L²-stability of a finite element – finite volume discretization of convection-diffusion-reaction equations with nonhomogeneous mixed boundary conditions

Abstract : We consider a time-dependent and a steady linear convection-diffusion-reaction equation whose coefficients are nonconstant. Boundary conditions are mixed (Dirichlet and Robin−Neumann) and nonhomogeneous. Both the unsteady and the steady problem are approximately solved by a combined finite element – finite volume method: the diffusion term is discretized by Crouzeix−Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the unsteady case, the implicit Euler method is used as time discretization. This scheme is shown to be unconditionally L2-stable, uniformly with respect to diffusion, except if the Robin−Neumann boundary condition is inhomogeneous and the convective velocity is tangential at some points of the Robin−Neumann boundary. In that case, a negative power of the diffusion coefficient arises. As is shown by a counterexample, this exception cannot be avoided.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 51 (3), pp.919-947. 〈10.1051/m2an/2016042〉
Liste complète des métadonnées

https://hal-upec-upem.archives-ouvertes.fr/hal-01587590
Contributeur : Robert Eymard <>
Soumis le : jeudi 14 septembre 2017 - 13:45:27
Dernière modification le : jeudi 13 décembre 2018 - 18:46:21

Lien texte intégral

Identifiants

Citation

Robert Eymard, Paul Deuring. L²-stability of a finite element – finite volume discretization of convection-diffusion-reaction equations with nonhomogeneous mixed boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 51 (3), pp.919-947. 〈10.1051/m2an/2016042〉. 〈hal-01587590〉

Partager

Métriques

Consultations de la notice

118