Large System Analysis of a GLRT for Detection With Large Sensor Arrays in Temporally White Noise
Sonja Hiltunen, Philippe Loubaton, Pascal Chevalier

To cite this version:
Sonja Hiltunen, Philippe Loubaton, Pascal Chevalier. Large System Analysis of a GLRT for Detection With Large Sensor Arrays in Temporally White Noise. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2015, 63 (20), pp.5409 - 5423. 10.1109/TSP.2015.2452220. hal-01579062

HAL Id: hal-01579062
https://hal-upec-upem.archives-ouvertes.fr/hal-01579062
Submitted on 30 Aug 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Large system analysis of a GLRT for detection with large sensor arrays in temporally white noise

Sonja Hiltunen, Philippe Loubaton, Fellow, IEEE, and Pascal Chevalier

Abstract—This paper addresses the behaviour of a classical multi-antenna GLRT test that allows to detect the presence of a known signal corrupted by a multi-path propagation channel and by an additive temporally white Gaussian noise with unknown spatial covariance matrix. The paper is focused on the case where the number of sensors M is large, and of the same order of magnitude as the sample size N, a context which is modeled by the large system asymptotic regime $M \to +\infty$, $N \to +\infty$ in such a way that $M/N \to c$ for $c \in (0, +\infty)$. The purpose of this paper is to study the behaviour of a GLRT statistics in this regime, and to show that the corresponding theoretical analysis allows to accurately predict the performance of the test when M and N are of the same order of magnitude.

Index Terms—Multichannel detection, asymptotic analysis, GLRT, random matrix theory

I. INTRODUCTION

Due to the spectacular development of sensor networks and acquisition devices, it has become common to be faced with multivariate signals of high dimension. Very often, the sample size that can be used in practice in order to perform statistical inference cannot be much larger than the signal dimension. In this context, it is well established that a number of fundamental existing statistical signal processing methods fail. It is therefore of crucial importance to revisit certain classical problems in the high-dimensional signals setting. Previous works in this direction include e.g. [16] and [22] in source localization using a subspace method, or [3],[15],[17],[18] in the context of unsupervised detection.

In the present paper, we address the problem of detecting the presence of a known signal using a large array of sensors. We assume that the observations are corrupted by a temporally white, but spatially correlated (with unknown spatial covariance matrix) additive complex Gaussian noise, and study the generalized likelihood ratio test (GLRT). Although our results can be used in more general situations, we focus on the detection of a known synchronization sequence transmitted by a single transmitter in an unknown multipath propagation channel. The behaviour of the GLRT in this context has been extensively addressed in previous works, but for the low dimensional signal case (see e.g. [1],[4],[7],[13],[14],[23],[25]). The asymptotic behaviour of the relevant statistics has thus been studied in the past, but it has been assumed that the number of samples of the training sequence N converges towards $+\infty$ while the number of sensors M remains fixed. This is a regime which in practice makes sense when $M << N$. When the number of sensors M is large, this regime is however often unrealistic, since in order to avoid wasting resources, the size N of the training sequence is usually chosen of the same order of magnitude as M. Therefore, we consider in this paper the asymptotic regime in which both M and N converge towards ∞ at the same rate.

We consider both the case where the number of paths L remains fixed, and the case where L converges towards ∞ at the same rate as M and N. When L is fixed, we prove that the GLRT statistics η_N converges under hypothesis H_0 towards a Gaussian distribution with mean $L \log \frac{1}{1-M/N}$ and variance $\frac{L}{N} \frac{M/N}{1-M/N}$. This is in contrast with the standard asymptotic regime $N \to +\infty$ and M fixed in which the distribution of η_N converges towards a χ^2 distribution. Under hypothesis H_1, we prove that η_N has a similar behaviour than in the standard asymptotic regime $N \to +\infty$ and M fixed, except that the terms $L \log \frac{1}{1-M/N}$ and $\frac{L}{N} \frac{M/N}{1-M/N}$ are added to the asymptotic mean and the asymptotic variance, respectively. When L converges towards ∞ at the same rate as M and N, we use existing results (see [2] and [24]) characterizing the behaviour of linear statistics of the eigenvalues of large multivariate F-matrices, and infer that the distribution of η_N under H_0 is also asymptotically Gaussian. The asymptotic mean converges towards ∞ at the same rate as L,M,N while the asymptotic variance is a $O(1)$ term. The asymptotic behaviour of η_N under hypothesis H_1 when L scales with M,N is not covered by the existing literature. The derivation of the corresponding new mathematical results would need an extensive work that is not in the scope of the present paper. We rather propose a pragmatic approximate distribution for η_N, motivated by the additive structure of its asymptotic mean and variance in the regime where L is fixed.

We evaluate the accuracy of the various Gaussian approximations by numerical simulations, by comparing the asymptotic means and variances with their empirical counterparts evaluated by Monte-Carlo simulations. Further, we compare the ROC curves corresponding to the various approximations with the empirical ones. The numerical
results show that the standard approximations obtained when $N \to +\infty$ and M is fixed completely fail if M/N is greater than $\frac{1}{2}$. The large system approximations corresponding to a fixed L and $L \to +\infty$ appear reliable for small values of M/N, and, of course, for larger values of M/N. For the values of L, M, N that are considered, the approximations obtained in the regime $L \to +\infty$ at the same rate as M and N appear to be the most accurate, and the corresponding ROC-curves are shown to be good approximations of the empirical ones. Therefore, the proposed Gaussian approximations allow to reliably predict the performance of the GLRT when the number of array elements is large.

This paper is organized as follows. In section II, we provide the signal model under hypotheses H_0 and H_1, recall the expression of the statistics η_N corresponding to the GLRT, and explain that, in order to study η_N, assuming that the additive noise is spatially white and that the training sequence matrix is orthogonal is not a restriction. In section III, we recall the asymptotic behaviour of η_N in the traditional asymptotic regime $N \to +\infty$ and M fixed. The main results of this paper, concerning the asymptotic behaviour of η_N in the regime M, N converge towards ∞ at the same rate, are presented in section IV. In this section, we only give outlines of the proofs, while providing the remaining technical details in Appendices. Section V is devoted to the numerical results, of the proofs, while providing the remaining technical details presented in section IV. In this section, we only give outlines of the proofs, while providing the remaining technical details presented in section IV. In this section, we only give outlines of the proofs, while providing the remaining technical details presented in section IV.

General notations. For a complex matrix A, we denote by A^T and A^* its transpose and its conjugate transpose, and by $\text{Tr}(A)$ and $\|A\|$ its trace and spectral norm. I will represent the identity matrix and e_n will refer to a vector having all its components equal to 0 except the n-th which is equal to 1.

The real normal distribution with mean m and variance σ^2 is denoted $N_R(m, \sigma^2)$. A complex random variable $Z = X + iY$ follows the distribution $N_C(\alpha + i\beta, \sigma^2)$ if X and Y are independent with respective distributions $N_R(\alpha, \frac{\sigma^2}{2})$ and $N_R(\beta, \frac{\sigma^2}{2})$.

For a sequence of random variables $(X_n)_{n \in \mathbb{N}}$ and a random variable X, we write

$$X_n \to X \text{ a.s. and } X_n \to_{D} X$$

when X_n converges almost surely and in distribution, respectively, to X when $n \to +\infty$. Finally, if $(a_n)_{n \in \mathbb{N}}$ is a sequence of positive real numbers, $X_n = o_P(a_n)$ will stand for the convergence of $(X_n/a_n)_{n \in \mathbb{N}}$ to 0 in probability, and $X_n = O_P(a_n)$ denotes boundedness in probability (i.e. tightness) of the sequence $(X_n/a_n)_{n \in \mathbb{N}}$.

II. PRESENTATION OF THE PROBLEM.

In the following, we assume that a single transmitter sends a known synchronization sequence $(s_n)_{n=1,...,N}$ through a fixed channel with L paths, and that the corresponding signal is received on a receiver with M sensors. The received M-dimensional signal is denoted by $(y_n)_{n=1,...,N}$. When the transmitter and the receiver are perfectly synchronized, y_n is assumed to be given for each $n = 1, \ldots, N$ by

$$y_n = \sum_{l=0}^{L-1} h_l s_{n-l} + v_n$$

where $(v_n)_{n \in \mathbb{Z}}$ is an additive independent identically distributed complex Gaussian noise verifying

$$\mathbb{E}(v_n) = 0$$
$$\mathbb{E}(v_n^* v_n) = 0$$
$$\mathbb{E}(v_n v_n^*) = R = \sigma^2 \hat{R}$$

where $R > 0$ and $\frac{1}{M} \text{Tr}(R) = 1$. Denoting by H the $M \times L$ matrix $H = (h_0, \ldots, h_{L-1})$, the received signal matrix $Y = (y_1, \ldots, y_N)$ in the presence of a useful signal can be written as

$$Y = HS + V$$

where $V = (v_1, \ldots, v_N)$ and S represents the known signal matrix. We assume from now on that the size N of the training sequence satisfies $N > M + L$. We remark that the forthcoming results are valid as soon as the matrix collecting the observations can be written as in Eq. (3). In particular, by appropriately modifying the matrices H and S, this system model can equivalently be used for a link with multiple transmit antennas.

Furthermore, in the absence of a useful signal, the received signal matrix is given by

$$Y = V.$$

In this paper, we study the classical problem of testing the hypothesis H_1 characterized by Equation (3) against the hypothesis H_0 defined by equation (4), in the aim of testing whether there is a useful signal present in the received signal. The hypotheses are

$$H_0 : Y = V$$
$$H_1 : Y = HS + V,$$

where we assume from now on that H and R are unknown at the receiver side. In the following, we will review the expression of the corresponding generalized maximum likelihood test (GLRT) derived in [4]. The generalized likelihood ratio r_N is defined by [14]

$$r_N = \frac{\max_{R, H} p_{H_1}(Y \mid S, H, R)}{\max_{R} p_{H_0}(Y \mid R)}.$$

The probability density functions are given by

$$p_{H_0}(Y \mid R) = \frac{1}{\pi^{NM} |\text{det}(R)|^N} e^{-\text{Tr}[Y^* R^{-1} Y]}$$
$$p_{H_1}(Y \mid S, H, R) = \frac{1}{\pi^{NM} |\text{det}(R)|^N} e^{-\text{Tr}[(Y - HS)^* R^{-1} (Y - HS)]}.$$

The first step to calculate r_N is to determine \hat{R}_1 and \hat{H}, the R and H that maximize the numerator, and \hat{R}_0, the R that maximizes the denominator, of equation (4). Straightforward
calculations show that $\hat{H} = \frac{Y_S^*}{N} (\frac{SS^*}{N})^{-1}$ and $\hat{R}_1 = \frac{Y Y^*}{N} - \left(\frac{Y_S^*}{N}\right) (\frac{SS^*}{N})^{-1} (\frac{SY^*}{N})$. Similarly, \hat{R}_0 is given by $\hat{R}_0 = \frac{Y Y^*}{N}$.

