℓ,S

ℓ(N)).(18)Su
h a 
onstru
tion for the PDF of X means that the ve
tors s(ℓ)(X; b),
1 ≤ ℓ ≤ Max(b), are assumed to be independent. For any b in B(d), let
HMLE

1 (b), . . . , HMLE
d (b) be the arguments that maximize the LOO likelihoodasso
iated with p̃X. Hen
e, for a given blo
k by blo
k de
omposition of Xthat is 
hara
terized by a given value of b, the most likely G-KDE of pX isgiven by
p̃X(x; HMLE

1 (b), . . . , HMLE
d (b),S(N), b). (19)Using Eqs. (9), (12) and (18), for any b in B(d) and any (H1, . . . , HMax(b))in M

+(d1)× · · · ×M
+(dMax(b)), this LOO likelihood is given by

LLOO(S(N)|H1 . . . , Hd, b) =

Max(b)∏

ℓ=1

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b), (20)
φ̃n,m(Hℓ, b) := φ

(
s(ℓ)(X(ωn); b); Aℓs

(ℓ)(X(ωm); b), H(ℓ)

)
, (21)

Hℓ := Idℓ
−

N − 1

N
AℓA

T
ℓ . (22)Noti
ing that

max
H1,...,HMax(b),b

Max(b)∏

ℓ=1

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b)

= max
b

Max(b)∏

ℓ=1

max
Hℓ

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b),

(23)
it follows that for a given blo
k by blo
k de
omposition of X, the most likelyvalues of H1, . . . , HMax(b) 
an be 
omputed independently, and saved fora possible re-use for an other value of b. Indeed, if b(1) = (1, 1, 2, 2), two10



values H
(1)
1 and H

(1)
2 have to be 
hosen for the bandwidth matri
es (one forea
h blo
k). This means that two independent LOO likelihood maximizationproblems have to be solved. In the same manner, if b(2) = (1, 1, 2, 3), threevalues H

(2)
1 , H

(2)
2 and H

(2)
3 have to be 
hosen. However, given the same setof realizations of X, it is 
lear that the most likely value of H

(1)
1 is equalto the most likely value of H

(2)
1 . Hen
e, the most likely value of b, whi
h isdenoted by bMLE, is eventually solution of

bMLE := arg max
b∈B(d)

LLOO(S(N)|HMLE
1 (b), . . . , HMLE

d (b), b). (24)There, we remind that for any b in B(d) and any 1 ≤ ℓ ≤ Max(b),
HMLE

ℓ (b) := arg max
Hℓ∈M+(dℓ)

N∏

n=1

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b). (25)Analyzing the value of bMLE 
an give information on the a
tual depen-den
e stru
ture for the 
omponents of X. Indeed, if bMLE = (1, . . . , 1), themost appropriate representation for the PDF of X is its 
lassi
al multidimen-sional Gaussian kernel estimation. This would mean that all the 
omponentsof X are likely to be dependent. On the 
ontrary, if bMLE = (1, 2, . . . , d),the most likely representation 
orresponds to the assumption that all the
omponents of X are independent. Other values of bMLE 
an also be usedto identify groups of dependent 
omponents of X, whi
h are likely to beindependent the ones to the others.3.2. Pra
ti
al solving of the blo
k by blo
k de
omposition problemThe optimization problem de�ned by Eq. (24) being very 
omplex, wesuggest to sear
h the most likely blo
k by blo
k de
omposition of X usingvery simple parametrizations of the bandwidth matri
es. Indeed, on
e ve
tor
X has been 
entred and un
orrelated, it is reasonable to parametrize ea
hbandwidth matrix Hℓ by a unique s
alar hℓ, su
h that Hℓ = h2

