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Résumeé :

Ce papier propose une approche numérique pour I'étude emdboustique interne d'une structure
élastique dissipative linéaire couplée a un uide acoustidinéaire en présence des e ets de ballotte-
ment et de capillarité. Ce travail est basé sur une nouveltefilation pour la condition aux limites
d'angle de contact sur la ligne triple. Un modéle réduit eshstruit en utilisant une base de projec-
tion constitué de modes élastiques, de modes acoustiqaesnevdes de ballottement en présence de
capillarité. Une application numérique est présentée.

Abstract :

This paper is devoted to a numerical approach in vibroadosasif a linear elastic structure coupled with
a compressible liquid with sloshing and capillarity e ectbBhis work is based on a new formulation for
the boundary condition on the contact angle. A reduced+ondedel is constructed using a projection
basis made up of elastic modes, acoustic modes, and slesapidarity modes. Then a numerical
study of a coupled uid-structure system discretized wiilte element modeling is presented.

Key words : Fluid-structure interactions, sloshing, capilarity, contact angle,
reduced-order model.

1 Introduction

This paper deals with the computational analysis of a calpliel-structure system under sloshing and
capillarity e ects for which the response of the system iswased to remain in a linear domain. The
damped elastic structure under consideration containgardissipative acoustic liquid for which slosh-
ing and capillarity e ects due to gravity and surface tensi@re taken into account. Many researches
have been performed concerning the formulation and thesinaif coupled uid-structure systems. For



23MeCongrés Francais de Mécanique Lille, 28 afi $eptembre 2017

instance, the sloshing phenomenon has been studied byledngi an elastic structure coupled with an
incompressible uid neglecting the capillarity e ects eséor instance [9, 10, 2, 11, 8, 4, 14]), by con-
sidering a rigid structure coupled with an incompressihléd with capillarity e ects [10, 3]. Other
works have been done considering a rigid structure coupiddavcompressible liquid under surface
tension and sloshing e ects such as [1, 5, 6, 7]. More regeathew theoretical formulation of a linear
reduced-order computational model for analyzing the lindarations of a linear viscoelastic structure
coupled with a linear dissipative acoustic liquid with $livgy and capillarity e ects has been proposed
[13] for which the main novelty concerns the implementatid@a new boundary condition for the con-
tact angle and the computation of a reduced-order modelghainstructed using a projection basis
constituted of the elastic modes of the structure with a adidled mass e ect, the acoustic modes of the
uid, and the sloshing-capillarity modes of the free-sedaof the uid. We refer the reader to [12, 13]
for the methodology related to the construction of the velsgsis. In this work, we present the compu-
tational implementation of this theoretical formulatiam fvhich the structure is simply dissipative (not
viscoelastic). In Section 2, the boundary value problemdbacribes the coupled uid-structure system
is presented. The nite element discretization and the wadlogy for constructing the reduced-order
model is given in Section 3. Section 4 deals with the numekaipglication, for which the vibroacoustic
analysis is presented in details using such new compugtieduced-order model.

2 Boundary value problem

We consider the linear coupled uid-structure system irréference con guration de ned in Figure 1.
The dissipative structureg is linear elastic and contains a linear dissipative acousid, | . Grav-
itational and surface tension e ects are taken into accolthe boundarie® s and@ | are such as
@s= g[] o[ [ gand@_.= [ [ .,where g, ., g, and are,respectively, the
external surface of the structure, the uid-structureiifgee, the internal surface of the structure without
contact with the liquid, the free surface of the liquid, ahd tontact line betweenand | (see Figure
1). The structure is submitted to a given body force blth s and to a given surface force eldon

. The external unitary normals @ s and@ . are writtenn® andn. Let and | be the external
unit normals to belonging respectively to the tangent plane tand to the tangent plane tq . We
are then interested in analyzing the vibrations of the aadiplid-structure system around its reference
con guration.

