R. Azencott, Densit?? des diffusions en temps petit: d??veloppements asymptotiques, Lecture Notes in Mathematics, vol.25, issue.8, pp.402-498, 1984.
DOI : 10.1070/RM1970v025n01ABEH001254

R. Azencott, A common large deviations framework for sequential annealing and parallel annealing, 1992.

R. Azencott and H. Doss, L'´ equation de Schrödinger quand tend vers 0: une approche probabilistique, Lecture Notes in Mathematics, vol.1109, pp.1-17, 1985.
DOI : 10.1007/bfb0101533

D. Bartolucci and A. Malchiodi, An Improved Geometric Inequality via Vanishing Moments, with Applications to Singular Liouville Equations, Communications in Mathematical Physics, vol.11, issue.3, pp.415-452, 2013.
DOI : 10.1142/S0219199709003417

URL : http://arxiv.org/abs/1206.0225

L. Battaglia and A. Malchiodi, A Moser-Trudinger inequality for the singular Today system

B. Arous and G. , Methods de laplace et de la phase stationnaire sur l'espace de wiener, Stochastics, vol.463, issue.3, pp.125-153, 1988.
DOI : 10.1007/978-1-4613-8514-1

B. Arous, G. Ledoux, and M. , Schilder's large deviation principle without topology, Pitman Research Notes in Mathematics, vol.284, pp.107-122, 1993.

B. Arous, G. Rouault, and A. , Laplace asymptotics for reaction-diffusion equations, Prob. Theor. Rel, pp.259-285, 1993.
DOI : 10.1007/bf01199323

P. Buser, Geometry and Spectra of Compact Riemann Surfaces, 1992.
DOI : 10.1007/978-0-8176-4992-0

F. David, Conformal Field Theories Coupled to 2-D Gravity in the Conformal Gauge, Mod, Phys. Lett. A, vol.3, p.1651, 1988.

I. M. Davies and A. Truman, ???anharmonic oscillators, Journal of Mathematical Physics, vol.24, issue.2, p.255, 1983.
DOI : 10.1007/BF01952890

I. M. Davies and A. Truman, Laplace expansions of conditional wiener integrals and applications to quantum physics, Lecture Notes in Physics, vol.173, p.40, 1982.
DOI : 10.1007/3-540-11956-6_109

I. M. Davies and A. Truman, Laplace asymptotic expansions of conditional Wiener integrals and generalized Mehler kernel formulas, Journal of Mathematical Physics, vol.23, issue.11, p.2059, 1982.
DOI : 10.1002/cpa.3160290405

I. M. Davies and A. Truman, Laplace asymptotic expansions of conditional Wiener integrals and generalized Mehler kernel formulae for Hamiltonians on, J. Phys, vol.17, issue.2, p.2773, 1984.

J. Deuschel, G. Giacomin, and D. Ioffe, Large deviations and concentration properties for ? interface models, Probab. Theory Related Fields, vol.117, issue.1, p.49111, 2000.
DOI : 10.1007/s004400050266

J. Distler and H. Kawai, Conformal Field Theory and 2-D Quantum Gravity or Who's Afraid of Joseph Liouville?, Nucl. Phys, pp.321-509, 1989.

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Annals of Mathematics, vol.168, issue.3, pp.813-858, 2008.
DOI : 10.4007/annals.2008.168.813

URL : https://hal.archives-ouvertes.fr/hal-00096523

H. Dorn and H. J. Otto, Two- and three-point functions in Liouville theory, Nuclear Physics B, vol.429, issue.2, p.375388, 1994.
DOI : 10.1016/0550-3213(94)00352-1

URL : http://arxiv.org/abs/hep-th/9403141

J. Dubédat, SLE and the free field: Partition functions and couplings, Journal of the American Mathematical Society, vol.22, issue.4, pp.995-1054, 2009.
DOI : 10.1090/S0894-0347-09-00636-5

R. S. Ellis and J. S. Rosen, Asymptotic analysis of Gaussian integrals. I. Isolated minimum points, Transactions of the American Mathematical Society, vol.273, issue.2, pp.447-481, 1982.
DOI : 10.1090/S0002-9947-1982-0667156-0

R. S. Ellis and J. S. Rosen, Asymptotic analysis of Gaussian integrals, II: Manifold of minimum points, Communications in Mathematical Physics, vol.16, issue.2, pp.153-181, 1981.
DOI : 10.1007/978-3-642-61943-4

R. S. Ellis and J. S. Rosen, Laplace's Method for Gaussian Integrals with an Application to Statistical Mechanics, The Annals of Probability, vol.10, issue.1, pp.47-66, 1982.
DOI : 10.1214/aop/1176993913

M. Freidlin and A. Wentzell, Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.260, p.430, 1998.

T. Funaki, Stochastic interface models, Lectures on probability theory and statistics, Lecture Notes in Math, vol.1869, pp.103-274, 2005.