ℓIdℓ
. FromEq. (22), it follows that

Aℓ =
N

N − 1

√
1− h2

ℓIdℓ
. (26)Hen
e, for a given pre
ision ǫ, the 
omplex problem of sear
hing the mostlikely values of H1, . . . , HMax(b) 
an be redu
ed to minimizing Max(b) non
onvex but expli
it fun
tions over the 
losed interval [ǫ, 1]. This 
an be done11



value of d 1 2 3 4 5 6 7 8 9 10value of NB(d) 1 2 5 15 52 203 877 4140 21147 115975value of Nmaxgreedy(d) 1 3 8 17 31 51 78 113 157 211Table 1: Evolution of NB(d) and Nmaxgreedy(d) with respe
t to d.in parallel, and ea
h minimization problem 
an be solved very e�
ientlyusing a 
ombination of golden se
tion sear
h and su

essive paraboli
 inter-polations (see [1℄ for further details about this method). However, solvingthe optimization problem de�ned by Eq. (24) 
an still be 
omputationallydemanding when d in
reases. Indeed, as it 
an be seen in Table 1, the numberof admissible values of b, whi
h is denoted by NB(d), in
reases exponentiallywith respe
t to d. Hen
e, a brute for
e approa
h, whi
h would 
onsist intesting all the possible values of b, 
an not be used to identify bMLE.As an alternative, we propose to 
onsider a greedy algorithm, whose 
om-putational 
ost 
an be bounded. Starting from a 
on�guration where all the
omponents of X are in the same blo
k, whi
h 
orresponds to b = (1, . . . , 1),the idea of this algorithm is to remove iteratively one element of this initialblo
k, and to put it in a blo
k that would be already built, or in a newblo
k where it is the only element. The Algorithm 2 provides a more de-tailed des
ription of this pro
edure. By 
onstru
tion, the number Ngreedy(d)of evaluations of b 7→ maxhLLOO(S(N)|b, h) veri�es
Ngreedy(d) ≤ Nmaxgreedy(d) := 1 +

d−2∑

i=0

(d− i)(i + 1) ≤ d3. (27)For d > 4, su
h an algorithm 
an therefore be used to approximate bMLEat a 
omputational 
ost that is mu
h more a�ordable than a dire
t identi�-
ation based on NB(d) evaluations of b 7→ maxhLLOO(S(N)|b, h).When modelling high dimensional random ve
tors (d ∼ 50 − 100), thevalue of Nmaxgreedy(d), whi
h is de�nitely mu
h smaller than NB(d), 
an alsobe
ome very high:
Nmaxgreedy(d = 50) = 22051, Nmaxgreedy(d = 100) = 171601. (28)To identify relevant values for b at a lower 
omputational 
ost in su
ha 
onstrained dis
rete set B(d), the geneti
 algorithms (see [7℄ for further12



1 Initialization: b∗ = (1, . . . , 1), ind.blo
ked = ∅ ;2 for k = 1 : d do3 L(k) = ∅, b(k) = ∅, index(k) = ∅, ℓ = 1 ;4 for i ∈ {1, . . . , d} \ind.blo
ked do5 for j = 2 : min(d,Max(b⋆) + 1) do6 Adapt the value of the blo
k index: btemp := b∗, btemp
i = j ;7 Compute: Ltemp = maxhLLOO(S(N)|btemp, h);8 Save results: L(k) {ℓ} = Ltemp, b(k) {ℓ} = btemp,index(k) {ℓ} = i ;9 In
rement: ℓ← ℓ + 1;10 end11 end12 Find the best blo
k index at iteration k: ℓ∗ = arg maxℓ L(k) {ℓ} ;13 A
tualize: b∗ ← b(k) {ℓ∗}, ind.blo
ked← ind.blo
ked ∪ index(k) {ℓ∗};14 end15 Maximize over all iterations: (ℓgreedy, kgreedy) := arg maxℓ,k L(k) {ℓ};16 Approximate bMLE ≈ b(kgreedy) {

ℓgreedy}.Algorithm 2: Greedy sear
h of bMLE.