Inserting these estimates into equation (6) leads to $r_N = \left(\det(\hat{R}_1, \hat{R}_0)\right)^{-1/N}$. Therefore, the log-likelihood ratio η_N, defined by $\eta_N = \log \frac{r_N}{N}$, is given by

$$\eta_N = -\log \det \left[I_M - \hat{R}_0^{-1/2} \frac{Y S^*}{N} \left(\frac{SS^*}{N} \right)^{-1} \frac{S Y^*}{N} \hat{R}_0^{-1/2} \right]$$

or, using the identity $\det(I - AB) = \det(I - BA)$, by

$$\eta_N = -\log \det \left[I_L - T_N \right]$$

where T_N is the $L \times L$ matrix defined by

$$T_N = \left(\frac{SS^*}{N} \right)^{-1/2} \frac{S Y^*}{N} \left(\frac{YY^*}{N} \right)^{-1} \frac{Y S^*}{N} \left(\frac{SS^*}{N} \right)^{-1/2}$$

The generalized maximum likelihood test consists then in comparing η_N to a threshold.

In order to study the behaviour of the test in Eq. (9), we study the limit distribution of η_N under each hypothesis. For this, we remark that it is possible to assume without restriction that $\frac{SS^*}{N} = I_L$ is verified and that $\mathbb{E}(v_n v_n^*) = \sigma^2 I$, i.e. \hat{R} is reduced to the identity matrix. If this is not the case, we denote by \hat{S} the matrix

$$\hat{S} = \left(\frac{SS^*}{N} \right)^{-1/2} S$$

and by \hat{Y} and \hat{V} the whitened observation and noise matrices

$$\hat{Y} = \hat{R}^{-1/2} Y,$$
$$\hat{V} = \hat{R}^{-1/2} V$$

It is clear that $\frac{SS^*}{N} = I_L$ and that $\mathbb{E}(\hat{v}_n \hat{v}_n^*) = \sigma^2 I$. Moreover, under H_0, it holds that $\hat{Y} = \hat{V}$, while under H_1, $\hat{Y} = \hat{H} S + \hat{V}$ where the channel matrix \hat{H} is defined by

$$\hat{H} = \hat{R}^{-1/2} H \left(\frac{SS^*}{N} \right)^{1/2}$$

Finally, it holds that the statistics η_N can also be written as

$$\eta_N = -\log \det \left[I_L - \frac{\hat{S} Y^*}{N} \left(\frac{Y Y^*}{N} \right)^{-1} \frac{Y \hat{S}^*}{N} \right]$$

This shows that it is possible to replace S, \hat{R} and H by \hat{S}, I, and \hat{H} without modifying the value of statistics η_N. Therefore, without restriction, we assume from now on that

$$\frac{SS^*}{N} = I_L, \quad \hat{R} = I_M$$

In the following, we denote by W a $(N - L) \times N$ matrix for which the matrix $\Theta = (W^T \frac{S^*}{N})^T$ is unitary and define the $M \times (N - L)$ and $M \times L$ matrices V_1 and V_2 by

$$(V_1, V_2) = W \Theta^* = (W W^* \frac{S^*}{\sqrt{N}})$$

It is clear that V_1 and V_2 are complex Gaussian random matrices with independent identically distributed $\mathcal{N}_C(0, \sigma^2)$ entries, and that the entries of V_1 and V_2 are mutually independent. We notice that since $N > M + L$, the matrix $\frac{V_1 V_1^*}{N}$ is invertible almost surely. We now express the statistics η_N in terms of V_1 and V_2. We observe that

$$\frac{VV^*}{N} = \frac{V_1 V_1^*}{N} + \frac{V_2 V_2^*}{N}$$

and that

$$\frac{V^*}{\sqrt{N}} = \frac{1}{\sqrt{N}} (V_1, V_2) \left(\frac{W}{\sqrt{N}} \right) \frac{S^*}{\sqrt{N}}$$

This implies immediately that the limit distribution of η_N under each hypothesis. For $\sigma^2 \neq 0$, we can also write as

$$\eta_N = -\log \det \left(I - \frac{V_2^2}{\sqrt{N}} (V_1 V_1^*/N)^{-1} V_2^2/\sqrt{N} \right)$$

Using the identity

$$A^* (B B^* + A A^*)^{-1} = A^* (B B^*)^{-1} A (I + A^* (B B^*)^{-1} A)^{-1}$$

we obtain that, under hypothesis H_0, η_N can be written as

$$\eta_N = -\log \det \left(I_L + W_2^2/\sqrt{N} (V_1 V_1^*/N)^{-1} W_2^2/\sqrt{N} \right)$$

Similarly, it is easy to check that, under H_1, η_N is given by

$$\eta_N = -\log \det \left(I_L + G_N \right)$$

where the matrix G_N is defined by

$$G_N = (H + V_2^2/\sqrt{N}) (V_1 V_1^*/N)^{-1} (H + V_2^2/\sqrt{N})$$

III. STANDARD ASYMPTOTIC ANALYSIS OF η_N.

In order to give a better understanding of the similarities and differences with the more complicated case where M and N converge towards $+\infty$ at the same rate, we first recall some standard results concerning the asymptotic distribution of η_N under H_0 and H_1 when $N \to +\infty$ but M remains fixed.

A. Hypothesis H_0.

A general result concerning the GLRT, known as Wilk’s theorem (see e.g. [14], [21] Chapter 8-5), implies that $N \eta_N$ converges in distribution towards a χ^2 distribution with 2M degrees of freedom. For the reader’s convenience, we provide an informal justification of this claim. We use [21] and remark that when $N \to +\infty$ and M and L remain fixed, the matrices $\frac{V_1 V_1^*/N}{L \frac{V_2^2}{N}} (V_1 V_1^*/N)^{-1} V_2$ converge a.s. towards $\sigma^2 I$ and the zero matrix respectively. Moreover,

$$\frac{1}{N} V_2^2 (V_1 V_1^*/N)^{-1} V_2 = \frac{1}{\sigma^2} \frac{V_2^2}{N} + o_p \left(\frac{1}{N} \right)$$

and a standard second order expansion of η_N leads to

$$\eta_N = \frac{1}{\sigma^2} \text{Tr} \left(V_2^2 (V_2^2/2N) + o_p \left(\frac{1}{N} \right) \right)$$

This implies immediately that the limit distribution of $N \eta_N$ is a chi-squared distribution with 2M degrees of freedom. Informally, this implies that $\mathbb{E}(\eta_N) \simeq L \frac{M}{N}$ and $\text{Var} \left(\eta_N \right) \simeq L \frac{M^2}{N^2}$.

B. Hypothesis H1.

Under hypothesis H1, η_N is given by (22). When $N \to +\infty$ and M and L remain fixed, the matrix $V_1 V_1^* / N$ converges a.s. towards $\sigma^2 I$ and it is easily seen that

$$\eta_N = \log \det \left(I + \frac{HH^*}{\sigma^2} \right) + \text{Tr} \left[\left(I + \frac{HH^*}{\sigma^2} \right)^{-1} \Delta_N \right] + O_P(1/N)$$

where the matrix Δ_N is given by

$$\Delta_N = H^* Y_N H + \frac{1}{\sigma^2} \left(\frac{V_2}{\sqrt{N}} H + H^* \frac{V_2}{\sqrt{N}} \right)$$

with $Y_N = (V_1 V_1^*/N)^{-1} - I/\sigma^2$. Standard calculations show that

$$\sqrt{N} \left(\eta_N - \log \det \left(I + \frac{HH^*}{\sigma^2} \right) \right) \to N(0, \kappa_1)$$

where κ_1 is given by

$$\kappa_1 = \text{Tr} \left[\left(I + \frac{H^* H}{\sigma^2} \right)^{-2} \right]$$

Note that in [14] and [25], the asymptotic distribution of η_N is studied under the assumption that the entries of the matrix H are $O(\frac{1}{\sqrt{N}})$ terms. In that context, η_N behaves as a non-central χ^2 distribution.

IV. MAIN RESULTS.

In this section, we present the main results of this paper related to the asymptotic behaviour of η_N when M and N converge towards ∞ at the same rate. The analysis of η_N in the asymptotic regime M and N converge towards ∞ at the same rate differs deeply from the standard regime studied in section III. In particular, it is no longer true that the empirical covariance matrix $V_1 V_1^*/N$ converges in the spectral norm sense towards $\sigma^2 I$. This, of course, is due to the fact that the number of entries of this $M \times M$ matrix is of the same order of magnitude than the number of available scalar observations (i.e. $M(N - L) = O(MN)$). We also note that for any deterministic $M \times M$ matrix A, the diagonal entries of the $L \times L$ matrix $\frac{1}{N} V_2 A V_2$ converge towards 0 when $N \to +\infty$ and M remains fixed, while this does not hold when M and N are of the same order of magnitude (see Proposition II in Appendix I). It turns out that the asymptotic regime where M and N converge towards ∞ at the same rate is more complicated than the conventional regime of section III. As the proofs of the following theorems are rather technical, we just provide in this section the outlines of the approaches that are used to establish them. The detailed proofs are given in the Appendix II.

A. Asymptotic behaviour of η_N when the number of paths L remains fixed when M and N increase.

All along this section, we assume that:

Assumption 1.

- M and N converge towards $+\infty$ in such a way that $c_N = \frac{M}{N} < 1 - \frac{L}{N}$ converges towards c, where $0 < c < 1$
- the number of paths L remains fixed when M and N increase.

In the asymptotic regime defined by Assumption I, M can be interpreted as a function $M(N)$ of N. Therefore, M-dimensional vectors or matrices where one of the dimensions is M will be indexed by N in the following. Moreover, in order to simplify the exposition, $N \to +\infty$ should be interpreted in this section as the asymptotic regime defined by Assumption I.

As M is growing, we have to be precise with how the power of the useful signal component HS is normalized. In the following, we assume that the norms of vectors $(h_1)_{t=0,\ldots,L-1}$ remain bounded when the number of sensors M increases. This implies that the signal to noise ratio at the output of the matched filter $S^H H^* / \sqrt{N}$, i.e. $\text{Tr} \left((H^* H)^2 / (\sigma^2 \text{Tr}(H^* H)) \right)$, is a $O(1)$ term in our asymptotic regime. We mention however that the received signal to noise ratio $\text{Tr}(H^* H) / (M \sigma^2)$ converges towards 0 at rate $\frac{1}{N}$ when N increases.

1) Asymptotic behaviour of η_N under hypothesis H_0.

Under hypothesis H_0, the following theorem holds.

