Multifractal Analysis and Wavelets

Abstract : In this course, we give the basics of the part of multifractal theory that intersects wavelet theory. We start by characterizing the pointwise Hölder exponents by some decay rates of wavelet coefficients. Then, we give some examples of wavelet series having a multifractal behavior, and we explain how to build wavelet series with prescribed pointwise Hölder exponents. Next we develop the problematics of mul-tifractal formalism, going from the intuitive formula by Frisch and Parisi to explicit and exploitable formulas. We prove that " multifractals are everywhere " , in the sense that typical functions in Besov spaces or typical measures are multifractal in the sense of Baire's categories. We finish by some well-known examples of multifractal wavelet series, random and deterministic, focusing on the influence of certain adaptive threshold procedures to the multifractal properties of signals.
Type de document :
Chapitre d'ouvrage
New Trends in Applied Harmonic Analysis, 2016, 〈10.1007/978-3-319-27873-5_2〉
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger
Contributeur : Stéphane Seuret <>
Soumis le : vendredi 6 octobre 2017 - 16:28:36
Dernière modification le : mercredi 11 octobre 2017 - 09:10:47


Fichiers produits par l'(les) auteur(s)




Stéphane Seuret. Multifractal Analysis and Wavelets. New Trends in Applied Harmonic Analysis, 2016, 〈10.1007/978-3-319-27873-5_2〉. 〈hal-01612275〉



Consultations de
la notice


Téléchargements du document