13



details) seem to be parti
ularly adapted. Hen
e, an adaptation of thesealgorithms to the 
ase of the identi�
ation of the most likely blo
k by blo
kde
omposition of X is proposed. The fusion and the mutation pro
esses onwhi
h su
h algorithms are generally based, as well as a pseudo-proje
tionin B(d) are therefore detailed in Appendix. In these algorithms, for any set
S (whi
h 
an be dis
rete or 
ontinuous), we denote by U(S) the uniformdistribution over S. Based on these three fun
tions, the Algorithm 3 showsthe geneti
 pro
edure we suggest for solving Eq. (24). The results given bythis geneti
 algorithm are dependent on three parameters:
• the maximum number of iterations imax,
• the probability of mutation pMut,
• the size of the population we are 
onsidering in the geneti
 algorithm

Npop.For this algorithm, the number of evaluations of b 7→ maxhLLOO(S(N)|b, h)is equal to N tot = imax ×Npop. For a given value of N tot, it is however hardto infer the optimal values for these three parameters, as it depends on d andon the optimal blo
k-by-blo
k stru
ture of the 
onsidered random ve
tor ofinterest. However, from the analysis of a series of numeri
al examples, it isgenerally interesting to 
hoose small values for pMut to limit the number ofspontaneous mutations, and favour high values for the number of iterations
imax rather than for the population size Npop.On
e a satisfying value b̂

MLE of b has been identi�ed using the s
alarparametrization of the bandwidth matri
es, it is possible to enri
h the parametriza-tion of the bandwidth matri
es to improve the nonparametri
 representationof the PDF of X. This amounts at solving
HMLE

ℓ (b̂
MLE

) = arg max
Hℓ∈M+(dℓ)

1

N − 1

N∑

m=1,m6=n

φ̃n,m(Hℓ, b̂
MLE

) (29)for all 1 ≤ ℓ ≤ Max(b̂MLE
). In pra
ti
e, we observed on a series of test
ases that the interest of su
h an enri
hment of the bandwidth matrix wasrelatively limited. 14



1 Choose Npop ≥ 2, 0 ≤ pMut ≤ 1 and imax ≥ 1 ;2 Initialization ;3 De�ne B = ∅, L = ∅, in
 = 1 ;4 Choose at random Npop elements of B(d), {
b(1), . . . , b(Npop)

} ;5 for n = 1 : Npop do6 Compute: Ltemp = maxhLLOO(S(N)|b(n), h);7 Save results: L {in
} = Ltemp, B {in
} = b(n), in
 = in
 + 1 ;8 end9 Iteration ;10 for i = 2 : imax do11 Gather in S the Npop elements of B asso
iated with the Npop highestvalues of L ;12 Choose at random Npop distin
t pairs of elements of S:{(
b(n,1), b(n,2)

)
, 1 ≤ n ≤ Npop} ;13 for n = 1 : Npop do14 Fusion: bFus = Fusion(b(n,1), b(n,2)) ;15 Mutation: bMut = Mutation(bFus, pMut) ;16 Compute: Ltemp = maxhLLOO(S(N)|bMut, h);17 Save results: L {in
} = Ltemp, B {in
} = bMut, in
 = in
 + 1 ;18 end19 end20 Maximize over all iterations: kgene = arg max1≤k≤in
−1 L {k} ;21 Approximate bMLE ≈ B {kgene}.Algorithm 3: Geneti
 sear
h of bMLE. The fun
tions Mutation() andFusion() are presented in Appendix, and are detailed in Algorithms 4and 5.

15



4. Simulation and appli
ation studiesThe purpose of this se
tion is to illustrate the interest of the 
orrelation
onstraints and the tensorized formulation for the nonparametri
 represen-tation of PDFs when the maximal information is a �nite set of independentrealizations. To this end, a series of examples will be presented. The �rstexamples will be based on generated data, so that the errors 
an be 
on-trolled, whereas the last example presents an industrial appli
ation based onexperimental data.4.1. Monte Carlo simulation studies4.1.1. Lemnis
ate fun
tionLet U be a random value that is uniformly distributed on [−0.85π, 0.85π],
ξ = (ξ1, ξ2) be a 2-dimensional random ve
tor whose 
omponents are two in-dependent standard Gaussian variables, and XL = (XL

1 , XL
2 ) be the randomve
tor so that

XL =

(
sin(U)

1 + cos(U)2
,
sin(U) cos(U)

1 + cos(U)2

)
+ 0.05ξ. (30)We assume that N = 200 independent realizations of XL have been gath-ered in S(N). Given this information, we would like to generate additionalpoints that 
ould sensibly be 
onsidered as new independent realizations of

XL. Based on the G-KDE formalism presented in Se
tion 2, four kinds ofgenerators are 
ompared in Figure 1, depending on the value of the band-width and on the 
onstraints on the statisti
al moments of XL.
• Case 1: p

X
L is approximated by p

cX
L(·; (hSilv(d, N))2Id,S(N)), whi
his de�ned by Eq. (1) (no 
onstraints).

