Design optimization under uncertainties of a mesoscale implant in biological tissues using a probabilistic learning algorithm

Abstract : This paper deals with the optimal design of a titanium mesoscale implant in a cortical bone for which the apparent elasticity tensor is modeled by a non-Gaussian random field at mesoscale, which has been experimentally identified. The external applied forces are also random. The design parameters are geometrical dimensions related to the geometry of the implant. The stochastic elastostatic boundary value problem is discretized by the finite element method. The objective function and the constraints are related to normal , shear, and von Mises stresses inside the cortical bone. The constrained nonconvex optimization problem in presence of uncertainties is solved by using a probabilistic learning algorithm that allows for considerably reducing the numerical cost with respect to the classical approaches.
Type de document :
Article dans une revue
Computational Mechanics, Springer Verlag, 2018, 62 (3), pp.477-497. 〈10.1007/s00466-017-1509-x〉
Liste complète des métadonnées

Littérature citée [99 références]  Voir  Masquer  Télécharger

https://hal-upec-upem.archives-ouvertes.fr/hal-01634188
Contributeur : Christian Soize <>
Soumis le : lundi 13 novembre 2017 - 17:38:42
Dernière modification le : jeudi 9 août 2018 - 01:43:10
Document(s) archivé(s) le : mercredi 14 février 2018 - 16:14:16

Fichier

publi-2018-CM-soize-preprint.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Christian Soize. Design optimization under uncertainties of a mesoscale implant in biological tissues using a probabilistic learning algorithm. Computational Mechanics, Springer Verlag, 2018, 62 (3), pp.477-497. 〈10.1007/s00466-017-1509-x〉. 〈hal-01634188〉

Partager

Métriques

Consultations de la notice

68

Téléchargements de fichiers

155