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Résumé :

Ce papier propose une approche numérique pour l'étude en vibro-acoustique interne d'une structure
élastique dissipative linéaire couplée à un �uide acoustique linéaire en présence des e�ets de ballotte-
ment et de capillarité. Ce travail est basé sur une nouvelle formulation pour la condition aux limites
d'angle de contact sur la ligne triple. Un modèle réduit est construit en utilisant une base de projec-
tion constitué de modes élastiques, de modes acoustiques etde modes de ballottement en présence de
capillarité. Une application numérique est présentée.

Abstract :

This paper is devoted to a numerical approach in vibroacoustics of a linear elastic structure coupled with
a compressible liquid with sloshing and capillarity e�ects. This work is based on a new formulation for
the boundary condition on the contact angle. A reduced-order model is constructed using a projection
basis made up of elastic modes, acoustic modes, and sloshing-capillarity modes. Then a numerical
study of a coupled �uid-structure system discretized with �nite element modeling is presented.

Key words : Fluid-structure interactions, sloshing, capillarity, contact angle,
reduced-order model.

1 Introduction
This paper deals with the computational analysis of a coupled �uid-structure system under sloshing and
capillarity e�ects for which the response of the system is assumed to remain in a linear domain. The
damped elastic structure under consideration contains a linear dissipative acoustic liquid for which slosh-
ing and capillarity e�ects due to gravity and surface tensions are taken into account. Many researches
have been performed concerning the formulation and the analysis of coupled �uid-structure systems. For
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instance, the sloshing phenomenon has been studied by considering an elastic structure coupled with an
incompressible �uid neglecting the capillarity e�ects (see for instance [9, 10, 2, 11, 8, 4, 14]), by con-
sidering a rigid structure coupled with an incompressible �uid with capillarity e�ects [10, 3]. Other
works have been done considering a rigid structure coupled with a compressible liquid under surface
tension and sloshing e�ects such as [1, 5, 6, 7]. More recently, a new theoretical formulation of a linear
reduced-order computational model for analyzing the linear vibrations of a linear viscoelastic structure
coupled with a linear dissipative acoustic liquid with sloshing and capillarity e�ects has been proposed
[13] for which the main novelty concerns the implementationof a new boundary condition for the con-
tact angle and the computation of a reduced-order model thatis constructed using a projection basis
constituted of the elastic modes of the structure with a �uidadded mass e�ect, the acoustic modes of the
�uid, and the sloshing-capillarity modes of the free-surface of the �uid. We refer the reader to [12, 13]
for the methodology related to the construction of the vector basis. In this work, we present the compu-
tational implementation of this theoretical formulation for which the structure is simply dissipative (not
viscoelastic). In Section 2, the boundary value problem that describes the coupled �uid-structure system
is presented. The �nite element discretization and the methodology for constructing the reduced-order
model is given in Section 3. Section 4 deals with the numerical application, for which the vibroacoustic
analysis is presented in details using such new computational reduced-order model.

2 Boundary value problem
We consider the linear coupled �uid-structure system in itsreference con�guration de�ned in Figure 1.
The dissipative structure
 S is linear elastic and contains a linear dissipative acoustic �uid, 
 L . Grav-
itational and surface tension e�ects are taken into account. The boundaries@
 S and@
 L are such as
@
 S = � E [ � L [ 
 [ � G and@
 L = � L [ 
 [ � , where� E , � L , � G, � and
 are, respectively, the
external surface of the structure, the �uid-structure interface, the internal surface of the structure without
contact with the liquid, the free surface of the liquid, and the contact line between� and� L (see Figure
1). The structure is submitted to a given body force �eldb in 
 S and to a given surface force �eldf on
� E . The external unitary normals to@
 S and@
 L are writtennS andn. Let � and� L be the external
unit normals to
 belonging respectively to the tangent plane to� and to the tangent plane to� L . We
are then interested in analyzing the vibrations of the coupled �uid-structure system around its reference
con�guration.