• Case 2: p
X

L is approximated by p
fX

L(·; (hSilv(d, N))2Id,S(N)), whi
his de�ned by Eq. (12) (
onstraints on the mean and the 
ovarian
e).
• Case 3: p

X
L is approximated by p

cX
L(·; (hMLE(d, N))2Id,S(N)) (no 
on-straints).

• Case 4: p
X

L is approximated by p
fX

L(·; (hMLE(d, N))2Id,S(N)) (
on-straints on the mean and the 
ovarian
e).16



The relevan
e of the di�erent approximations of p
X

L 
an be analysedfrom a graphi
al point of view in Figure 1. It is instru
tive to 
ompare theasso
iated values of the LOO likelihood, whi
h is denoted by LLOO(S(N)|H),as the higher this value, the more likely the approximation. Hen
e, for thisexample, introdu
ing 
onstraints on the mean and the 
ovarian
e of the G-KDE tends to slightly in
rease the values of LLOO(S(N)|H). Moreover,these results are strongly improved when 
hoosing hMLE(d, N) instead of
hSilv(d, N). Then, for these four 
ases, Figure 2 
ompares the evolutionof hSilv(d, N) and hMLE(d, N) with respe
t to N , and shows the asso
iatedvalues of the LOO likelihood. For this example, it 
an therefore be seenthat hSilv(d, N) strongly overestimates the s
attering of the distribution of
XL, for any 
onsidered values of N . This is not the 
ase when workingwith hMLE(d, N). It is also interesting to noti
e that for values of N lowerthan 104 (whi
h is very high for 2-dimensional 
ases), the di�eren
e between
hMLE(d, N) and hSilv(d, N) is always important.4.1.2. Four bran
hes 
lover-knot fun
tionIn the same manner than in the previous se
tion, let U be a random valuethat is uniformly distributed on [−π, π], ξ = (ξ1, ξ2, ξ3) be a 3-dimensionalrandom ve
tor whose 
omponents are three independent standard Gaussianvariables, and XFB be the random ve
tor so that

XFB = (cos(U) + 2 cos(3U), sin(U)− 2 sin(3U), 2 sin(4U)) + ξ. (31)On
e again, starting from a data set of N = 200 independent realizations,we would like to be able to generate additional realizations of XFB. Forthis 3-dimensional 
ase, as in the previous se
tion, Figures 3 and 4 allowus to underline the interest of 
onsidering G-KDE representations that are
onstrained in terms of mean and 
ovarian
e, for whi
h the bandwidths areoptimized from the likelihood maximization point of view.4.1.3. Interest of the blo
k-by-blo
k de
omposition in higher dimensionsAs explained in Se
tion 3, when d is high, the G-KDE of pX requiresvery high values of N to be able to identify the manifold on whi
h the dis-tribution of X is 
on
entrated. In other words, if N is �xed, the higher d,the higher hMLE(d, N) and the more s
attered the new realizations of X. Asan illustration of this phenomenon, let us 
onsider the two following randomve
tors, for d ≤ 1: 17
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(d) log(LLOO(S(N)|h2Id)) = −38.7Figure 1: Lemnis
ate 
ase: N = 200 given data points (big bla
k squares) and 104 ad-ditional realizations (small red and green points) generated from a G-KDE approa
h for
h = hSilv(d, N) (�rst row) and h = hMLE(d, N) (se
ond row). The �rst 
olumn 
orre-sponds to the 
ase where no 
onstraints on the mean and the 
ovarian
e of the generatedpoints are introdu
ed, whereas the se
ond 
olumn 
orresponds to the 
ase where the meanand the 
ovarian
e of the generated points are equal to their empiri
al estimations thatare 
omputed from the available data. Under ea
h graph is shown the value of the LOOlikelihood for the asso
iated value of h.
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N(b) Evolution of LLOO(S(N)|h2Id)Figure 2: Evolution of the bandwidth (left) and of the LOO-likelihood (right) with respe
tto N for the Lemnis
ate fun
tion (2D). The red dotted lines 
orrespond to the Silverman
ase: h = hSilv(d, N). The bla
k solid lines 
orrespond to the MLE 
ase: h = hMLE(d, N).For this 2D example, the distin
tions between the 
ases with 
orrelation 
onstraints orwithout were negligible 
ompared to the di�eren
e between the Silverman and the MLE
ases. Hen
e, only the 
ases where 
orrelation 
onstraints are imposed on the G-KDE arerepresented. Ea
h 
urve 
orresponds to the mean values of h and log(LLOO(S(N)|h2Id)),whi
h have been 
omputed from 50 independent generated 200-dimensional sets of inde-pendent realizations of XL.
• Case 1: X(2D) = (XL, Ξ3, . . . , Ξd).
• Case 2: X(3D) = (XFB, Ξ4, . . . , Ξd).Here, Ξ3, . . . , Ξd denote d independent standard Gaussian random vari-ables, whereas the random ve
tors XL and XFB have been introdu
ed inSe
tion 4.1. For these two 
ases, two 
on�gurations are 
ompared.
• On the �rst hand, a 
lassi
al G-KDE of the PDFs of X(2D) and X(3D)is 
omputed. In that 
ase, no blo
k de
omposition is 
arried out. Theblo
k by blo
k ve
tors asso
iated with these modelling, whi
h are re-spe
tively denoted by b(2D,1) and b(3D,1), are equal to (1, . . . , 1).
• On the se
ond hand, we impose b(2D,2) = (1, 1, 2, . . . , d−1) and b(3D,2) =