Theorem 1. It holds that

$$\eta_N - L \log \left(\frac{1}{1 - c_N} \right) \to 0 \text{ a.s.}$$

and that

$$\frac{\sqrt{N}}{\sqrt{\frac{L c_N}{1 - c_N}}} \left(\eta_N - L \log \left(\frac{1}{1 - c_N} \right) \right) \to_d N(0, 1)$$

Informally, Theorem 1 leads to $\mathbb{E}(\eta_N) \simeq -L \log(1 - c_N)$ and $\text{Var}(\eta_N) \simeq \frac{L}{N(1 - c_N)^2}$. We recall that if M is fixed, $\frac{N \eta_N}{\sqrt{L} c_N}$ behaves like a χ^2 distribution with $2ML$ degrees of freedom. In that context, $\mathbb{E}(\eta_N) \simeq L c_N$ and $\text{Var}(\eta_N) \simeq \frac{L}{N} c_N$. Therefore, the behaviour of η_N in the two asymptotic regimes deeply differ. However, if $c_N \to 0$, $-L \log(1 - c_N)$ is c_N, and the asymptotic means and variances of η_N tend to coincide.

Outline of the proof. We denote by F_N the $L \times L$ matrix

$$F_N = V_2^* / \sqrt{N} \left(V_1 V_1^*/N \right)^{-1} V_2 / \sqrt{N}$$

and remark that under H_0, (21) leads to

$$\eta_N = \log \det (I_L + F_N)$$

First step: proof of (30). As L does not increase with M and N, it is sufficient to establish that

$$F_N = \frac{c_N}{1 - c_N} I_L \to 0 \text{ a.s.}$$

Our approach is based on the observation that if A_N is a $M \times M$ deterministic Hermitian matrix verifying $\sup_N \| A_N \| < a < +\infty$, then

$$\mathbb{E}_{V_2} \left[\left(V_2^* / \sqrt{N} A_N V_2 / \sqrt{N} \right)_{k,l} \right] - \frac{\sigma^2}{N} \text{Tr}(A_N) \delta(k - l) \leq \frac{C(a)}{N^2}$$

where
where $C(a)$ is a constant term depending on a, and where \mathbb{E}_V represents the mathematical expectation operator w.r.t. V. This is a consequence of Proposition 4 in the Appendix. Assume for the moment that there exists a deterministic constant a such that

$$\| (V_1 V_1^*/N)^{-1} \| \leq a$$

(36)

for each N greater than a non random integer N_0. Then, as V_1 and V_2 are independent, it is possible to use (35) for $A_N = (V_1 V_1^*/N)^{-1}$ and to take the mathematical expectation w.r.t. V_1 of (35) to obtain that

$$\mathbb{E} \left[(F_N)_{k,l} \right] = \frac{\sigma^2}{N} \text{Tr} \left((V_1 V_1^*/N)^{-1} \right) \delta(k-l) \leq \frac{C(a)}{N^2}$$

(37)

for each $N > N_0$, and, using the Borel-Cantelli lemma, that

$$F_N \rightarrow \frac{\sigma^2}{N} \text{Tr} \left((V_1 V_1^*/N)^{-1} \right) I_L \rightarrow 0 \text{ a.s.}$$

(38)

In order to conclude, we use known results related to the almost sure convergence of the eigenvalue distribution of matrix $V_1 V_1^*/N$ towards the so-called Marcenko-Pastur distribution (see Eq. (77) in the Appendix) which imply that

$$\frac{1}{N} \text{Tr} \left((V_1 V_1^*/N)^{-1} \right) - \frac{c_N}{\sigma^2 (1-c_N)} \rightarrow 0$$

(39)

almost surely. This, in conjunction with (38), leads to (34) and eventually to (30).

However, there does not exist a deterministic constant a satisfying (36) for each N greater than a non random integer. In order to solve this issue, it is sufficient to replace matrix $(V_1 V_1^*/N)^{-1}$ by a convenient regularized version. It is well known (see Proposition 1 in the Appendix) that the smallest and the largest eigenvalue of $V_1 V_1^*/N$ converge almost surely towards $\sigma^2 (1 - \sqrt{c})^2 > 0$ and $\sigma^2 (1 + \sqrt{c})^2$ respectively. This implies that if E_N is the event defined by

$$E_N = \{ \text{one of the eigenvalues of } V_1 V_1^*/N \text{ escapes from } [\sigma^2 (1 - \sqrt{c})^2 - \epsilon, \sigma^2 (1 + \sqrt{c})^2 + \epsilon] \}$$

(40)

(where ϵ is chosen such that $\sigma^2 (1 - \sqrt{c})^2 - \epsilon > 0$) then, almost surely, for N larger than a random integer, it holds that $1_{E_N} = 1$. Therefore, almost surely, for N large enough, it holds that $\eta_N = \eta_N 1_{E_N}$. These two random variables thus share the same almost sure asymptotic behaviour. Moreover, it is clear that $\eta_N 1_{E_N}$ coincides with $\log \text{det}(I + F_N 1_{E_N})$. In order to study the almost sure behaviour of $\eta_N 1_{E_N}$, it is thus sufficient to evaluate the behaviour of matrix $F_N 1_{E_N}$, which has the same expression than F_N, except that matrix $(V_1 V_1^*/N)^{-1}$ is replaced by $(V_1 V_1^*/N)^{-1} 1_{E_N}$. The latter matrix verifies

$$\left\| (V_1 V_1^*/N)^{-1} 1_{E_N} \right\| \leq \frac{1}{\sigma^2 (1 - \sqrt{c})^2 - \epsilon}$$

(41)

for each integer N almost surely. Therefore, the regularized matrix $(V_1 V_1^*/N)^{-1} 1_{E_N}$ satisfies (36) almost surely for each integer N for $a = \frac{1}{\sigma^2 (1 - \sqrt{c})^2 - \epsilon}$. This immediately leads to the conclusion that $F_N 1_{E_N}$ has the same almost sure behaviour than $\frac{c_N}{1-c_N} I_L 1_{E_N}$, or equivalently than $\frac{c_N}{1-c_N} I_L$. This, in turn, implies (30).

Second step: proof of (31). As $\eta_N = \eta_N 1_{E_N}$ almost surely for N large enough, the asymptotic distributions of $\sqrt{N} (\eta_N - L \log (1 - c_N))$ and $\sqrt{N} (\eta_N 1_{E_N} - L \log (1 - c_N))$ coincide. We thus study the latter sequence of random variables because the presence of the regularization factor 1_{E_N} allows to simplify a lot the derivations.

A standard second order expansion of $\log \text{det}(I + F_N 1_{E_N})$ leads to

$$\sqrt{N} \left[\log (1 - c_N) - L \log (\frac{1}{1-c_N}) \right] = (1 - c_N) \sqrt{N} \left(\text{Tr} (F_N 1_{E_N} - \frac{c_N}{1-c_N} I) + o_p(1) \right)$$

(42)

It is thus sufficient to evaluate the asymptotic behaviour of the characteristic function $\psi_{N,0}$ of random variable $\beta_{0,N} = (1 - c_N) \sqrt{N} \left(\text{Tr} (F_N 1_{E_N} - \frac{c_N}{1-c_N} I) \right)$ defined by $\psi_{N,0}(u) = \mathbb{E} (e^{iu \beta_{0,N}})$. For this, we first evaluate $\mathbb{E}_V (e^{iu \beta_{0,N}})$, and using Proposition 2 and Proposition 4 in Appendix I, we establish that $\mathbb{E}_V (e^{iu \beta_{0,N}})$ has the same asymptotic behaviour as

$$\exp \left[\frac{-u^2}{2} \sigma^4 L (1 - c_N)^2 c_N \frac{1}{M} \text{Tr} \left(\frac{V_1 V_1^*/N}{N} \right)^{-2} 1_{E_N} \right]$$

(43)

It is known that $\frac{1}{M} \text{Tr} \left(\frac{V_1 V_1^*/N}{N} \right)^{-2} 1_{E_N}$ behaves almost surely as $\frac{1}{\sigma^2 (1 - \sqrt{c})^2}$ (see Eq. (78) in the Appendix). From this, we obtain immediately that

$$\psi_{N,0}(u) - \exp \left(\frac{-u^2}{2} \frac{L \sigma_N}{1-c_N} \right) \rightarrow 0$$

(44)

for each u, which, in turn, establishes (31).

2) Asymptotic behaviour of η_N under hypothesis H_1. The behaviour of η_N under hypothesis H_1 is given by the following result.

Theorem 2. It holds that

$$\eta_N - \eta_{N,1} \rightarrow 0 \text{ a.s.}$$

(45)

where $\eta_{N,1}$ is defined by

$$\eta_{N,1} = L \log (\frac{1}{1-c_N}) + \log \text{det} (I + H^* H / \sigma^2)$$

(46)

Moreover,

$$\sqrt{N} \left(\frac{L \sigma_N}{1-c_N} + \kappa_1 \right)^{1/2} (\eta_N - \eta_{N,1}) \rightarrow_D \mathcal{N}_k(0,1)$$

(47)

where κ_1 is defined by (29).

Remark 1. Interestingly, it is seen that the asymptotic mean and variance of η_N are equal to the sum of the asymptotic mean and variance of η_N in the standard regime $N \rightarrow +\infty$ and M fixed, with the extra terms $L \log \left(\frac{1}{1-c_N} \right)$ and $\frac{L \sigma_N}{N(1-c_N)}$, which coincide with the asymptotic mean and variance of η_N under H_0.

Outline of the proof. We recall that, under H_1, η_N is given by (23). As in the proof of Theorem 1 it is sufficient to study the regularized statistics $\eta_N 1_{E_N}$, which is also equal to $\eta_N 1_{E_N} = \log \text{det} (I_L + 1_{E_N} G_N)$ (48)
In order to evaluate the almost sure behaviour of \(\eta N13N \), we expand \(G_n13n \) as

\[
G_n13n = H^*(V_1 V_1^* / N)^{-1} H 13n + F_n13n + \\
(V_2/\sqrt{N})^* (V_1 V_1^* / N)^{-1} H 13n + H^* (V_1 V_1^* / N)^{-1} (V_2/\sqrt{N}) 13n
\]

The first term of the right-hand side of (49) is known to behave as \(\frac{H^*}{\sigma^2 (1 - c_N)} \) (see (41) in the Appendix) while the independence between \(V_1 \) and \(V_2 \) implies that the third and the fourth terms converge almost surely towards the zero matrix. This is because the fourth-order moments w.r.t. \(V_2 \) of their entries are \(O(\frac{1}{N}) \) terms.

