An application of the KMT construction to the pathwise weak error in the Euler approximation of one-dimensional diffusion process with linear diffusion coefficient

Abstract : It is well known that the strong error approximation in the space of continuous paths equipped with the supremum norm between a diffusion process, with smooth coefficients, and its Euler approximation with step 1/n is O(n−1/2) and that the weak error estimation between the marginal laws at the terminal time T is O(n−1). An analysis of the weak trajectorial error has been developed by Alfonsi, Jourdain and Kohatsu-Higa [Ann. Appl. Probab. 24 (2014) 1049–1080], through the study of the p-Wasserstein distance between the two processes. For a one-dimensional diffusion, they obtained an intermediate rate for the pathwise Wasserstein distance of order n−2/3+ε. Using the Komlós, Major and Tusnády construction, we improve this bound assuming that the diffusion coefficient is linear and we obtain a rate of order logn/n.
Type de document :
Article dans une revue
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2017, 27 (4), pp.2419-2454. 〈10.1214/16-AAP1263〉
Liste complète des métadonnées

https://hal-upec-upem.archives-ouvertes.fr/hal-01585830
Contributeur : Emmanuelle Clément <>
Soumis le : mardi 12 septembre 2017 - 10:05:35
Dernière modification le : lundi 18 février 2019 - 19:52:10

Lien texte intégral

Identifiants

Citation

Emmanuelle Clément, Arnaud Gloter. An application of the KMT construction to the pathwise weak error in the Euler approximation of one-dimensional diffusion process with linear diffusion coefficient. Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2017, 27 (4), pp.2419-2454. 〈10.1214/16-AAP1263〉. 〈hal-01585830〉

Partager

Métriques

Consultations de la notice

230