H. Frahm, Device for damping vibrations of bodies, United states patent office, pp.1-9, 1911.

M. G. Soto and H. Adeli, Tuned Mass Dampers, Archives of Computational Methods in Engineering, vol.126, issue.8, pp.419-431, 2013.
DOI : 10.1061/(ASCE)0733-9445(2000)126:8(906)

V. G. Veselago, The elctrodynamics of substances with simultaneously negative values of epsilon and nu

D. Smith and . Kroll, Negative Refractive Index in Left-Handed Materials, Physical Review Letters, vol.13, issue.14, pp.2933-2936, 2000.
DOI : 10.1088/2058-7058/13/6/24

H. Chen and C. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Applied Physics Letters, vol.91, issue.18, pp.183518-183519, 2007.
DOI : 10.1364/OL.32.001069

Z. Yang, J. Mei, M. Yang, N. Chan, and P. Sheng, Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass, Physical Review Letters, vol.101, issue.20, pp.204301-204302, 2008.
DOI : 10.1063/1.3058151

URL : http://repository.ust.hk/ir/bitstream/1783.1-6034/1/PhysRevLett.101.204301.pdf

X. Zhou and G. Hu, Analytic model of elastic metamaterials with local resonances, Physical Review B, vol.79, issue.19, pp.195109-195110, 2009.
DOI : 10.1063/1.2803315

X. Liu, G. Hu, G. Huang, and C. Sun, An elastic metamaterial with simultaneously negative mass density and bulk modulus, Applied Physics Letters, vol.98, issue.25, p.251907, 2011.
DOI : 10.1007/978-1-4612-0555-5

D. , D. Vescovo, and I. Giorgio, Dynamic problems for metamaterials : Review of existing models and ideas for further research, International Journal of Engineering Science, vol.80, pp.153-172, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00947477

R. Zhu, X. Liu, G. Hu, C. Sun, and G. Huang, A chiral elastic metamaterial beam for broadband vibration suppression, Journal of Sound and Vibration, vol.333, issue.10, pp.2759-2773, 2014.
DOI : 10.1016/j.jsv.2014.01.009

X. Wang, H. Zhao, X. Luo, and Z. Huang, Membrane-constrained acoustic metamaterials for low frequency sound insulation, Applied Physics Letters, vol.108, issue.4, p.41905, 2016.
DOI : 10.1103/PhysRevB.92.104110

R. E. Roberson, Synthesis of a nonlinear dynamic vibration absorber, Portions of a dissertation submitted to the Department of Applied Mechanics, Washington University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, pp.205-220, 1952.

C. Soize, Vibration damping in low-frequency range due to structural complexity. A model based on the theory of fuzzy structures and model parameters estimation, Computers & Structures, vol.58, issue.5, pp.901-915, 1995.
DOI : 10.1016/0045-7949(95)00207-W

URL : https://hal.archives-ouvertes.fr/hal-00770275

O. Gendelman, L. Manevitch, A. Vakakis, and R. M?loskey, Energy Pumping in Nonlinear Mechanical Oscillators: Part I???Dynamics of the Underlying Hamiltonian Systems, Journal of Applied Mechanics, vol.68, issue.1, pp.34-41, 2001.
DOI : 10.1115/1.1345524

A. Vakakis and O. Gendelman, Energy Pumping in Nonlinear Mechanical Oscillators: Part II???Resonance Capture, Journal of Applied Mechanics, vol.68, issue.1, pp.42-48, 2001.
DOI : 10.1115/1.1345525

A. Vakakis, Shock Isolation Through the Use of Nonlinear Energy Sinks, Journal of Vibration and Control, vol.9, issue.1, pp.79-93, 2003.
DOI : 10.1177/1077546303009001742

G. Milton, M. Briane, and J. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New Journal of Physics, vol.8, issue.10, pp.1-20, 2006.
DOI : 10.1088/1367-2630/8/10/248

URL : https://hal.archives-ouvertes.fr/hal-00452194

A. Carrella, M. Brennan, and T. Waters, Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic, Journal of Sound and Vibration, vol.301, issue.3-5, pp.678-689, 2007.
DOI : 10.1016/j.jsv.2006.10.011

Z. Yang, H. Dai, N. Chan, G. Ma, and P. Sheng, Acoustic metamaterial panels for sound attenuation in the 50???1000 Hz regime, Applied Physics Letters, vol.96, issue.4, pp.41906-41907, 2010.
DOI : 10.1103/PhysRevLett.101.204301

Y. Xiao, J. Wen, and X. Wen, Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators, Journal of Sound and Vibration, vol.331, issue.25, pp.5408-5423, 2012.
DOI : 10.1016/j.jsv.2012.07.016

L. Viet and N. Nghi, On a nonlinear single-mass two-frequency pendulum tuned mass damper to reduce horizontal vibration, Engineering Structures, vol.81, pp.175-180, 2014.
DOI : 10.1016/j.engstruct.2014.09.038

R. Rubinstein and D. Kroese, Simulation and the Monte Carlo Method, 2008.

L. Guikhman and A. Skorokhod, The Theory of Stochastic Processes, 1979.
DOI : 10.1007/978-3-642-61921-2

M. Priestley, The Spectral Analysis of Time Series., Journal of the Royal Statistical Society. Series A (Statistics in Society), vol.151, issue.3, 1981.
DOI : 10.2307/2983035

M. Shinozuka, Simulation of Multivariate and Multidimensional Random Processes, The Journal of the Acoustical Society of America, vol.49, issue.1B, pp.357-367, 1971.
DOI : 10.1121/1.1912338

F. Poirion and C. Soize, Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields, Probabilistic Methods in Applied Physics, pp.17-53, 1995.
DOI : 10.1007/3-540-60214-3_50

URL : https://hal.archives-ouvertes.fr/hal-00770416

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review, vol.30, issue.1, pp.98-103, 1967.
DOI : 10.1016/0031-8914(64)90224-1

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the StrmerVerlet method, Acta Numerica, vol.12, pp.399-450, 2003.
DOI : 10.1017/S0962492902000144

C. Soize and I. E. Poloskov, Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation, Computers & Mathematics with Applications, vol.64, issue.11, pp.3594-3612, 2012.
DOI : 10.1016/j.camwa.2012.09.010

URL : https://hal.archives-ouvertes.fr/hal-00746280

C. Desceliers and C. Soize, Non-linear viscoelastodynamic equations of three-dimensional rotating structures in finite displacement and finite element discretization, International Journal of Non-Linear Mechanics, vol.39, issue.3, pp.343-368, 2004.
DOI : 10.1016/S0020-7462(02)00191-9

URL : https://hal.archives-ouvertes.fr/hal-00686206