Letx = (x;y; z) be the generic point in a Cartesian reference sy¢@pmay; ey; ;). The gravity vector
isg = ge, with g = kgk. For a quantityw depending on time¢, w andw mean the rst and the
second partial derivative aff with respect tad. The boundary value problem is expressed in terms of
the structural displacement eld(x;t), the internal pressure elg(x;t), and the normal displacement
eld of the free surface (x;1),

1 P —r’p ir 2p=0 in (2.1)
N 0
= o n on ; (2.2)

= o* oOn ; (2.3)
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Figure 1 Reference con guration of the coupled uid-struce system

P= o gl m)  flm+tp) *rig on ; (2.4)
%:c +Ju on ; (2.5)

st div =b in g; (2.6)

n°=f on g; (2.7)

n°d | = pnSd J°%d on ; (2.8)

in which ¢ is the constant mass density of the homogeneous ligglid,the constant speed of sound,
is the constant coe cient that characterizes the dissigatn the internal liquid, s is the constant mass
density of the structure,= a: "(u)+ b : "(u) is the stress tensor in whi¢hhe linearized strain tensor,
g is the gravitational intensity, is the surface tension coe cienRR; andR, are the main curvature
radii of the free-surface and is the contact angle coe cient. Equations (2.5) and (2.8jrespond
to a new boundary condition for the contact angle introduodd3] in which a particular case for the
operatord is given by [10],
7@u n°) ; (2.9)
@
ith E a real coe cient. In Eqg. (2.8),d is a real measure on_ such thatR ) f(x)d (x) =
f (x)d (x) (this means that the support of measdre is ), and the tern{J ° )d is de ned on
L by algebraic duality of the termh u de ned on .

Ju=Eu n®

3 Computational model

LetP(t), H(t), andu(t) bethe(ng 1),(ny 1),and(ns 1) vectors (column matrices) corresponding
to the nite element discretization of the eldg(x;t), (x;t), andu(x;t). The computational model
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associated with boundary value problem is written as,

[M]P(t) +[DIR(t) + [K]P(t) [Cp ]  M(t) [Cpul" B(t)=0; 3.1)
[Cp 1P(t) + ([ Kl + [KcH() +[Cy JU(Y) =0 ; (3.2)
[Coul P(t) + [Cu T H(t) + [Ms]B(t) + [ Ds]U(t) + [Ks]U(t) = F3(t); (3.3)

in which[M ], [D], [K] and[Ms], [Ds], [Ks] are the mass, dissipation and sti ness matrices for the
acoustic uid and for the structure, whe@p, ] is the coupling matrix between the uid and the structure,
where[C ] is the coupling matrix between the free surface of the liguid the structure, whef€, |

is the coupling matrix between the uid and the free surfaoe] whergK ] and[K ¢] are the sti ness
matrices of the free surface induced by the gravitationdltha capillarity e ects [13].

4 Reduced-order model

4.1 Construction of the projection vector basis

The construction of the reduced-order model requires tmepatation of a vector basis made up of
acoustic modes of the uid, sloshing modes of the free sa;fand elastic modes of the structure with
the uid added mass e ect, as follows,

The structural modes are calculated by solving the follgngeneralized eigenvalue problem,
[Ks] 5= S(Ms]+[MA]) 3; (4.1)

in which the positive-de nite symmetric matr[¥ #]is the uid added mass matrix that describes
the e ects of the liquid (assumed to be incompressible) andfiucture [10, 13]. Let S] =

TN -] be the rectangular real matrix whose columns areNteeigenvectors associated
with theNs rst smallest real positive eigenvalu@s< % :::  §..

The acoustic modes of the uid are computed by solving theegaized eigenvalue problem,

K] F= FM] 7y (4.2)
with the constraint © = 0 for the DOF related to [ . Let[ F1=1[ [;:::; §.1be
the rectangular real matrix whose columns areNeeigenvectors associated with tNe  rst
smallest real positive eignevalues: | :::  f .