C. Garban, R. Rhodes, and V. Vargas, On the heat kernel and the Dirichlet form of Liouville Brownian Motion
URL : https://hal.archives-ouvertes.fr/hal-00914370

R. Hoegh-krohn, A general class of quantum fields without cut-offs in two space-time dimensions, Communications in Mathematical Physics, vol.57, issue.3, pp.244-255, 1971.
DOI : 10.1007/BF01647122

C. Graham, . Robin, R. Jenne, L. J. Mason, and G. A. Sparling, Conformally invariant powers of the Laplacian, I. Existence, J.London Math. Soc, issue.2, pp.46-557, 1992.

G. R. Grimmett, Percolation, second edition, 1999.

K. J. Hamada, Vertex operators in 4D Quantum Gravity formulated as CFT, Foundations of Physics, pp.863-882, 2011.

D. Harlow, J. Maltz, and E. Witten, Analytic continuation of Liouville theory, Journal of High Energy Physics, vol.02, issue.12, pp.1108-4417, 2011.
DOI : 10.1007/JHEP02(2010)029

URL : http://arxiv.org/pdf/1108.4417

J. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec, vol.9, issue.2, pp.105-150, 1985.

I. Klebanov, String theory in two dimensions. arXiv:hep-th, 9108019.

V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Fractal structure of 2D-quantum gravity, Modern Phys, Lett A, vol.3, issue.8, pp.819-826, 1988.

J. Liouville, Sur l'´ equation aux différences partielles ? 2 ln ? ?u?v ± ? 2a 2 = 0, J. Math. Pures Appl, vol.36, pp.71-72, 1853.

A. Naddaf and T. Spencer, On homogenization and scaling limit of some gradient perturbations of a massless free field, Communications in Mathematical Physics, vol.74, issue.1/2, p.5584, 1997.
DOI : 10.1007/978-3-642-96379-7

Y. Nakayama, LIOUVILLE FIELD THEORY: A DECADE AFTER THE REVOLUTION, International Journal of Modern Physics A, vol.29, issue.17n18, pp.2771-2930, 2004.
DOI : 10.1016/S0550-3213(01)00573-9

M. Pincus, Gaussian processes and Hammerstein integral equations, Transactions of the American Mathematical Society, vol.134, issue.1, pp.193-214, 1968.
DOI : 10.1090/S0002-9947-1968-0231439-1

A. M. Polyakov, Quantum geometry of bosonic strings, Physics Letters B, vol.103, issue.3, pp.207-210, 1981.
DOI : 10.1016/0370-2693(81)90743-7

R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: A review, Probability Surveys, vol.11, issue.0
DOI : 10.1214/13-PS218

URL : http://arxiv.org/abs/1305.6221

R. Rhodes and V. Vargas, KPZ formula for log-infinitely divisible multifractal random measures, ESAIM Probability and Statistics, pp.358-371, 2011.
DOI : 10.1051/ps/2010007

URL : http://www.esaim-ps.org/articles/ps/pdf/2011/01/ps0942.pdf

R. Robert and V. Vargas, Gaussian multiplicative chaos revisited, The Annals of Probability, vol.38, issue.2, pp.605-631, 2010.
DOI : 10.1214/09-AOP490

URL : https://hal.archives-ouvertes.fr/hal-00293830

R. Robert and V. Vargas, Hydrodynamic Turbulence and Intermittent Random Fields, Communications in Mathematical Physics, vol.13, issue.2, pp.649-673, 2008.
DOI : 10.1007/978-1-4757-2437-0

URL : https://hal.archives-ouvertes.fr/hal-00088376

M. Schilder, Some asymptotic formulas for Wiener integrals, Transactions of the American Mathematical Society, vol.125, issue.1, pp.63-85, 1966.
DOI : 10.1090/S0002-9947-1966-0201892-6

B. Simon, The P (?)2
URL : https://hal.archives-ouvertes.fr/hal-00937761

M. Struwe, Variational Methods, Applications to nonlinear partial differential equations and Hamiltonian systems. third edition, series of modern surveys in mathematics, 2000.

J. Teschner, Liouville theory revisited, Classical and Quantum Gravity, vol.18, issue.23, p.153, 2001.
DOI : 10.1088/0264-9381/18/23/201

URL : http://arxiv.org/abs/hep-th/0104158

M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Transactions of the American Mathematical Society, vol.324, issue.2, pp.793-821, 1991.
DOI : 10.1090/S0002-9947-1991-1005085-9

URL : http://www.ams.org/tran/1991-324-02/S0002-9947-1991-1005085-9/S0002-9947-1991-1005085-9.pdf

N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech, vol.17, pp.473-483, 1967.

H. Weyl, Uber die asymptotische verteilung der Eigenwerte, Gott. Nach, pp.110-117, 1911.

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Mathematische Annalen, vol.71, issue.4, pp.441-479, 1912.
DOI : 10.1007/BF01456804

A. B. Zamolodchikov and A. B. Zamolodchikov, Structure Constants and Conformal Bootstrap in Liouville Field Theory, Nucl.Phys. B, vol.477, p.577605, 1996.
DOI : 10.1007/978-1-4899-1919-9_17