(1, 1, 1, 2, . . . , d− 2), and we build the asso
iated tensorized versions ofthe G-KDE of the PDFs of X(2D) and X(3D).Hen
e, when no blo
k de
omposition is 
arried out, we 
an verify in Fig-ure 5 that hMLE(d, N) qui
kly 
onverges to 1 when d in
reases, for the two19
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(d) log(LLOO(S(N)|h2Id)) = −7.98× 102Figure 3: Four bran
hes 
lover-knot 
ase: N = 200 given data points (big bla
k squares)and 104 additional realizations (small red and green points) generated from a G-KDEapproa
h for h = hSilv(d, N) (�rst row) and h = hMLE(d, N) (se
ond row). The �rst
olumn 
orresponds to the 
ase where no 
onstraints on the mean and the 
ovarian
e ofthe generated points are introdu
ed, whereas the se
ond 
olumn 
orresponds to the 
asewhere the mean and the 
ovarian
e of the generated points are equal to their empiri
alestimations that are 
omputed from the available data. Under ea
h graph is shown thevalue of the LOO likelihood for the asso
iated value of h.
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N(b) Evolution of LLOO(S(N)|h2Id)Figure 4: Evolution of the bandwidth (left) and of the LOO-likelihood (right) with respe
tto N for the four bran
hes 
lover-knot fun
tion (3D). The red dotted lines 
orrespond tothe Silverman 
ase: h = hSilv(d, N). The bla
k solid lines 
orrespond to the MLE 
ase:
h = hMLE(d, N). For this 3D example, the distin
tions between the 
ases with 
orrelation
onstraints or without were negligible 
ompared to the di�eren
e between the Silvermanand the MLE 
ases. Hen
e, only the 
ases where 
orrelation 
onstraints are imposedon the G-KDE are represented. Ea
h 
urve 
orresponds to the mean values of h and
log(LLOO(S(N)|h2Id)), whi
h have been 
omputed from 50 independent generated 200-dimensional sets of independent realizations of XKB.
onsidered 
ases. As a 
onsequen
e, the 
apa
ity of the 
lassi
al G-KDE for-malism to 
on
entrate the new realizations of X(2D) and X(3D) on the 
orre
tsubspa
es of R

d de
reases when d in
reases. To illustrate this phenomenon,for N = 500, Figure 6 
ompares the positions of the �rst 
omponents of theavailable realizations of X(2D) and X(3D), and the 
orresponding positionsof 104 additional points generated from a G-KDE approa
h. Hen
e, just byworking on the optimization of the value of the bandwidth, it is qui
kly im-possible to re
over the subsets of R
2 and R