The sloshing-capillarity modes are computed by solvinggtreeralized eigenvalue problem,

K] F"+ ", 1" "=0; (4.3)

[Col F" +([Kgl+[Ke) ™ =0: (4.4)
Let[ H]1=1[ Yt K,land[ FH1=1[ §";::0; RH] be the rectangular real matrices
whose columns are thé¢y eigenvectors H and theNy eigenvectors FH associated with the

Ny rst smallest real positive eigenvalués< i ::: H .
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4.2 Reduced-order model

The reduced-order model of the coupled uid-structure esysof order(Ng ; Ny ; Ng) is written as,

2 3 2
P(t) [ F]
xt)=qHwd=[ 1o ;[ 1=%0
u(t) 0

in whichQ is the(Ng + Ny + Ns)
veri es the dynamical equation

M Es]1Q+[Drsi]1Q+[Kesi]Q= F;

[ FH] ’ quu)B
[F1 05 ; o=%¢"ms;: @5
0 [ qY (1)

1 vector (column matrix) of the generalized coordinates,civhi

(4.6)

in which[M g ], [Desi 1, and[Kgs, ] are the mass, the damping, and the sti ness matrices of order
(NE;Np; Ng) of the coupled uid-structure system such that

2 3
M1 [Cp 1" [Col
Mesil=[ 1"4 0 0 0 5[ I (4.7)
0 0 Ms]
2 3
[D] 0 O
Des]=[ 790 o ob[ 1 (4.8)
0 0 [Ds]
2 3
K] 0 0
Kesil=[ 17 8Cp] Kg+[Kd [CulST T (4.9)
[Cpu] [C u ]T [K S]
and wherd- isthe(Ng + Ny + Ng) 1 vector (column matrix) of the generalized forces de ned by
2 0 3
F=] ]Tﬁ 0% (4.10)
FS(t)

5 Numerical application

5.1 Finite element model of the coupled uid-structure sysém

The coupled uid-structure system is composed of a sphetaik with external radiuRe = 0:5m
and thicknes® = 2:3 10 2m, partially lled with an acoustic uid. The originO of the Cartesian
coordinates systerfD; e,; ey; e;) is located at the center of the spherical tank. The structuneade

up of a linear elastic isotropic material with mass densigy= 1650Kg

m 3, Poisson coe cient

= 0:3, and Young's modulug = 230 GP a. The considered liquid is water in standard temperature

and pressure conditions, with mass densjty= 1000 Kg

surface tension coe cient

m 3, speed of sound: =1480m s 1,

= 0:0728 and contact angle = 30 . The main curvature radR; andR,

of the free surface and the coe cients andE , which characterizes the triple line are computationally
obtained in each node of the mesh according to [10]. The dagnpiatrices of the acoustic uid and

the structure are de ned 4P ] =

F [K]and[Ds] =

S[KS] in which ¢ = 10 6 and s =10 6
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The spherical tank is clamped on a ring shaped support sath th[ 0:375; 0:475]m. The nite
element model of the coupled uid structure system is cartdrd using 3D solid nite elements with

8 nodes for the structure and the acoustic uid, 2D nite elentsewith4 nodes for the free-surface and
1D nite elements with2 nodes for the triple line . Table 1 gives the values of the parameters that
correspond to the nite element model displayed in Figure 2.

| Parameters | Nodes | DOF | Finite elements| Type of element|

Structure 5,812 | 17,436 2,904 3D
Fluid 27,482 | 27,482 25,828 3D
Free surface 1,673 | 1,673 1,628 2D
Triple line 88 88 44 1D

Table 1 Values of the parameters of the the nite element elod

4

L

Figure 2 Finite element mesh of the coupled uid-structisgstem

5.2 Modal characterization of the uid-structure system

To better understand the physical mechanisms that cohtalibrational behavior of the coupled uid-
structure system, we are interested in representing sordalroontributions issued from the projection
basis used for constructing the reduced-order model. Eigutisplays the shape 8fstructural elastic
modes ?, 3, and § associated with the eigenfrequencigs = 655Hz, $ = 1;717Hz, and

