Testing Un-Separated Hypotheses by Estimating a Distance

Abstract : In this paper we propose a Bayesian answer to testing problems when the hypotheses are not well separated. The idea of the method is to study the posterior distribution of a discrepancy measure between the parameter and the model we want to test for. This is shown to be equivalent to a modification of the testing loss. An advantage of this approach is that it can easily be adapted to complex hypotheses testing which are in general difficult to test for. Asymp-totic properties of the test can be derived from the asymptotic behaviour of the posterior distribution of the discrepancy measure, and gives insight on possible calibrations. In addition one can derive separation rates for testing, which ensure the asymptotic frequentist optimality of our procedures.
Type de document :
Article dans une revue
Bayesian Analysis, International Society for Bayesian Analysis, 2017, 〈10.1214/17-BA1059〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal-upec-upem.archives-ouvertes.fr/hal-01585786
Contributeur : Jean Bernard Salomond <>
Soumis le : mardi 12 septembre 2017 - 18:38:18
Dernière modification le : mercredi 13 septembre 2017 - 01:02:54

Fichier

Test_rev2_BA.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Licence


Copyright (Tous droits réservés)

Identifiants

Collections

Citation

Jean-Bernard Salomond. Testing Un-Separated Hypotheses by Estimating a Distance. Bayesian Analysis, International Society for Bayesian Analysis, 2017, 〈10.1214/17-BA1059〉. 〈hal-01585786〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

7