Second step: proof of (47). Using a standard second order expansion, we obtain immediately that

\[
N (\eta N13n - \bar{\eta}_{N,1}) = N \sqrt{\text{Tr}(D_n \Delta N)} + o_P(1)
\]

where \(\Delta N \) and \(D_n \) are defined by

\[
\Delta N = C_n (V_1 V_1^* / N)^{-1}
\]

and

\[
D_n = (1 - c_n)(I_L + H^* H / \sigma^2)^{-1}
\]

In order to establish (47), it is therefore sufficient to evaluate the asymptotic behaviour of the characteristic function \(\psi_{N,1} \) of random variable \(\beta_{N,1} = N \sqrt{\text{Tr}(D_n \Delta_n)} \). We define \(\kappa_N \) and \(\omega_N \) by

\[
\kappa_N = \text{Tr} \left(C_n (V_1 V_1^* / N)^{-1} \right)
\]

and

\[
\omega_N = \sqrt{\text{Tr}(D_n F N 13n)} + \\
\sqrt{\text{Tr}(D_n (V_2/\sqrt{N})^* (V_1 V_1^* / N)^{-1} H 13n)} + \\
\sqrt{\text{Tr}(D_n H^* (V_1 V_1^* / N)^{-1} (V_2/\sqrt{N}) 13n)}
\]

where \(C_n \) is the \(M \times M \) matrix given by

\[
C_n = (1 - c_n)H(I_L + H^* H / \sigma^2)^{-1} H^*
\]

Then, \(\beta_{N,1} \) can be written as

\[
\beta_{N,1} = \sqrt{N} \left(\kappa_N - \frac{\text{Tr}(C_n)}{\sigma^2 (1 - c_N)} \right) + \\
\sqrt{N} \left(\omega_N - \frac{\kappa_N}{1 - c_N} \text{Tr}(D_n) \right)
\]

Using the equation above as well as Proposition 2 and Proposition 4 from Appendix 1, we establish that \(E_{V_2}(e^{iu\beta_{N,1}}) \) behaves as

\[
\exp \left(iu \sqrt{N} \left(\kappa_N - \frac{\text{Tr}(C_n)}{\sigma^2 (1 - c_N)} \right) \right) \exp\left(\frac{u^2}{2} \right)
\]

where \(\zeta = \frac{\kappa_N}{\sigma^2 (1 - c_N)} \text{Tr}(D_n) + 2 \frac{\kappa_N}{(1 - c_N)^2} \text{Tr}(D_n H^* H) \). In order to obtain the limiting behaviour of \(\psi_{N,1}(u) \), it is thus sufficient to evaluate the limit of

\[
E_{V_1} \left[\exp \left(iu \sqrt{N} \left(\kappa_N - \frac{\text{Tr}(C_n)}{\sigma^2 (1 - c_N)} \right) \right) \right]
\]

This technical point is addressed in Proposition 3 in Appendix 1.

Remark 2. It is useful to recall that the expression of the asymptotic mean and variance of \(\eta N \) provided in Theorem 2 assumes that \(R = I \) and that \(\frac{SS^*}{N} = L \). If this is not the case, we have to replace \(H \) by \(R^{-1/2}H(SS^*/N)^{1/2} \) in Theorem 2.

Remark 3. We note that Theorem 2 allows to quantify the influence of an overdetermination of \(L \) on the asymptotic distribution of \(\eta N \) under \(H_1 \). This analysis is interesting from a practical point of view, since it is not always possible to know the exact number of paths and their delays. If \(L \) is overestimated, i.e. if the true number of paths is \(L < L_n \), then, matrix \(H \) can be written as \(H = (H_1, 0) \). We also denote by \(S_1 \) and \(S_2 \) the \(L_1 \times N \) and \((L - L_1) \times N \) matrices such that \(S = (S_1^T, S_2^T)^T \). It is easy to check that the second term of \(\bar{\eta}_{N,1} \), i.e.

\[
\log \det \left(I_L + (SS^*/N)^{1/2}H^* R^{-1}H(SS^*/N)^{1/2} \right)
\]

coincides with

\[
\log \det \left(I_{L_1} + (S_1 S_1^*/N)^{1/2}H_1^* R^{-1}H_1(S_1 S_1^*/N)^{1/2} \right)
\]

and is thus not affected by the overdetermination of \(L \). Therefore, choosing \(L > L_n \) increases \(\bar{\eta}_{N,1} \) by the factor \((L - L_1) \log \left(\frac{1}{1 - c_N} \right) \). As for the asymptotic variance, it is also easy to verify that \(\kappa_1 \) is not affected by the overdetermination of the number of paths, and that the asymptotic variance is increased by the factor \((L - L_1) \frac{1}{1 - c_N} \). It is interesting to notice that the standard asymptotic analysis of subsection 111 does not allow to predict any influence of the overdetermination of \(L \) on the asymptotic distribution of \(\eta N \).

B. Asymptotic behaviour of \(\eta N \) when the number of paths \(L \) converges towards \(\infty \) at the same rate as \(M \) and \(N \).

The asymptotic regime considered in section 4.4 is relevant when the number of paths \(L \) is much smaller than \(M \) and \(N \). This hypothesis may however be restrictive, so that it is of potential interest to study the following regime:

Assumption 2. \(L, M \) and \(N \) converge towards \(+\infty \) in such a way that \(c_N = \frac{N}{N} \) and \(d_N = \frac{N}{N} \) converge towards \(c \) and \(d \), where \(0 < c + d < 1 \).

As explained below in Paragraph 4.4.2, the behaviour of \(\eta N \) under \(H_0 \) in this regime is a consequence of existing results. The behaviour of \(\eta N \) under \(H_1 \) is however not covered by the existing literature. The derivation of the corresponding new mathematical results needs extensive work that is not in the scope of the present paper. Motivated by the additive structure of the asymptotic mean and variance of \(\eta N \) under \(H_1 \) under assumption 1, we propose in Paragraph 4.4.2 a pragmatic Gaussian approximation of the distribution of \(\eta N \) under \(H_1 \).
1) Asymptotic behaviour of η_N under hypothesis H_0:

Theorem 3. We define $\tilde{\eta}_N$ by

$$
\tilde{\eta}_N = -N((1 - c_N) \log(1 - c_N) + (1 - d_N) \log(1 - d_N)) + N(1 - c_N - d_N) \log(1 - c_N - d_N)
$$

and $\tilde{\xi}_N$ by

$$
\tilde{\xi}_N = -\log \left(\frac{2 \sqrt{a_N^2 - b_N^2}}{a_N + \sqrt{a_N^2 - b_N^2}} \right)
$$

where

$$
a_N = \left(1 - \frac{c_N}{1 - d_N} \right)^2 + \frac{d_N}{1 - d_N} \left(1 + \frac{c_N(1 - c_N)}{d_N(1 - d_N)} \right)
$$

$$
b_N = 2 \frac{d_N}{1 - d_N} \sqrt{\frac{c_N(1 - c_N)}{d_N(1 - d_N)}}
$$

Then, it holds that $E(\eta_N) = \tilde{\eta}_N + O(\frac{1}{N})$ and that

$$
\frac{1}{\sqrt{\delta_N}}(\eta_N - \tilde{\eta}_N) \xrightarrow{D} N_0(0, 1)
$$

Justification. The eigenvalues of F_N coincide with the non-zero eigenvalues of $(V_2V_2^2)/N (V_1V_1^2/N)^{-1}$. Therefore, η_N appears as a linear statistics of the eigenvalues of this matrix. $(V_2V_2^2)/N (V_1V_1^2/N)^{-1}$ is a multivariate F-matrix. The asymptotic behaviour of the empirical eigenvalue distribution of this kind of random matrix as well as the corresponding central limit theorems are well established (see e.g. Theorem 4-10 and Theorem 9-14 in [2] as well as [24]) when the dimensions of V_1 and V_2 converge towards $+\infty$ at the same rate. Theorem 3 follows from these results.

Remark 4. We notice that the results of Theorem 2 differ deeply from the results of Theorem 3. We first remark that η_N and thus $E(\eta_N)$, converge towards ∞ at the same rate that L, M, N. Moreover, $\tilde{\eta}_N = E(\eta_N)$ is an $O_P(1)$ term under assumption 2 while it is an $O_P(\frac{1}{L})$ term when L does not scale with M, N. However, it is possible to informally obtain the expressions of the asymptotic mean and variance of η_N in Theorem 3 from (61) and (62). For this, we remark that a first order expansion w.r.t. $d_N = \frac{1}{N}$ of $\tilde{\eta}_N$ and $\tilde{\xi}_N$ leads to

$$
\tilde{\eta}_N = L \left(\log(1 - c_N) + O(L/N) \right)
$$

and to

$$
\tilde{\xi}_N = \frac{L}{N} \frac{c_N}{1 - c_N} + O\left(\frac{(L/N)^2}{\delta_N} \right)
$$

which, of course, is in accordance with Theorem 3.

2) Asymptotic behaviour of η_N under hypothesis H_1: Under H_1, η_N is a linear statistics of the eigenvalues of matrix

$$
\left(H + V_2/\sqrt{N} \right) \left(H + V_2/\sqrt{N} \right)^* \left(V_1V_1^2/N \right)^{-1}
$$

To the best of our knowledge, the asymptotic behaviour of the linear statistics of the eigenvalues of this matrix has not yet been studied in the asymptotic regime where L, M, N converge towards ∞ at the same rate. It is rather easy to evaluate an approximation of the empirical mean of η_N under H_1 using the results of [8]. However, to establish the asymptotic gaussianity of η_N and the expression of the corresponding variance, we need to establish a central limit theorem for linear statistics of the eigenvalues of non-zero mean large F-matrices. This needs an important work that is not in the scope of the present paper, which is why we propose the following pragmatic approximation of the distribution of η_N.

Claim 1. It is relevant to approximate the distribution of η_N under H_1 by a real Gaussian distribution with mean $\tilde{\eta}_N + \log \det (I + H^*H/\sigma^2)$ and variance $\tilde{\xi}_N + \kappa_1/N$.

Justification of Claim 1. As mentioned in Remark 1 when $M, N \rightarrow \infty$ and L is fixed, under H_1, the asymptotic mean $\tilde{\eta}_N$ is the sum of the asymptotic mean under H_0 given by (60) and the second term $\log \det (I + H^*H/\sigma^2)$. Thus, in the regime where $N, M, L \rightarrow \infty$, it seems reasonable to approximate the asymptotic mean of η_N by the sum of $\tilde{\eta}_N$ defined by (61) with the second term $\log \det (I + H^*H/\sigma^2)$.

Therefore, the asymptotic variance under $H_1, (47)$, is the sum of the asymptotic variance under H_0, outlined in Theorem 1 and the extra term $\sqrt{\kappa_1}$. The asymptotic variance under H_1, (47), is the sum of the asymptotic variance under H_0, outlined in Theorem 1 and the extra term $\sqrt{\kappa_1}$. The results provided by this approximation are evaluated numerically in section V.

For the reader’s convenience, the main results of this paper are summarized in Table 1 where δ_N is given by equation (62), κ_1 by equation (29) and $\tilde{\eta}_N$ by equation (61).

V. Numerical Results.

In this section, we validate the relevance of the Gaussian approximations of section IV. In our numerical experiments, we have calculated the asymptotic expected values and variances as well as their empirical counterparts, evaluated by Monte Carlo simulations with 100,000 trials. In this section, to refer to the different approximations, we use the (a), (b) and (c) defined in table 1.

The fixed channel H is equal to $H = \frac{1}{(\text{Tr}(HH^*))^{1/2}} \bar{H}$ where \bar{H} is a realization of a $M \times L$ Gaussian random matrix with i.i.d. $N_0(0, \frac{1}{M})$ entries. We remark that $\text{Tr}(HH^*) = 1$.