3 on whi
h the true distributionsof XL and XFB are 
on
entrated. On the 
ontrary, when the blo
k by blo
kde
ompositions given by b(2D,2) and b(3D,2) are 
onsidered, the approxima-tion of the PDFs of the two �rst 
omponents of X(2D) and X(3D) is nota�e
ted by the presen
e of the additional random variables Ξ3, . . . , Ξd. As a
onsequen
e, for ea
h 
onsidered values of d, the new generated points are
on
entrated on the 
orre
t subspa
es, as it 
an be seen in Figure 6.At last, the high interest of introdu
ing the blo
k by blo
k de
ompositionfor these two examples is emphasized by 
omparing in Figure 5 the values ofthe LOO likelihood in ea
h 
ase. 21
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value of b value of hMLE(d, N) log(LLOO(S(N)|hMLE(d, N), b))(1,1,1,1,1) 0.395 −1.21× 103(1,2,3,4,5) (0.115,0.163,0.0971,0.108, 0.118) −1.15× 103(1,2,1,2,1) (0.290,0.226) −1.19× 103(1,1,2,2,2) (0.113,0.140) −8.35 × 10
2(1,1,2,2,3) (0.113,0.119,0.118) −9.96× 102Table 2: In�uen
e of the 
hoi
e of b on the LOO log-likelihood of the G-KDE for themodeling of the PDF of X = (XL, XFB) with N = 200 independent realizations.In the same manner, if we de�ne X as the 
on
atenation of XL and

XFB, whi
h are 
hosen independent, the interest of introdu
ing the 
orre
tblo
k by blo
k de
omposition of X in terms of likelihood maximization isshown in Table 2. Indeed, 
hoosing b = (1, 1, 2, 2, 2) instead of the two
lassi
al a priori 
hoi
es b = (1, 1, 1, 1, 1) (all the 
omponents are modelledat the same time) and b = (1, 2, 3, 4, 5) (all the 
omponents are modelledseparately), allows us to strongly in
rease the likelihood asso
iated with theapproximation of the PDF of X. Re
ipro
ally, su
h an example seems to
on�rm the fa
t that maximizing LLOO(S(N)|hMLE(d, N), b) should help usto �nd the dependen
e stru
ture in the 
omponents of X.4.1.4. E�
ien
y of the proposed algorithms for the blo
k-by-blo
k de
ompo-sitionThis se
tion aims at 
omparing the e�
ien
y of the proposed algorithmsfor solving the optimization problem given by Eq. (24). To this end, usingthe same notations than in Se
tion 3.1, we denote by X the random ve
torsu
h that for all 1 ≤ ℓ ≤ Max(b),
s(ℓ)(X, b) = ξ(ℓ)/

∥∥∥ξ(ℓ)
∥∥∥ + 0.15Ξ(ℓ). (32)Here ξ(ℓ) and Ξ

(ℓ) denote independent standard Gaussian random ve
tors,and ‖·‖ denotes the 
lassi
al Eu
lidean norm. By 
onstru
tion, the randomve
tors s(ℓ)(X, b) are 
on
entrated on dℓ-dimensional hyper-spheres, dℓ beingthe dimension of s(ℓ)(X, b). Thus, random ve
tor X presents a known blo
kby blo
k stru
ture, and its distribution is 
on
entrated on a subset of R
d.Then, we assume that the maximal available information is a set of N =24



Chosen values of b d NB(d) Ngreedy(d) N̂
(10,0.01)gene (d)(1,2,2,1,3,4,1) 7 877 68 (52) 32.4(1,2,2,1,3,4,1,2,4,5) 10 115975 174 (141) 25.5(1,2,2,1,3,4,1,2,4,5,5,6,3,4,7,6,8,1,2,7) 20 5.17× 1017 968 (879) 51.1Table 3: Comparison of the e�
ien
y of the greedy and the geneti
 algorithms for theidenti�
ation of the blo
k-by-blo
k stru
ture of X .

pMut \ Npop 2 5 10 20 500 ∞ 13.5 16.0 35.8 58.10.005 ∞ 15.9 19.5 39.7 77.70.01 13.4 15.7 25.5 36.0 62.90.1 22.9 44.3 41.0 64.7 78.7Table 4: In�uen
e of the parameters pMut and Npop on the mean number of tested valuesof b, whi
h is denoted by N̂
(Npop,pMut)gene (d).