$ = 3;042Hz. Figure 4 displays the pressure eld 8facoustic modes |; 7, and § associated
with the eigenfrequencies] = 985Hz, f = 2;160Hz, and § = 2;708Hz. The modal shape
of these pure structural and acoustic modes are suitablebferving elasto-acoustic coupling when
analyzing the coupled uid-structure system. For instarstece $ and I are close eigenfrequencies
whose modal shapes’ and | do not cancel each other out, they are likely to be coupledanibe seen
that there are global and local sloshing modes. Neverthedasareful attention has to be made regarding
the selection of these modes because of the precision ofrtite element mesh allowing the modal
shapes of these modes to be correctly represented. Figusplayd the shape @& sloshing-capillarity
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z z z

A g e

$ =655Hz $=1;717Hz $ =3;042Hz

Figure 3 Example of elastic modes of the structure.

z

F =985Hz ¥ =2;160Hz £ =2,708Hz

Figure 4 Example of acoustic modes of the uid.

H =0:874Hz " =0:875Hz W =1:145Hz

W =1:148Hz t=1:328Hz f =1:330Hz

Figure 5 Example of sloshing modes of the free surface.

modes ; H; H. H. H and £ associated with the eigenfrequencids = 0:874Hz, 5 =

0:875Hz, %) =1:145Hz, } =1:148Hz, f,=1:328Hz, and {! = 1:330Hz.

5.3 Forced responses

5.3.1 De nition of the time dependent external force

We are interested in analyzing the forced response of theledwid-structure system formulated both
in the time domain and in the frequency domain. The strugtusabmitted to an external force de ned
in the time domain such that its energy is concentrated ifréggiency ban®e = [ min; max]. In this

numerical analysis, we have chosgh, = 600Hz and max = 6;000Hz. The external load vector
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FS(t) is written as
F3(t) = fog(t) F;

in whichf g is a real coe cient controlling the intensity of the forcE,is the(ns 1) normalized vector
that describes the spatial discretization of the force,\ainereg(t) is the function describing the time
evolution of the force such that

git)y=2 % cos(2s t); (5.1)
with L .
= max min , S= EM : (5.2)

The external force is a normal force that is applied to theegphl cap located frora = 0:437m to
the top, with a force intensitfg = 1;200N. Figure 6 displays the graph of the functiorv! g(t)
and its Fourier transform 7! (2 ). It can be viewed that this choice gft) e ectively yields an
uniform excitation over frequency baii. LetB = B¢ be the frequency band of analysis of the uid-

1 T T T T T 25

0.8 r
2l

0.6 1

04t 151

g(t)
b(8)

0.2 r
1}

1k AREEE il

-0.4

o | | | |
-2 0 2 4 6 8 10 0 2000 4000 6000 8000 10000 12000
time(s) #1073 Frequency (Hz)

Figure 6 Representation of the external force in the timendm and in the frequency domain:
graph oft ! g(t) (left gure) and graph of ! (2 ) (right gure) for frequency bande =
[600HZz ; 6 000HZ]

structure system. This linear dynamical analysis is peréat in the time domain using the Newmark
time-integration scheme. The Fourier transform of the simesponses are computed in order to analyze
the response in the frequency domain.

5.3.2 Convergence of the reduced-order model

The optimal number of modgiNg; Ny ; Ns) to be kept in the reduced-order model can be obtained
by a convergence analysis of the dynamical responsesR,le,e( ) be the dynamical response in the
frequency domain of the computational model of the uiddsture system, which is considered as the
reference system. L&( ) be the corresponding dynamical response calculated vétretiuced-order
model. We then de ne the functiofNg ; Ny ;Ns) = ConNg; Ny ;Ns) by
Z

ComNg;Nu;Ns)= —————  jiR(;N g;Np;Ng)jj?d : (5.3)
jiReet ()ii2 B
For the value$40; 60; 80; 100 120g of Ng, Figure 7 displays the graph bfs 7! ConNg ;500 Ns),
which shows that an optimal number of the elastic modé@égs= 70 and an optimal number of the
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Figure 7 Convergence analysis of the reduced-order magi@lph ofNg 7! ConUNg ;500 Ng) (left
graph) andNy 7! Con100; Ny ; 70) (right graph).

acoustic modes il = 100. For such optimal values, the dynamical responses obtaiitidthe
reduced-order model are close to those given by the conipughimodel that is the reference. Figure
7 (right graph) displays the graph Nfy 7! Cony100; Ny ; 70) and shows that the dynamical behav-
ior of the coupled uid-structure system is correctly reggated by the reduced-order model of order
(NF;NH;Ns) =(100; 150 70).