The rows of the training sequence matrix S are chosen as cyclical shifts of a Zadoff-Chu sequence of length N [5]. Due to the autocorrelation properties of Zadoff-Chu sequences, designed so that the correlation between any shift of the sequence with itself is zero, we have $SS^* / N = I_L$ if $L \leq N$.

A. Influence of $c_N = \frac{M}{N}$ on the asymptotic means and variances.

We first evaluate the behaviour of the means and variances of the three Gaussian approximations in terms of $c_N = \frac{M}{N}$. We only show the results for the asymptotic variance under H_1, but note that the results are similar for the expected
values and under hypothesis H_0. Figure 1 compares the theoretical variances with the empirical variances obtained by simulation, under hypothesis H_1, as a function of c_N, the ratio between M and N. In this simulation, $M = 10$, $L = 5$ and $N = 20, 40, 60, 80, 160, 320$. When c_N is small, the three approximations (a), (b) and (c) give the same variance, as expected, and are very close to the empirical variance. When $c_N \leq \frac{1}{8}$, the assumption that M is small compared to N is no longer valid, and the classical asymptotic analysis (a) fails. The two large system approximations (b) and (c) provide similar results when $c_N \leq \frac{1}{2}$, i.e. when $N = 40$, or equivalently when $\frac{L}{N} \leq \frac{1}{8}$. However, when $N = 20$, i.e. $\frac{L}{N} = \frac{1}{4}$, (c), the approximation corresponding to the regime where L, M, N converge towards ∞ leads to a much more accurate prediction of the empirical variance. We remark that the approximation (c) is also reliable for rather small values of L, M, N, i.e. $L = 5, M = 10, N = 20$. We also remark that the regimes (b) and (c) where M, N are of the same order of magnitude capture the actual performance even when c_N is small, which, by extension, implies that the standard asymptotic analysis (a) always performs worse compared to the two large system approximations. If N, M increase while c_N stays the same, the results will be even closer to the theoretical values, since the number of samples is larger.

In the simulations that follow, we will use $c_N = 1/2$ with $N = 300$, $M = 150$ and $L = 10$, if not otherwise stated.

B. Comparison of the asymptotic means and variances of the approximations of η_N under H_0

We first compare in figures 2 and 3 the asymptotic expected values and variances with the empirical ones when L increases from $L = 1$ to $L = 30$ while $M = 150$ and $N = 300$, i.e. $c_N = 1/2$. The figures show that the standard asymptotic analysis of section III completely fails for all values of L. This is expected, given the value of $\frac{L}{N}$. As L increases, the assumption that L is small becomes increasingly invalid, and the only model that functions well in this regime is the model (c). This is valid both for the expected value and variance, and the theoretical values are very close to their empirical counterparts. We remark that the approximation (c), valid when $L \to +\infty$, also allows to capture the actual empirical performance when L is small.

C. Validation of asymptotic distribution under H_0

Although the expected values and variances can be very accurate, this does not necessarily mean that the empirical distribution is Gaussian. Therefore, we need to validate also the distribution under H_0. The asymptotic distribution under H_0 can be validated by analyzing its accuracy when calculating a threshold used to obtain ROC-curves. Note that this analysis also shows the applicability of the results for a practical case of timing synchronization.

We calculate the ROC curves in two different ways. The first is the ROC curve calculated empirically. We determine a threshold s from the empirical distribution under H_0 which gives a given probability of false alarm as $P_{fa} = P(\eta_N > s)$.

TABLE 1

Asymptotic distribution of η_N for different assumptions, under H_0 and H_1

<table>
<thead>
<tr>
<th>Assumption on parameters</th>
<th>Distribution under H_0</th>
<th>Distribution under H_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Classical, $N \to \infty$</td>
<td>$\eta_N \sim \frac{1}{N} \chi^2_{2ML}$ (E[\eta_N] = Lc_N, \text{Var}[\eta_N] = Lc_N \cdot \frac{1}{N})</td>
<td>$\eta_N \sim N_p \left(\log \det \left(\frac{I + HH^T}{\sigma^2} \right), \frac{\kappa}{N} \right)$</td>
</tr>
<tr>
<td>(b) Proposed, $M, N \to \infty$</td>
<td>$\eta_N \sim N_p \left(L \log \frac{1}{1-c_N}, \frac{Lc_N}{1-c_N} \cdot \frac{1}{N} \right)$</td>
<td>$\eta_N \sim N_p \left(L \log \frac{1}{1-c_N} + \log \det \left(\frac{I + HH^T}{\sigma^2} \right), \frac{\kappa}{N} + \frac{Lc_N}{1-c_N} \cdot \frac{1}{N} \right)$</td>
</tr>
<tr>
<td>(c) Proposed, $L, M, N \to \infty$</td>
<td>$\eta_N \sim N_p \left(\tilde{\eta}_N, \delta_N \right)$</td>
<td>$\eta_N \sim N_p \left(\tilde{\eta}_N + \log \det \left(\frac{I + HH^T}{\sigma^2} \right), \frac{\kappa}{N} + \frac{\delta_N}{N} \right)$</td>
</tr>
</tbody>
</table>

Fig. 1. Proposed asymptotic analysis with standard asymptotic analysis

Fig. 2. H_0: Asymptotic expected values as a function of L.
Its corresponding probability of non-detection, P_{nd}, is then obtained as the probability that the empirical values of the synchronization statistics under H_1 pass this threshold. The other ROC-curves are obtained by calculating the threshold s from the asymptotic Gaussian distributions under H_0, and using this theoretical threshold to calculate the P_{nd} from the empirical distribution under H_1.

Figure 4 shows the ROC-curves obtained with the approaches mentioned above when $L = 10$, $M = 150$, $N = 300$. Since the standard asymptotic analysis (a) gives very bad results, its results are omitted. It is clear that ROC-curve obtained by using the asymptotic distribution (b), obtained with the assumption that L is small, differs greatly from the results from the approximation (c), even for this relatively small value of L. This is because the theoretical threshold depends greatly on the expected value, and if it is not precisely evaluated, it gives erroneous results. In (c), the model where $N, M, L \to \infty$, the expected value and variance are very close to their empirical counterparts, and the resulting threshold can be used to precisely predict the synchronization performance for the set of parameters used when $P_{fa} \geq 10^{-3}$ and $P_{nd} > 10^{-3}$. Figure 5 shows, for the regime (c), the ROC curves obtained with the theoretical threshold, together with the empirical results. In the figure, L goes from 1 to 20, while $M = 15L$ goes from 15 to 300 and $N = 30L$ goes from 30 to 600. It is seen that when the three parameters grow, the distance between the theoretical and empirical ROC curves decreases.

D. Comparison of the asymptotic means and variances of the approximations of η_N under H_1.

In this section, we will proceed to validate the expected value and variance under H_1.

Figures 6 and 7 validate the asymptotic expected values and variances under H_1. Similarly to hypothesis H_0, the theoretical expected values and variances are poorly evaluated using the standard asymptotic analysis (a). We note that the asymptotic expected values deduced for the regime (c) are very close to the empirical expected values and variances. For an L sufficiently small, however, also the regime (b) gives asymptotic expected values and variances that are close to their empirical counterparts.
To validate the asymptotic distributions under H_1, we calculate theoretical ROC-curves using both asymptotic distributions. For each P_{fa}, a threshold s is calculated from the theoretical Gaussian distribution under H_0. This threshold is then used to calculate the P_{nd} from the theoretical Gaussian distribution under H_1, using $P_{nd} = 1 - P_{H_1}(\eta N > s)$. Figure 8 shows these theoretical ROC curves plotted together with the empirical ROC curve. Here, $L = 10$, $M = 150$ and $N = 300$. It is seen that the approximation corresponding to the regime $N,M,L \to \infty$ provides, as in the context of hypothesis H_0, a more accurate theoretical ROC curve. It is seen that the ROC curve associated with the regime small L (b) is closer from the empirical ROC curve than in the context of hypothesis H_0. This is because the corresponding asymptotic means are, for both H_0 and H_1, less than the actual empirical means. These two errors tend to compensate in the theoretical ROC curves (b), which explains why the theoretical ROC curve (b) of figure 8 is more accurate than the corresponding ROC curve of figure 4, for small L.

We now evaluate the behaviour of the ROC curves when N,M,L grow at the same rate. In figure 9, L goes from 1 to 20, while $M = 15L$ goes from 15 to 300 and $N = 30L$ goes from 30 to 600. The results show that as N,M,L grow proportionally, the theoretical results tend to approach the empirical values, but that, in contrast with the context of figure 5, a residual error remains. It would be interesting to evaluate more accurately the asymptotic behaviour of ηN under H_1 in the regime $L \to +\infty$, and to check if the residual error tends to diminish. However, as mentioned in Paragraph IV-B.2, this needs to establish a central limit theorem for linear statistics of the eigenvalues of non zero mean large F-matrices, which is a non trivial task.

VI. CONCLUSION

In this paper, we have studied the behaviour of the multi-antenna GLR detection test statistics ηN of a known signal corrupted by a multi-path deterministic channel and an additive white Gaussian noise with unknown spatial covariance. We have addressed the case where the number of sensors M and the number of samples N of the training sequence converge towards ∞ at the same rate. When the number of paths L does not scale with M and N, we have established that ηN has a Gaussian behaviour with asymptotic mean $L \log \frac{1}{1 - M/N}$ and variance $L \frac{M/N}{1 - M/N}$. This is in contrast with the standard regime $N \to +\infty$ and M fixed where ηN has a χ^2 behaviour. Under hypothesis H_1, ηN has still a Gaussian behaviour. The corresponding asymptotic mean and variance are obtained as the sum of the asymptotic mean and variance in the standard regime $N \to +\infty$ and M fixed, and $L \log \frac{1}{1 - M/N}$ and $L \frac{M/N}{1 - M/N}$ respectively, i.e. the asymptotic mean and variance under H_0. We have also considered the case where the number of paths L converges towards ∞ at the same rate as M and N. Using known results of [2] and [24], concerning the behaviour of linear statistics of the eigenvalues of large F-matrices, we have deduced that in the regime where L,M,N converge to ∞ at the same rate, ηN still has a Gaussian behaviour under H_0, but with a different mean and variance. The analysis of ηN under H_1 when L,M,N converge to ∞ needs to establish a central limit theorem for linear statistics of the eigenvalues of
large non zero-mean F-matrices, a difficult task that we will address in a future work. Motivated by the results obtained in the case where \(L \) remains finite, we have proposed to approximate the asymptotic distribution of \(\eta_N \) by a Gaussian distribution whose mean and variance are the sum of the asymptotic mean and variance under \(H_0 \) when \(L \to +\infty \) with the asymptotic mean and variance under \(H_1 \) in the standard regime \(N \to +\infty \) and \(M \) fixed. Numerical experiments have shown that the Gaussian approximation corresponding to the standard regime \(N \to +\infty \) and \(M \) fixed completely fails as soon as \(\frac{M}{N} \) is not small enough. The large system approximations provide better results when \(\frac{M}{N} \) increases, while also allowing to capture the actual performance for small values of \(\frac{M}{N} \). We have also observed that, for finite values of \(L, M, N \), the Gaussian approximation obtained in the regime \(L, M, N \) converge towards \(\infty \) is more accurate than the approximation in which \(L \) is fixed. In particular, the ROC curves that are obtained using the former large system approximation are accurate approximations of the empirical ones in a reasonable range of \(P_{fa}, P_{nd} \). We therefore believe that our results can be used to reliably predict the performance of the GLRT, and that the tools that are developed in this paper are useful in the context of large antenna arrays.