Let x = ( x; y; z) be the generic point in a Cartesian reference system(O; ex ; ey ; ez). The gravity vector
is g = � gez with g = kgk. For a quantityw depending on timet, _w and •w mean the �rst and the
second partial derivative ofw with respect tot. The boundary value problem is expressed in terms of
the structural displacement �eldu(x; t), the internal pressure �eldp(x; t), and the normal displacement
�eld of the free surface� (x; t),

1
� 0c2

0
•p �

�
� 0

r 2 _p �
1
� 0

r 2p = 0 in 
 L ; (2.1)

(1 + �
@
@t

)
@p
@n

= � � 0•u � n on � L ; (2.2)

(1 + �
@
@t

)
@p
@n

= � � 0•� on � ; (2.3)
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�

�

Figure 1 � Reference con�guration of the coupled �uid-structure system

p = � 0 � g (ez � n) � � � f (
1

R1
+

1
R2

)� + r 2
� � g on � ; (2.4)

@�
@�

= c� � + J u on 
 ; (2.5)

� s •u � div � = b in 
 S ; (2.6)

� � nS = f on � E ; (2.7)

� � nS d� L = pnS d� L � � � (J 0� ) d� 
 on � L ; (2.8)

in which � 0 is the constant mass density of the homogeneous liquid,c0 is the constant speed of sound,�
is the constant coe�cient that characterizes the dissipation in the internal liquid,� S is the constant mass
density of the structure,� = a : " (u)+ b : " (_u) is the stress tensor in which" the linearized strain tensor,
g is the gravitational intensity,� � is the surface tension coe�cient,R1 andR2 are the main curvature
radii of the free-surface andc� is the contact angle coe�cient. Equations (2.5) and (2.8) correspond
to a new boundary condition for the contact angle introducedin [13] in which a particular case for the
operatorJ is given by [10],

J u = E u � nS �
@(u � nS)

@� L
; (2.9)

with E a real coe�cient. In Eq. (2.8),d� 
 is a real measure on� L such that
R

� L
f (x) d� 
 (x) =

R

 f (x) d
 (x) (this means that the support of measured� 
 is 
 ), and the term(J 0� ) d� 
 is de�ned on

� L by algebraic duality of the termJ u de�ned on
 .

3 Computational model
LetP(t), H(t), andU(t) be the(nF � 1), (nH � 1), and(nS � 1) vectors (column matrices) corresponding
to the �nite element discretization of the �eldsp(x; t), � (x; t), andu(x; t). The computational model
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associated with boundary value problem is written as,

[M ] •P(t) + [ D ] _P(t) + [ K ] P(t) � [Cp� ]T •H(t) � [Cpu]T •U(t) = 0 ; (3.1)

[Cp� ] P(t) + ([ K g] + [ K c])H(t) + [ C�u ] U(t) = 0 ; (3.2)

[Cpu] P(t) + [ C�u ]T H(t) + [ M S] •U(t) + [ DS] _U(t) + [ K S] U(t) = FS(t) ; (3.3)

in which [M ], [D ], [K ] and[M S ], [DS], [K S] are the mass, dissipation and sti�ness matrices for the
acoustic �uid and for the structure, where[Cpu] is the coupling matrix between the �uid and the structure,
where[C�u ] is the coupling matrix between the free surface of the liquidand the structure, where[Cp� ]
is the coupling matrix between the �uid and the free surface,and where[K c] and[K g] are the sti�ness
matrices of the free surface induced by the gravitational and the capillarity e�ects [13].

4 Reduced-order model

4.1 Construction of the projection vector basis
The construction of the reduced-order model requires the computation of a vector basis made up of
acoustic modes of the �uid, sloshing modes of the free surface, and elastic modes of the structure with
the �uid added mass e�ect, as follows,

� The structural modes are calculated by solving the following generalized eigenvalue problem,

[K S] � S
� = � S

� ([M S] + [ M A ]) � S
� ; (4.1)

in which the positive-de�nite symmetric matrix[M A ] is the �uid added mass matrix that describes
the e�ects of the liquid (assumed to be incompressible) on the structure [10, 13]. Let[ � S ] =
[� S

1 ; : : : ; � S
NS

] be the rectangular real matrix whose columns are theNS eigenvectors associated
with theNS �rst smallest real positive eigenvalues0 < � S

1 � : : : � � S
NS

.

� The acoustic modes of the �uid are computed by solving the generalized eigenvalue problem,

[K ] � F
� = � F

� [M ] � F
� ; (4.2)

with the constraint� F
� = 0 for the DOF related to� [ 
 . Let [ � F ] = [ � F

1 ; : : : ; � F
NF

] be
the rectangular real matrix whose columns are theNF eigenvectors associated with theNF �rst
smallest real positive eignevalues0 < � F

1 � : : : � � F
NF

.