500 independent realizations of X. For di�erent values of d and b, the abilityof the greedy and the geneti
 algorithms to �nd ba
k the 
orre
t blo
k byblo
k stru
ture of X is 
ompared in Table 3. In this table, Npop = 10, pMut =

0.01, and we denote by N̂
(Npop,pMut)gene (d) the mean number of distin
t valuesof b that were tested for the geneti
 algorithm to identify the optimal valueof b. These values were 
omputed from 20 runs of the algorithm initializedin 20 di�erent initial populations 
hosen at random in B(d). For the greedy
ase, the algorithm, whi
h is deterministi
, was run until it stopped, and weindi
ate in Table 3 two quantities: the total number of iterations Ngreedy(d),and, in parenthesis, the number of iterations that was a
tually needed toget the best value of b. Hen
e, for these parti
ular examples, the geneti
algorithm was more e�
ient than the greedy one.The in�uen
e of parameters Npop and pMut is then analysed in Table 4, for

d = 10 and b = (1, 2, 2, 1, 3, 4, 1, 2, 4, 5). A value of N̂
(Npop,pMut)gene (d) equal to∞means that the 
orre
t value was never found after 105 iterations. Therefore,this example (the same thing was observed for the other examples we tried)seem to en
ourage the use of small (but not zero) values of pMut, as well assmall values of Npop su
h that several mutation pro
esses 
an be a
hieved.25



4.2. Appli
ation to the generation of relevant ballast grain shapesThe me
hani
al behaviour of the railway tra
k strongly depends on thetra
k superstru
ture and substru
ture 
omponents. In parti
ular, the me-
hani
al properties of the ballast layer are very important. Therefore, aseries of studies are in progress to better analyse the in�uen
e of the bal-last shape on the railway tra
k performan
e. In that prospe
t, the shapes of
N = 975 ballast grains have been measured very pre
isely. As an illustration,Figure 7 shows the s
ans of three ballast grains. These measurements 
anbe 
onsidered as independent realizations of a 
omplex random �eld. Fromthis �nite set of realizations, a Karhunen-Loève expansion (see [9, 8℄ for moredetails about this method) has been 
arried out to redu
e the statisti
al di-mension of this random �eld. Without entering too mu
h into details, weadmit in this paper that the random �eld asso
iated with the varying bal-last shape 
an �nally be parametrized by a 117-dimensional random ve
tor,whi
h is denoted by X. As a 
onsequen
e of the Karhunen-Loève expan-sion, this random ve
tor is 
entred and its 
ovarian
e matrix is equal to the
117-dimensional identity matrix:

E [X] = 0, E[X ⊗X] = I117. (33)From the experimental data, we have a

ess to N = 975 independentrealizations of X, whi
h are gathered in S(N). Based on this maximal avail-able information, we would like to identify the PDF of X from a G-KDEapproa
h. The results asso
iated with several modellings based on the G-KDE formalism are summarized in Table 5. In this table, we noti
e the highinterest of introdu
ing 
orrelation 
onstraints. Indeed, for su
h a very highdimensional problem with relatively little data, if no 
onstraints are intro-du
ed, we get very poor models asso
iated with very low values of the LOOlikelihood. In that 
ase, assuming that all the 
omponents are independentleads to better results than assuming that they are all dependent. This 
anbe explained by the fa
t that if all the 
omponent of X are 
hosen indepen-dent, we impose a diagonal stru
ture for E[X ⊗X], whi
h is, in that 
ase,very 
lose to imposing that E[X ⊗X] = I117.On the 
ontrary, mu
h higher values of the LOO likelihood are obtainedby adding 
onstraints on the mean value and the 
ovarian
e matrix of theG-KDE of the PDF of X. In both 
ases, it 
an be noti
ed that it is worthworking on the values of the bandwidth. Indeed, passing from hSilv(d, N)to hMLE(d, N) makes a big di�eren
e when looking at the LOO likelihood.26