Appendix I

Useful Technical Results.

In this appendix, we provide some useful technical results concerning the behaviour of certain large random matrices. In the remainder of this appendix, \(\Sigma_N \) represents a \(M \times N \) matrix with \(\mathcal{N}_C(0, \frac{2}{N}) \) i.i.d. elements. We of course assume in this section that \(M \) and \(N \) both converge towards \(+\infty \) in such a way that \(cN = \frac{M}{N} < 1 \) converges towards \(c < 1 \). In the following, we give some results concerning the behaviour of the eigenvalues \(\lambda_{1,N} \leq \lambda_{2,N} \leq \cdots \leq \lambda_{M,N} \) of the matrix \(\Sigma_N \Sigma_N^\ast \) as well as on its resolvent \(Q_N(z) \) defined for \(z \in \mathbb{C} - \mathbb{R}^+ \) by

\[
Q_N(z) = \left(\Sigma_N \Sigma_N^\ast - z I_M \right)^{-1}
\]

We first state the following classical result (see e.g. [2], Theorem 5.11).

Proposition 1. When \(N \to +\infty \), \(\hat{\lambda}_{1,N} \) converges almost surely towards \(\sigma^2(1 - \sqrt{c})^2 \) while \(\hat{\lambda}_{M,N} \) converges a.s. to \(\sigma^2(1 + \sqrt{c})^2 \).

In the following, we denote by \(I_c \) the interval defined by

\[
I_c = [\sigma^2(1 - \sqrt{c})^2 - \epsilon, \sigma^2(1 + \sqrt{c})^2 + \epsilon]
\]

(70)

(with \(\epsilon \) chosen in such a way that \(\sigma^2(1 - \sqrt{c})^2 - \epsilon > 0 \)) and by \(\mathcal{E}_N \) the event defined by

\[
\mathcal{E}_N = \{ \text{one of the } (\hat{\lambda}_{k,N})_{k=1,\ldots,M} \text{ escapes from } I_c \}
\]

(71)

and remark that the almost sure convergence of \(\hat{\lambda}_{1,N} \) and \(\hat{\lambda}_{M,N} \) implies that

\[
\mathbb{P}(\mathcal{E}_N) = 1 \text{ almost surely for each } N \text{ larger than a random integer}
\]

(72)

Proposition 1 implies that the resolvent \(Q_N(z) \) is almost surely defined on \(\mathbb{C} - I_c \) for \(N \) large enough, and in particular for \(z = 0 \).

Another important property is the almost sure convergence of the empirical eigenvalue distribution \(\hat{\lambda}_N = \frac{1}{M} \sum_{k=1}^M \delta_{\hat{\lambda}_{k,N}} \) of \(\Sigma_N \Sigma_N^\ast \) towards the Marcenko-Pastur distribution (see e.g. [2] and [20] and the references therein). Formally, this means that the Stieltjes transform \(\hat{m}_N(z) \) of \(\hat{\lambda}_N \) defined by

\[
\hat{m}_N(z) = \int d\hat{\lambda}_N(\lambda) \frac{1}{\lambda - z} = \frac{1}{M} \text{Tr}(Q_N(z))
\]

(73)

satisfies

\[
\lim_{N \to +\infty} \left(\hat{m}_N(z) - m_c(z) \right) = 0
\]

(74)

almost surely for each \(z \in \mathbb{C} - \mathbb{R}^+ \) (and uniformly on each compact subset of \(\mathbb{C} - \mathbb{R}^+ \)), where \(m_c(z) \) represents the Stieltjes transform of the Marcenko-Pastur distribution of parameter \(c \), denoted by \(\mu_c \) in the following. \(m_c(z) \) satisfies the following fundamental equation

\[
m_c(z) = \frac{1}{z - \left(1 + \sigma^2 c N m_c(z) \right) + \sigma^2(1 - cN)}
\]

(75)

for each \(z \in \mathbb{C} \), \(\mu_c \) is known to be absolutely continuous, its support is the interval \([\sigma^2(1 - \sqrt{cN})^2, \sigma^2(1 + \sqrt{cN})^2] \), and its density is given by

\[
\sqrt{(x - x_c^-)(x_c^+ - x) / 2\sigma^2 c N \pi x} \mathbb{1}_{[x_c^-, x_c^+]}(x)
\]

(76)

with \(x_c^- = \sigma^2(1 - \sqrt{cN})^2 \) and \(x_c^+ = \sigma^2(1 + \sqrt{cN})^2 \). As \(m_c \) is supported by \([\sigma^2(1 - \sqrt{cN})^2, \sigma^2(1 + \sqrt{cN})^2] \), the almost sure convergence (74) holds not only on \(\mathbb{C} - \mathbb{R}^+ \), but also for each \(z \in \mathbb{C} - I_c \). In particular, (74) is valid for \(z = 0 \). Solving the equation (75) for \(z = 0 \) leads immediately to \(m_c(0) = \frac{1}{\sigma^2(1 - cN)} \), and to

\[
\lim_{N \to +\infty} \frac{1}{M} \text{Tr}(\Sigma_N \Sigma_N^\ast)^{-1} = \frac{1}{\sigma^2(1 - cN)} = 0
\]

(77)

almost surely. Taking the derivative of (74) w.r.t. \(z \) at \(z = 0 \), and using that \(m'_c(0) = \frac{1}{\sigma^4(1 - cN)^3} \), we also obtain that

\[
\lim_{N \to +\infty} \frac{1}{M} \text{Tr}(\Sigma_N \Sigma_N^\ast)^{-2} = \frac{1}{\sigma^4(1 - cN)^3} = 0
\]

(78)

almost surely. Moreover, it is possible to specify the convergence speed in (77) and (78). The following proposition is a direct consequence of Theorem 9.10 in [2].

Proposition 2. It holds that

\[
\frac{1}{M} \text{Tr}(\Sigma_N \Sigma_N^\ast)^{-1} - \frac{1}{\sigma^2(1 - cN)} = O_P\left(\frac{1}{N} \right)
\]

(79)

\[
\frac{1}{M} \text{Tr}(\Sigma_N \Sigma_N^\ast)^{-2} - \frac{1}{\sigma^4(1 - cN)^3} = O_P\left(\frac{1}{N^2} \right)
\]

(80)

Theorem 9.10 in [2] implies that the left hand side of (79), renormalized by \(N \), converges in distribution towards a Gaussian distribution, which, in turn, leads to (79). (80) holds for the same reason.
We finish this appendix by a standard result whose proof is omitted.

Proposition 4. We consider a \(M \times L \) random matrix \(\Gamma_N \) with \(N \mathcal{C}(0, \frac{a^2}{N}) \) i.i.d. entries, as well as the following deterministic matrices: \(A_N \) is \(M \times M \) and hermitian, \(B_N \) is \(M \times L \) and satisfies \(\sup_N \|B_N\| < +\infty \) while \(D_N \) is a positive \(L \times L \) matrix and also verifies \(\sup_N \|D_N\| < +\infty \). Then, if \((\omega_N)_{N \geq 1}\) represents the sequence of random variables defined by

\[
\omega_N = \text{Tr} \left[D_N \left(\Gamma_N^* A_N \Gamma_N + \Gamma_N^* B_N + B_N^* \Gamma_N \right) \right]
\]

it holds that

\[
E(\omega_N) = \sigma^2 \frac{1}{N} \text{Tr}(A_N^* A_N) \text{Tr}(D_N),
\]

\[
\text{Var}(\omega_N) = \frac{1}{N} \zeta_N
\]

where \(\zeta_N \) is defined by

\[
\zeta_N = \sigma^4 \frac{1}{N} \text{Tr}(A_N^2) \text{Tr}(D_N^2) + 2\sigma^2 \frac{1}{N} \text{Tr}(D_N^2 B_N^* B_N)
\]

Moreover,

\[
E |\omega_N - E(\omega_N)|^4 \leq \frac{a_1}{N^2} + \frac{a_2}{N^2} \left(\frac{1}{N} \text{Tr}(A_N^2) \right)^2 + \frac{a_3}{N^2} \text{Tr}(A_N^4)
\]

where \(a_1, a_2, a_3 \) are constant terms depending on \(L, \sup_N \|B_N\| \) and \(\sup_N \|D_N\| \). Finally, if \(\lim \sup_N \zeta_N < +\infty \), it holds that

\[
E \left(\exp i u \sqrt{N} (\omega_N - E(\omega_N)) \right) - e^{-\frac{u^2 \zeta_N}{2}} \to 0
\]

for each \(u \in \mathbb{R} \).

APPENDIX II

Proofs of Theorems

In order to establish Theorem 1, we use the results of Appendix 1 for the matrix \(\Sigma_N = \frac{1}{N} V_N \).

We note that \(\frac{1}{N} V_N \) is a \(M \times (N - L) \) matrix while the results of Appendix 1 have been presented in the context of a \(M \times N \) matrix. In principle, it should be necessary to exchange \(N \) by \(N - L \) in Propositions 1 to 3. However, \(c_N - \frac{M}{N - L} = O \left(\frac{1}{N} \right) \), so that it possible to use the results of the above propositions without exchanging \(N \) by \(N - L \). We first verify (30). For this, we introduce the event \(E_N \) defined by (71). We first remark that \(\eta_N - \eta_N \mathbb{1}_{E_N^c} \to 0, \text{a.s.} \). It is thus sufficient to study the behaviour of \(\eta_N \mathbb{1}_{E_N} \) which is also equal to

\[
\eta_N \mathbb{1}_{E_N} = \log \det (I + F_N \mathbb{1}_{E_N})
\]

We now study the behaviour of each entry \((k,l)\) of matrix \(\mathbb{1}_{E_N} F_N \). For this, we use Proposition 4 for \(D_N = e_l e_l^* \), \(\Gamma_N = \frac{\Sigma_N}{\sqrt{N}} \) and \(A_N = \mathbb{1}_{E_N} (V_N V_N^*)^{-1} \). A_N is of course not deterministic, but as \(V_2 \) and \(V_1 \) are independent, it is possible to use the results of Proposition 4 by replacing the mathematical expectation operator by the mathematical
implies that or equivalently that. Therefore, the asymptotic behaviour of the distribution of the matrix A_N verifies
\[
A_N \leq \frac{1}{\sigma^2(1 - \sqrt{\varepsilon})^2 - \varepsilon} \quad (94)
\]
because $1_{\varepsilon_N} \neq 0$ implies that all the eigenvalues of $\frac{V_i V_i^*}{N}$ belong to $L_\varepsilon' = [\sigma^2(1 - \sqrt{\varepsilon})^2 - \varepsilon, \sigma^2(1 + \sqrt{\varepsilon})^2 + \varepsilon]$. Therefore, \((91)\) immediately implies that
\[
\mathbb{E}_{V_2} \left| F_{N,k,l} \right|_2^2 \leq \frac{a}{N^2} \quad (95)
\]
where a is a deterministic constant. Taking the mathematical expectation of the above inequality w.r.t. V_1, and using the Borel-Cantelli Lemma lead to
\[
F_{N,k,l} 1_{\varepsilon_N} - \mathbb{E}_{V_2} \left(F_{N,k,l} 1_{\varepsilon_N} \right) \to 0 \text{ a.s.} \quad (96)
\]
or equivalently, to
\[
F_{N,k,l} 1_{\varepsilon_N} - \delta(k-l) \sigma^2 c_N \frac{1}{M} \text{Tr} \left(\frac{V_i V_i^*}{N} \right)^{-1} \to 0 \text{ a.s.} \quad (97)
\]
which implies that $F_{N,k,l} 1_{\varepsilon_N} - \delta(k-l) \frac{c_N}{1 - c_N} \to 0$ almost surely, or equivalently that
\[
F_N - \frac{c_N}{1 - c_N} I \to 0 \text{ a.s.} \quad (98)
\]
This eventually leads to \((30)\).