� The sloshing-capillarity modes are computed by solving thegeneralized eigenvalue problem,

[K ] � F H

 + � H


 [Cp� ]T � H

 = 0 ; (4.3)

[Cp� ] � F H

 + ([ K g] + [ K c]) � H


 = 0 : (4.4)

Let [ � H ] = [ � H
1 ; : : : ; � H

NH
] and[ � F H ] = [ � F H

1 ; : : : ; � F H
NH

] be the rectangular real matrices
whose columns are theNH eigenvectors� H


 and theNH eigenvectors� F H

 associated with the

NH �rst smallest real positive eigenvalues0 < � H
1 � : : : � � H

NH
.
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4.2 Reduced-order model
The reduced-order model of the coupled �uid-structure system of order(NF ; NH ; NS) is written as,

X(t) =

2

6
4

P(t)
H(t)
U(t)

3

7
5 = [ � ] Q ; [ � ] =

2

6
4

[� F ] [� F H ] 0
0 [� H ] 0
0 0 [� S]

3

7
5 ; Q =

2

6
4

qP (t)
qH (t)
qU (t)

3

7
5 ; (4.5)

in which Q is the(NF + NH + NS) � 1 vector (column matrix) of the generalized coordinates, which
veri�es the dynamical equation

[M F SI ] •Q + [ DF SI ] _Q + [ KF SI ] Q = F ; (4.6)

in which [M F SI ], [DF SI ], and[KF SI ] are the mass, the damping, and the sti�ness matrices of order
(NF ; NH ; NS) of the coupled �uid-structure system such that

[M F SI ] = [ � ]T

2

6
4

[M ] � [Cp� ]T � [Cpu]T

0 0 0
0 0 [M S]

3

7
5 [ � ] ; (4.7)

[DF SI ] = [ � ]T

2

6
4

[D ] 0 0
0 0 0
0 0 [DS]

3

7
5 [ � ] ; (4.8)

[KF SI ] = [ � ]T

2

6
4

[K ] 0 0
[Cp� ] [K g] + [ K c] [C�u ]
[Cpu] [C�u ]T [K S]

3

7
5 [ � ] ; (4.9)

and whereF is the(NF + NH + NS) � 1 vector (column matrix) of the generalized forces de�ned by

F = [ � ]T

2

6
4

0
0

FS(t)

3

7
5 : (4.10)

5 Numerical application

5.1 Finite element model of the coupled �uid-structure system
The coupled �uid-structure system is composed of a spherical tank with external radiusRe = 0 :5m
and thicknesse = 2 :3 � 10� 2 m, partially �lled with an acoustic �uid. The originO of the Cartesian
coordinates system(O; ex ; ey ; ez) is located at the center of the spherical tank. The structureis made
up of a linear elastic isotropic material with mass density� S = 1650Kg � m� 3, Poisson coe�cient
� = 0 :3, and Young's modulusE = 230 GPa. The considered liquid is water in standard temperature
and pressure conditions, with mass density� f = 1000Kg � m� 3, speed of soundcf = 1480m � s� 1,
surface tension coe�cient� � = 0 :0728, and contact angle� = 30�. The main curvature radiiR1 andR2

of the free surface and the coe�cientsc� andE, which characterizes the triple line
 , are computationally
obtained in each node of the mesh according to [10]. The damping matrices of the acoustic �uid and
the structure are de�ned as[D ] = � F [K ] and[DS] = � S [K S] in which � F = 10 � 6 and� S = 10 � 6.
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The spherical tank is clamped on a ring shaped support such that z 2 [� 0:375; � 0:475]m. The �nite
element model of the coupled �uid structure system is constructed using 3D solid �nite elements with
8 nodes for the structure and the acoustic �uid, 2D �nite elements with4 nodes for the free-surface and
1D �nite elements with2 nodes for the triple line
 . Table 1 gives the values of the parameters that
correspond to the �nite element model displayed in Figure 2.