Figure 7: Three s
anned ballast grains (provided by SNCF).Value of b Value of h Correlation 
onstraints LOO Log-likelihood
(1, . . . , 1) hSilv(d, N) no -179379
(1, . . . , 1) hMLE(d, N) no -176886
(1, . . . , d) hMLE(d, N) no -162398
(1, . . . , 1) hSilv(d, N) yes -161745
(1, . . . , 1) hMLE(d, N) yes -161262
(1, . . . , d) hMLE(d, N) yes -161775

bMLE hMLE(d, N) yes -160930Table 5: In�uen
e of the value of the bandwidth, of the presen
e of 
onstraints on the
ovarian
e, and of the 
hoi
e of the blo
k by blo
k de
omposition for the approximationof the PDF of X.At last, introdu
ing the tensorized representation as it is done in Se
tion 3,and working on the value of the blo
k-by-blo
k de
omposition of X leads toanother high in
rease of the LOO likelihood. For this appli
ation, the value of
bMLE has been approximated from the 
oupling of the greedy algorithm andthe geneti
 algorithm presented in Se
tion 3. The greedy algorithm was �rstlaun
hed, and stopped after 30000 iterations. Then, based on these results,additional 20000 iterations were performed using the geneti
 algorithm with
Npop = 500 and pMut = 0.005.Finally, by working on both the 
orrelation 
onstraints and the blo
k byblo
k de
omposition of X, it is possible to 
onstru
t, for this example, veryinteresting statisti
al models for X. Su
h models 
an then be used for theanalysis of the ballast statisti
al properties.
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5. Con
lusionThis work 
onsiders the 
hallenging problem of identifying 
omplex PDFswhen the maximal available information is a set of independent realizations.In that prospe
t, the multidimensional G-KDE method plays a key role,as it presents a good 
ompromise between 
omplexity and e�
ien
y. Twoadaptations of this method have been presented. First, a modi�ed formalismis presented to make the mean and the 
ovarian
e matrix of the estimatedPDF equal to their empiri
al estimations. Then, tensorized representationsare proposed. These 
onstru
tions are based on the identi�
ation of a blo
kby blo
k dependen
e stru
ture of the random ve
tors of interest. The interestof these two adaptations has �nally been illustrated on a series of analyti
alexamples and on a high-dimensional industrial example.The identi�
ation of the bandwidth matri
es and of the blo
k stru
ture is
arried out in the frequen
y domain. Investigating Bayesian sampling for thebandwidth matri
es and the blo
k stru
ture sele
tion 
ould be interesting forfuture work.AppendixA1. Proof of Proposition 1We 
an 
al
ulate:
E

[
X̃

]
=

1

N

N∑

n=1

AX(ωn) + β = µ̂. (34)Cov(X̃) =

∫

Rd

x⊗ x p̃X(x; H ,S(N))dx− µ̂⊗ µ̂

=
1

N

N∑

n=1

H + (AX(ωn) + β)⊗ (AX(ωn) + β)− µ̂⊗ µ̂

= H +
N − 1

N
AR̂XAT

= R̂X.

(35)
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A2. Des
ription of three algorithms used in the geneti
 algorithmThis se
tion presents the three algorithms that are used in the geneti
algorithm de�ned in Se
tion 3. Algorithm 4 presents the fusion fun
tion,Algorithm 5 des
ribes the mutation fun
tion, and Algorithm 6 shows thepseudo proje
tion on B(d) on whi
h they are based.1 Let b(1) and b(2) be two elements of B(d) ;2 Initialization: b = (0, . . . , 0), index = {1, . . . , d}, n = 1 ;3 while index is not empty do4 Choose i ∼ U({index}), j ∼ U({1, 2}), k ∼ U({1, 2}) ;5 Find u(1) = whi
h(b(1) == b
(1)
i ), u(2) = whi
h(b(2) == b

(2)
i ) ;6 if k==1 then7 De�ne v = u(j) ∩ index ;8 end9 else10 De�ne v = (u(1) ∪ u(2)) ∩ index ;11 end12 Fill b[v] = n ;13 A
tualize n← n + 1, index← index\v.14 end15 Fusion(b(1), b(2)) := ΠB(d)(b).Algorithm 4: Algorithm for the fusion of two elements b(1) and b(2) of
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