We now establish \((31)\). For this, we first remark that \((72)\) implies that $\eta_N = \eta_N 1_{\varepsilon_N} + \mathcal{O}(\frac{1}{N^2})$ for each integer p. Therefore, the asymptotic behaviour of the distribution of the left hand side of \((31)\) is not modified if η_N is replaced by $\eta_N 1_{\varepsilon_N}$ given by \((93)\). We denote by Δ_N the matrix defined by
\[
\Delta_N = F_N 1_{\varepsilon_N} - \frac{c_N}{1 - c_N} I \quad (99)
\]
We first prove that $\Delta_N = \mathcal{O}_p(\frac{1}{N^2})$. For this, we express Δ_N as
\[
\Delta_N = \left(F_N 1_{\varepsilon_N} - \sigma^2 c_N \frac{1}{M} \text{Tr} \left(\frac{V_i V_i^*}{N} \right)^{-1} 1_{\varepsilon_N} \right) I + \sigma^2 c_N \frac{1}{M} \text{Tr} \left(\frac{V_i V_i^*}{N} \right)^{-1} 1_{\varepsilon_N} I - \frac{c_N}{1 - c_N} I \quad (100)
\]
The first term of the right hand side of \((100)\) is $\mathcal{O}_p(\frac{1}{N^2})$ because the fourth-order moments of its entries are $\mathcal{O}(\frac{1}{N^2})$ terms. As for the second term, \((79)\) implies that it is a $\mathcal{O}_p(\frac{1}{N^2})$. A standard second order expansion of log det($I + F_N 1_{\varepsilon_N}$) leads to
\[
\eta_N 1_{\varepsilon_N} = L \log \frac{1}{1 - c_N} + (1 - c_N) \text{Tr}(\Delta_N) + \mathcal{O}_p(\frac{1}{N}) \quad (101)
\]
Therefore, it holds that
\[
\sqrt{N} \left(\eta_N 1_{\varepsilon_N} - L \log \frac{1}{1 - c_N} \right) = \sqrt{N}(1 - c_N) \text{Tr}(\Delta_N) + \mathcal{O}_p(\frac{1}{\sqrt{N}}) \quad (102)
\]
or, using \((100)\), that
\[
\sqrt{N} \left(\eta_N 1_{\varepsilon_N} - L \log \frac{1}{1 - c_N} \right) = \sqrt{N}(1 - c_N) \text{Tr} \left(F_N 1_{\varepsilon_N} - \frac{c_N}{1 - c_N} I \right) \quad (103)
\]
As
\[
\mathbb{E}_{V_2} \left(\text{Tr} (F_N 1_{\varepsilon_N}) \right) = \sigma^2 c_N \frac{1}{M} \text{Tr} \left(\frac{V_i V_i^*}{N} \right)^{-1} 1_{\varepsilon_N} \quad (104)
\]
Proposition \((4)\) is used for $A_N = \left(\frac{V_i V_i^*}{N} \right)^{-1} 1_{\varepsilon_N}$, $B_N = 0$ and $D_N = (1 - c_N) I$ leads to
\[
\mathbb{E}_{V_2} \left(\exp i u \sqrt{N} \left(\eta_N - L \log \frac{1}{1 - c_N} \right) \right) - \exp \left[-\frac{u^2}{2} \frac{\sigma^4}{1 - c_N} \right] \to 0 \quad (105)
\]
a.s. for each $u \in \mathbb{R}$. \((78)\) and the dominated convergence theorem finally implies that
\[
\mathbb{E} \left(\exp i u \sqrt{N} \left(\eta_N - L \log \frac{1}{1 - c_N} \right) \right) - \exp \left[-\frac{u^2}{2} \frac{LC_N}{1 - c_N} \right] \to 0 \quad (106)
\]
This establishes \((31)\).

Proof of Theorem \((2)\) We recall that, under H_1, η_N is given by \((22)\). As in the proof of Theorem \((1)\) it is sufficient to study the regularized statistics $\eta_N 1_{\varepsilon_N}$ which is also equal to
\[
\eta_N 1_{\varepsilon_N} = \log \det \left(I_L + 1_{\varepsilon_N} G_N \right) \quad (107)
\]
In order to evaluate the almost sure behaviour of $\eta_N 1_{\varepsilon_N}$, we expand $G_N 1_{\varepsilon_N}$ as
\[
G_N 1_{\varepsilon_N} = H^* (V_i V_i^*/N)^{-1} 1_{\varepsilon_N} + F_N 1_{\varepsilon_N} + (V_i V_i^*/N)^{-1} H 1_{\varepsilon_N} + H^* (V_i V_i^*/N)^{-1} (V_2/\sqrt{N}) 1_{\varepsilon_N} \quad (108)
\]
By \((81)\), the first term of the right hand side of \((108)\) behaves almost surely as $\frac{H^* H}{\sigma^2(1 - c_N)}$, while it has been shown before that the second term converges a.s. towards $\frac{c_N}{1 - c_N} I$. To address the behaviour of entry (k,l) of the sum of the third and the fourth terms, we use Proposition \((1)\) for $G_N = \frac{V_i V_i^*/N}{N}$. $A_N = 0$, $B_N = (V_i V_i^*/N)^{-1} H 1_{\varepsilon_N}$ and $D_N = e_k e_l^T$. \((91)\) implies that entry (k,l) converges almost surely towards 0. Therefore, we have proved that
\[
G_N - \left(\frac{H^* H}{\sigma^2(1 - c_N)} + \frac{c_N}{1 - c_N} I \right) \to 0 \text{ a.s.} \quad (109)
\]
from which \((45)\) follows immediately.
The proof of (42) is similar to the proof of (51), thus we do not provide all the details. We replace \(\eta_N \) by \(\eta_N 1_{\mathcal{E}_N} \), and remark that the matrix \(\Delta_N \), given by
\[
\Delta_N = G_N 1_{\mathcal{E}_N} - \left(\frac{H^* H}{\sigma^2 (1-c_N)} + \frac{c_N}{1-c_N} I \right)
\] (110)
verifies \(\Delta_N = \mathcal{O}_P \left(\frac{1}{\sqrt{N}} \right) \). To check this, it is sufficient to use the expansion (49), and to recognize that:

- by (53),
\[
H^* (V_1 V_1^*/N)^{-1} H 1_{\mathcal{E}_N} - \frac{H^* H}{\sigma^2 (1-c_N)} = \mathcal{O}_P \left(\frac{1}{\sqrt{N}} \right),
\] (111)
- by Proposition 4 and (91),
\[
(V_2/\sqrt{N})^* (V_1 V_1^*/N)^{-1} H 1_{\mathcal{E}_N} + H^* (V_1 V_1^*/N)^{-1} (V_2/\sqrt{N}) 1_{\mathcal{E}_N} = \mathcal{O}_P \left(\frac{1}{\sqrt{N}} \right)
\] (112)
- it has been shown before that
\[
F_N 1_{\mathcal{E}_N} - \frac{c_N}{1-c_N} I = \mathcal{O}_P \left(\frac{1}{\sqrt{N}} \right).
\] (113)
Using a standard linearization of \(\log \det (I + G_N 1_{\mathcal{E}_N}) \), this implies that
\[
\eta_N 1_{\mathcal{E}_N} - \eta_{N,1} = \text{Tr} (D_N \Delta_N) + \mathcal{O}_P (1/N)
\] (114)
where \(D_N \) is the \(L \times L \) matrix given by
\[
D_N = (1-c_N)(I_L + H^* H/\sigma^2)^{-1}
\] (115)
We define \(\kappa_N \) and \(\omega_N \) by
\[
\kappa_N = \text{Tr} \left(C_N (V_1 V_1^*/N)^{-1} \right)
\] (116)
and
\[
\omega_N = \text{Tr} \left[D_N F_N 1_{\mathcal{E}_N} \right] + \text{Tr} \left[D_N (V_2/\sqrt{N})^* (V_1 V_1^*/N)^{-1} H 1_{\mathcal{E}_N} \right] + \text{Tr} \left[D_N H^* (V_1 V_1^*/N)^{-1} (V_2/\sqrt{N}) 1_{\mathcal{E}_N} \right]
\] (117)
where \(C_N \) the \(M \times M \) matrix given by
\[
C_N = (1-c_N)H(I_L + H^* H/\sigma^2)^{-1}H^*
\] (118)
Using (114), we obtain that
\[
\eta_N 1_{\mathcal{E}_N} - \eta_{N,1} = \kappa_N - \text{Tr} (C_N) + \mathcal{O}_P (1/N)
\] (119)
\[
\omega_N = \frac{c_N}{1-c_N} \text{Tr} (D_N) + \mathcal{O}_P (1/N)
\] (120)

We also remark that (79) used for \(\Sigma_N = \frac{1}{\sqrt{N}} V_1 \) implies that
\[
\omega_N - \mathbb{E} \psi_2(\omega_N) = \omega_N - \frac{c_N}{1-c_N} \text{Tr} (D_N) + \mathcal{O}_P (1/N)
\] (121)
Therefore, it holds that
\[
\sqrt{N} \left(\eta_N 1_{\mathcal{E}_N} - \eta_{N,1} \right) = \sqrt{N} \left(\text{Tr} (D_N \Delta_N) \right)
\] (122)
can be written as
\[
\sqrt{N} \left(\eta_N 1_{\mathcal{E}_N} - \eta_{N,1} \right) = \sqrt{N} \left(\kappa_N - \frac{\text{Tr} (C_N)}{\sigma^2 (1-c_N)} \right) + \sqrt{N} \left(\omega_N - \mathbb{E} \psi_2(\omega_N) \right) + \mathcal{O}_P \left(\frac{1}{\sqrt{N}} \right)
\] (123)