Parameters Nodes DOF Finite elements Type of element

Structure 5,812 17,436 2,904 3D
Fluid 27,482 27,482 25,828 3D
Free surface 1,673 1,673 1,628 2D
Triple line 88 88 44 1D

Table 1 � Values of the parameters of the the �nite element model

Y
X

Z

Figure 2 � Finite element mesh of the coupled �uid-structuresystem

5.2 Modal characterization of the �uid-structure system
To better understand the physical mechanisms that control the vibrational behavior of the coupled �uid-
structure system, we are interested in representing some modal contributions issued from the projection
basis used for constructing the reduced-order model. Figure 3 displays the shape of3 structural elastic
modes� S

1 , � S
3 , and � S

8 associated with the eigenfrequencies� S
1 = 655 Hz, � S

3 = 1 ;717Hz, and
� S

8 = 3 ;042Hz. Figure 4 displays the pressure �eld of3 acoustic modes� F
1 ; � F

4 , and� F
8 associated

with the eigenfrequencies� F
1 = 985 Hz, � F

3 = 2 ;160Hz, and� F
8 = 2 ;708Hz. The modal shape

of these pure structural and acoustic modes are suitable forobserving elasto-acoustic coupling when
analyzing the coupled �uid-structure system. For instance, since� S

1 and� F
1 are close eigenfrequencies

whose modal shapes� S
1 and� F

1 do not cancel each other out, they are likely to be coupled. Itcan be seen
that there are global and local sloshing modes. Nevertheless, a careful attention has to be made regarding
the selection of these modes because of the precision of the �nite element mesh allowing the modal
shapes of these modes to be correctly represented. Figure 5 displays the shape of6 sloshing-capillarity
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X Y
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X Y

Z

� S
8 = 3 ;042Hz

Figure 3 � Example of elastic modes of the structure.
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Figure 4 � Example of acoustic modes of the �uid.
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Figure 5 � Example of sloshing modes of the free surface.
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1 ; � H

2 ; � H
20; � H

21; � H
83, and� H

87 associated with the eigenfrequencies� H
1 = 0 :874Hz, � H

2 =
0:875Hz, � H

20 = 1 :145Hz , � H
21 = 1 :148Hz, � H

83 = 1 :328Hz, and� H
87 = 1 :330Hz.

5.3 Forced responses

5.3.1 De�nition of the time dependent external force

We are interested in analyzing the forced response of the coupled �uid-structure system formulated both
in the time domain and in the frequency domain. The structureis submitted to an external force de�ned
in the time domain such that its energy is concentrated in thefrequency bandBe = [ � min ; � max ]. In this
numerical analysis, we have chosen� min = 600 Hz and� max = 6 ;000Hz. The external load vector
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FS(t) is written as
FS(t) = f 0 g(t) F ;

in whichf 0 is a real coe�cient controlling the intensity of the force,F is the(nS � 1) normalized vector
that describes the spatial discretization of the force, andwhereg(t) is the function describing the time
evolution of the force such that

g(t) = 2 � �
sin(�t � � )

�t � �
cos(2�s � � t ) ; (5.1)

with
� � = � max � � min ; s =

1
2

� max + � min

� �
: (5.2)

The external force is a normal force that is applied to the spherical cap located fromz = 0 :437m to
the top, with a force intensityf 0 = 1 ;200N . Figure 6 displays the graph of the functiont 7! g(t)
and its Fourier transform� 7! bg(2�� ). It can be viewed that this choice ofg(t) e�ectively yields an
uniform excitation over frequency bandBe. Let B = Be be the frequency band of analysis of the �uid-
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Figure 6 � Representation of the external force in the time domain and in the frequency domain:
graph oft ! g(t) (left �gure) and graph of� ! bg(2�� ) (right �gure) for frequency bandBe =
[600Hz ; 6 000Hz]

structure system. This linear dynamical analysis is performed in the time domain using the Newmark
time-integration scheme. The Fourier transform of the times responses are computed in order to analyze
the response in the frequency domain.

5.3.2 Convergence of the reduced-order model

The optimal number of modes(NF ; NH ; NS) to be kept in the reduced-order model can be obtained
by a convergence analysis of the dynamical responses. LetbXref (� ) be the dynamical response in the
frequency domain of the computational model of the �uid-structure system, which is considered as the
reference system. LetbX(� ) be the corresponding dynamical response calculated with the reduced-order
model. We then de�ne the function(NF ; NH ; NS) = Conv(NF ; NH ; NS) by

Conv(NF ; NH ; NS) =
1

jj bXref (� )jj2

Z

B
jj bX(�; N F ; NH ; NS) jj2 d� : (5.3)