5.3.3 Observation points

z

sl

Figure 8 Observation points of the uid-structure system

Figure 8 displays the observation points for the structtire, uid, and the free-surface, for which the
dynamical response in terms of displacement, pressureglamdtion is shown hereinafter. Point A is
an observation point common to the uid, the structure, drelftee surface located in Point B is an
observation point common to the uid and the free surfacated in . Point C is an observation point
for the uid located in |, and points D and E are observation points for the strucagaéd in . The
coordinates of the observation points are summarized ileTab/Ne then denote the observation points
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of the structure as3, . = (1; 2; 3), the observation points for the pressure in the uich§s, = (1;2; 3),

and the observation points for the elevation of the freeasaritl = (1;2; 3).

| Point | Coordinates | Fluid | Free surface| Structure ||

X1 0 0 0
Point 1 Y1 0.476 0.476 0

Z1 0.025 0.025 0.5

X2 0 0 0
Point 2 2 0 0 0.476

X2 0.013 0.013 0.025

X3 0 0.33 -0.337
Point 3 Y3 0 -0.33 -0.337

Z3 -0.477 0.018 0.15

Table 2 Coordinates of the observation points for the uike structure and the free surface

5.4 Dynamic analysis of the coupled uid-structure system

For the observation points described in the previous sechkmures 9, 10, and 11 display the graphs
of the time dynamical responses in terms of displacementeoétructure, the pressure in the uid, and
the elevation of the free surface. Figures 12, 13, and 14agighe similar graphs of the frequency
dynamical responses. In Figure 9, it can be seen that thiad&pent related to observation poinbf
the structure is mainly aloregg since the external force is normal to the spherical tankaritalso be seen
that the displacement at observation pdrdf the structure is more damped than the displacement at
observation poin2 of the structure. This can be explained by the coupling ofribtial contribution of
the sloshing-capillarity modes on the structure, becabservation poinR is located in the contact line

, Where coupling e ects are logically the most important. idover, in Figure 11, it can be seen that the
elevation of the free surface is more damped in the contaettibservation poirit on the free surface)
than at the center (observation poi2tand3 on the free surface), for which the capillarity e ects are
negligible. As expected when analyzing the modal shapéaseoftructure and the modal shapes of the
uid, elasto-acoustic resonances resulting from the ciogpbf these modes can be put in evidence in
Figure 12, 13 and 14. The rst resonance of the coupled uidisture system appears at= 820 Hz
and results from the coupling between the rst elastic mogeand the rst acoustic modef . The
second resonance of the coupled uid-structure systemaapp » = 1;441Hz and is also a coupling
between the third elastic mode; and the third acoustic mode . Note that the fourth resonance that
occurs at 4 = 2;648Hz is a pure acoustic mode and the seventh resonance frequgrc$;592Hz
is a pure elastic mode. Furthermore, since the sloshing sndd@ot belong to the frequency band of
analysis and occur at very low frequencies, only the inlectatributions are expected.

6 Conclusion

In this paper, the methodology is presented for the implaatiom of a computational reduced-order
model that allows for analyzing the dynamic analysis of apbedi uid-structure system under slosh-
ing and capillarity e ects in taking into account the operatelated to the triple line. A numerical
application is presented. The inherent mechanisms regattie couplings between the dissipative
acoustic liquid and the linear dissipative elastic streectare shown in order to better understand the
vibrational behavior of the uid-structure system undears$ling and surface tension e ects. It is shown















