Quantum confinement of molecular deuterium clusters in carbon nanotubes: ab initio evidence for hexagonal close packing

Abstract : An ab initio study of quantum confinement of deuterium clusters in carbon nanotubes is presented. First, density functional theory (DFT)-based symmetry-adapted perturbation theory is used to derive parameters for a pairwise potential model describing the adsorbate–nanotube interaction. Next, we analyze the quantum nuclear motion of N D2 molecules (N o 4) confined in carbon nanotubes using a highly accurate adsorbate-wave-function-based approach, and compare it with the motion of molecular hydrogen. We further apply an embedding approach and study zero-point energy effects on larger hexagonal and heptagonal structures of 7–8 D2 molecules. Our results show a preference for crystalline hexagonal close packing hcp of D2 molecules inside carbon nanotubes even at the cost of a reduced volumetric density within the cylindrical confinement.
Type de document :
Article dans une revue
Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2017, 19 (42), pp.28621 - 28629. 〈10.1039/C7CP05869A〉
Liste complète des métadonnées

https://hal-upec-upem.archives-ouvertes.fr/hal-01629112
Contributeur : Alexander Mitrushchenkov <>
Soumis le : lundi 6 novembre 2017 - 09:42:28
Dernière modification le : jeudi 6 septembre 2018 - 15:12:04

Lien texte intégral

Identifiants

Collections

Citation

María Pilar De Lara-Castells, Andreas W. Hauser, Alexander O. Mitrushchenkov, Ricardo Fernández-Perea. Quantum confinement of molecular deuterium clusters in carbon nanotubes: ab initio evidence for hexagonal close packing. Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2017, 19 (42), pp.28621 - 28629. 〈10.1039/C7CP05869A〉. 〈hal-01629112〉

Partager

Métriques

Consultations de la notice

57