For the valuesf 40; 60; 80; 100; 120g of NF , Figure 7 displays the graph ofNS 7! Conv(NF ; 500; NS),
which shows that an optimal number of the elastic modes isNS = 70 and an optimal number of the
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Figure 7 � Convergence analysis of the reduced-order model:graph ofNS 7! Conv(NF ; 500; NS) (left
graph) andNH 7! Conv(100; NH ; 70) (right graph).

acoustic modes isNF = 100. For such optimal values, the dynamical responses obtainedwith the
reduced-order model are close to those given by the computational model that is the reference. Figure
7 (right graph) displays the graph ofNH 7! Conv(100; NH ; 70) and shows that the dynamical behav-
ior of the coupled �uid-structure system is correctly represented by the reduced-order model of order
(NF ; NH ; NS) = (100 ; 150; 70).

5.3.3 Observation points

YX

Z

A
B

D

C

E

Figure 8 � Observation points of the �uid-structure system

Figure 8 displays the observation points for the structure,the �uid, and the free-surface, for which the
dynamical response in terms of displacement, pressure, andelevation is shown hereinafter. Point A is
an observation point common to the �uid, the structure, and the free surface located in
 . Point B is an
observation point common to the �uid and the free surface located in� . Point C is an observation point
for the �uid located in� L , and points D and E are observation points for the structure located in� E . The
coordinates of the observation points are summarized in Table 2. We then denote the observation points
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of the structure asnS
obs = (1 ; 2; 3), the observation points for the pressure in the �uid asnF

obs = (1 ; 2; 3),
and the observation points for the elevation of the free surfacenH

obs = (1 ; 2; 3).

Point Coordinates Fluid Free surface Structure

x1 0 0 0
Point 1 y1 0.476 0.476 0

z1 0.025 0.025 0.5
x2 0 0 0

Point 2 z2 0 0 0.476
x2 0.013 0.013 0.025
x3 0 0.33 -0.337

Point 3 y3 0 -0.33 -0.337
z3 -0.477 0.018 0.15

Table 2 � Coordinates of the observation points for the �uid,the structure and the free surface

5.4 Dynamic analysis of the coupled �uid-structure system
For the observation points described in the previous section, Figures 9, 10, and 11 display the graphs
of the time dynamical responses in terms of displacement of the structure, the pressure in the �uid, and
the elevation of the free surface. Figures 12, 13, and 14 display the similar graphs of the frequency
dynamical responses. In Figure 9, it can be seen that the displacement related to observation point1 of
the structure is mainly alongez since the external force is normal to the spherical tank. It can also be seen
that the displacement at observation point3 of the structure is more damped than the displacement at
observation point2 of the structure. This can be explained by the coupling of theinertial contribution of
the sloshing-capillarity modes on the structure, because observation point2 is located in the contact line

 , where coupling e�ects are logically the most important. Moreover, in Figure 11, it can be seen that the
elevation of the free surface is more damped in the contact line (observation point1 on the free surface)
than at the center (observation points2 and3 on the free surface), for which the capillarity e�ects are
negligible. As expected when analyzing the modal shapes of the structure and the modal shapes of the
�uid, elasto-acoustic resonances resulting from the coupling of these modes can be put in evidence in
Figure 12, 13 and 14. The �rst resonance of the coupled �uid-structure system appears at� 1 = 820 Hz
and results from the coupling between the �rst elastic mode� S

1 and the �rst acoustic mode� F
1 . The

second resonance of the coupled �uid-structure system appears at� 2 = 1 ;441Hz and is also a coupling
between the third elastic mode� S

3 and the third acoustic mode� F
3 . Note that the fourth resonance that

occurs at� 4 = 2 ;648Hz is a pure acoustic mode and the seventh resonance frequency� 7 = 3 ;592Hz
is a pure elastic mode. Furthermore, since the sloshing modes do not belong to the frequency band of
analysis and occur at very low frequencies, only the inertial contributions are expected.

6 Conclusion
In this paper, the methodology is presented for the implementation of a computational reduced-order
model that allows for analyzing the dynamic analysis of a coupled �uid-structure system under slosh-
ing and capillarity e�ects in taking into account the operator related to the triple line. A numerical
application is presented. The inherent mechanisms regarding the couplings between the dissipative
acoustic liquid and the linear dissipative elastic structure are shown in order to better understand the
vibrational behavior of the �uid-structure system under sloshing and surface tension e�ects. It is shown