We denote by \(\zeta_N \) the term
\[
\zeta_N = \sigma^4 \frac{1}{N} \text{Tr} \left((V_1 V_1^*/N)^{-2} 1_{\mathcal{E}_N} \right) \text{Tr} (D_N^2) + 2 \sigma^2 \frac{1}{N} \text{Tr} (D_N^2 H^* (V_1 V_1^*/N)^{-1} H 1_{\mathcal{E}_N})
\] (124)

and obtain that
\[
\zeta_0 = \frac{c_N}{(1-c_N)^2} \text{Tr} (D_N^2) + 2 \frac{c_N}{(1-c_N)} \text{Tr} (D_N^2 H^* H)
\] (125)
which implies that
\[
\exp \left(-\frac{u^2}{2} \zeta_N \right) - \exp \left(-\frac{u^2}{2} \zeta \right) \rightarrow 0 \text{ a.s.}
\] (126)

Therefore, taking the mathematical expectation of (124) w.r.t \(V_1 \) and using the dominated convergence theorem as well as (86), lead, after some calculations, to
\[
\mathbb{E} \left[\exp \left(i u \sqrt{N} (\eta_N - \eta_{N,1}) \right) \right] - \exp \left[-\frac{u^2}{2} \left(\frac{L c_N}{1-c_N} + \kappa_1 \right) \right] \rightarrow 0
\] (127)
for each \(u \). As \(\inf \left(\frac{L c_N}{1-c_N} + \kappa_1 \right) > 0 \), (47) follows from (127) (see Proposition 6 in [10]).
where ϕ is a smooth function such that

$$\phi(\lambda) = 1 \text{ if } \lambda \in I = [\sigma^2(1 - \sqrt{\epsilon})^2 - \epsilon, \sigma^2(1 + \sqrt{\epsilon})^2 + \epsilon]$$

$$\phi(\lambda) = 0 \text{ if } \lambda \in [\sigma^2(1 - \sqrt{\epsilon})^2 - 2\epsilon, \sigma^2(1 + \sqrt{\epsilon})^2 + 2\epsilon]$$

$\phi \in [0, 1]$ elsewhere

In the following, we need to use the following property: for each $\epsilon > 0$, it holds that

$$P(E_N) = O\left(\frac{1}{N^p} \right)$$

(129)

where E_N is defined by (71). Property [129] is not mentioned in Theorem 5.11 of [2] which addresses the non Gaussian case. However, [129] follows directly from Gaussian concentration arguments.

It is clear that

$$(\Sigma_N \Sigma_N^*)^{-1} \chi_N \leq \frac{1}{\sigma^2((1 - \sqrt{\epsilon})^2 - 2\epsilon)}$$

(130)

Lemma 3-9 of [11] also implies that, considered as a function of the entries of Σ_N, χ_N is continuously differentiable. Moreover, it follows from Proposition 1 that almost surely, for N large enough, $\chi_N = 1$ and $\kappa_N = \kappa_N \chi_N$. Therefore, it holds that $\kappa_N \chi_N = \kappa_N + O_p(\frac{1}{N^p})$, and that

$$\sqrt{N} \left(\kappa_N - \frac{\text{Tr}(C_N)}{\sigma^2(1 - c_N)} \right) = \sqrt{N} \left(\kappa_N \chi_N - \frac{\text{Tr}(C_N)}{\sigma^2(1 - c_N)} \right) + O_p(\frac{1}{N^p})$$

(131)

for each $p \in \mathbb{N}$. In order to establish (86), it is thus sufficient to prove that

$$\mathbb{E} \left[\exp \left(iu \sqrt{N} \left(\kappa_N \chi_N - \frac{\text{Tr}(C_N)}{\sigma^2(1 - c_N)} \right) \right) \right]$$

$$- \exp \left(- \frac{\theta_N u^2}{2} \right) \to 0$$

(132)

for each u. To obtain (87), we remark that, as $\inf_N \theta_N > 0$, it follows from (132) that

$$\frac{\sqrt{N}}{\sqrt{\theta_N}} \left(\kappa_N \chi_N - \frac{\text{Tr}(C_N)}{\sigma^2(1 - c_N)} \right) \to_D N(0, 1)$$

(see Proposition 6 in [10]). (87) eventually appears as a consequence of (131).

The above regularization trick thus allows to replace the matrix $(\Sigma_N \Sigma_N^*)^{-1}$ by $(\Sigma_N \Sigma_N^*)^{-1} \chi_N$, which verifies (130).

In order to establish (132), it is sufficient to prove that

$$\mathbb{E}(\kappa_N \chi_N) - \frac{\text{Tr}(C_N)}{\sigma^2(1 - c_N)} = o\left(\frac{1}{\sqrt{N}} \right)$$

(133)

and that

$$\mathbb{E} \left[\exp \left(iu \sqrt{N} (\kappa_N \chi_N - \mathbb{E}(\kappa_N \chi_N)) \right) \right]$$

$$- \exp \left(- \frac{\theta_N u^2}{2} \right) \to 0$$

(134)

for each u.

In the rest of this section, to simplify the notations, we omit to write the dependance on N of the various terms Σ_N.
After some algebra, we obtain that

\[
\mathbb{E} \left(Q_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \Sigma_{t,j} \right) = \frac{\sigma^2}{N} \mathbb{E} \left(Q_{r,t} \chi e^{iu\delta} \right) \delta(t = s) - \frac{\sigma^2}{N} \mathbb{E} \left(\left(Q^* \chi \right)_{r,t} Q_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \right) - \frac{i\sigma^2 u}{\sqrt{N}} \mathbb{E} \left(Q_{r,t} \left(Q^* C Q \chi \right)_{t} \Sigma_{s,j} \chi e^{iu\delta} \right) + \frac{\sigma^2}{N} \mathbb{E} \left(Q_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \frac{\partial \chi}{\partial \Sigma_{t,j}} \right)
\]

(138)

We now need to study more precisely the properties of the derivative of χ w.r.t. $\Sigma_{t,j}$. For this, we give the following Lemma

Lemma 1. We denote by \mathcal{A} the event:

\[
\mathcal{A} = \{ \text{one of the } \hat{\lambda}_{k,N} \text{ escapes from } \mathcal{I}_k \} \cap \{ (\hat{\lambda}_{k,N})_{i=1,...,M} \in \text{supp}(\phi) \}
\]

Then, it holds that

\[
\frac{\partial \chi}{\partial \Sigma_{t,j}} = 0 \text{ on } \mathcal{A}^c
\]

(140)

and that

\[
\mathbb{E} \left| \frac{\partial \chi}{\partial \Sigma_{t,j}} \right|^2 = O \left(\frac{1}{N^p} \right)
\]

(141)

for each p.

Proof. Lemma 1 follows directly from Lemma 3.9 of [11] and from the calculations in the proof of Proposition 3.3 of [11].

Lemma 1 implies that the last term of (138) is $O \left(\frac{1}{N^p} \right)$ for each p. To check this, we remark that

\[
\mathbb{E} \left(Q_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \frac{\partial \chi}{\partial \Sigma_{t,j}} \right) = \mathbb{E} \left(Q_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \mathbb{1}_A \frac{\partial \chi}{\partial \Sigma_{t,j}} \right)
\]

The Schwartz inequality leads to

\[
\mathbb{E} \left(\left| Q_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \mathbb{1}_A \frac{\partial \chi}{\partial \Sigma_{t,j}} \right|^2 \right) \leq \mathbb{E} \left(\left| Q_{r,t} \Sigma_{s,j} \mathbb{1}_A \frac{\partial \chi}{\partial \Sigma_{t,j}} \right|^2 \right)
\]

On event \mathcal{A}, all the eigenvalues of $\Sigma \Sigma^*$ belong to $[\sigma^2(1 - \sqrt{e})^2 - 2\epsilon, \sigma^2(1 + \sqrt{e})^2 + 2\epsilon]$. Therefore, $Q_{r,t} \mathbb{1}_A$ is bounded and (141) implies that the last term of (138) is $O \left(\frac{1}{N^p} \right)$ over t, we obtain that

\[
\mathbb{E} \left(\left(Q^* \chi \right)_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \right) = \frac{\sigma^2}{N} \mathbb{E} \left(Q_{r,s} \chi e^{iu\delta} \right) - \frac{\sigma^2 c_N}{N} \mathbb{E} \left(\hat{m}(0) \left(Q^* \chi \right)_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \right) - \frac{i\sigma^2 u}{\sqrt{N}} \mathbb{E} \left(\left(Q^* C Q^* \chi \right)_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \right) + O \left(\frac{1}{N^p} \right)
\]

(142)

where we recall that $\hat{m}(0) = \frac{1}{N} \text{Tr}(Q)$ represents the Stieltjes transform of the empirical eigenvalue distribution μ of $\Sigma \Sigma^*$ at $z = 0$. Using that $(1 - \chi) \leq 1_e$, it is easy to check that for each p, it holds that

\[
\mathbb{E} \left(\left(Q^* \chi \right)_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \right) = \frac{\sigma^2}{N(1 + \sigma^2 c_N \alpha)} \mathbb{E} \left(Q_{r,s} \chi e^{iu\delta} \right) - \frac{i\sigma^2 u}{\sqrt{N}(1 + \sigma^2 c_N \alpha)} \mathbb{E} \left(\left(Q^* C Q^* \chi \right)_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \right) - \frac{\sigma^2 c_N}{1 + \sigma^2 c_N \alpha} \mathbb{E} \left(\beta^0 \left(Q^* \chi \right)_{r,t} \Sigma_{s,j} \chi e^{iu\delta} \right) + O \left(\frac{1}{N^p} \right)
\]

(143)

Summing over j, we get that

\[
\mathbb{E} \left(\left(Q^* \Sigma \Sigma^* \right)_{r,s} \chi e^{iu\delta} \right) = \frac{\sigma^2}{1 + \sigma^2 c_N \alpha} \mathbb{E} \left(Q_{r,s} \chi e^{iu\delta} \right) - \frac{i\sigma^2 u}{\sqrt{N}(1 + \sigma^2 c_N \alpha)} \mathbb{E} \left(\left(Q^* C Q^* \Sigma \Sigma^* \right)_{r,s} \chi e^{iu\delta} \right) - \frac{\sigma^2 c_N}{1 + \sigma^2 c_N \alpha} \mathbb{E} \left(\beta^0 \left(Q \Sigma \Sigma^* \right)_{r,s} \chi e^{iu\delta} \right) + O \left(\frac{1}{N^p} \right)
\]

(144)

or, using that $Q \Sigma \Sigma^* = 1$,

\[
\mathbb{E} \left(\chi e^{iu\delta} \right) \delta(r = s) = \frac{\sigma^2}{1 + \sigma^2 c_N \alpha} \mathbb{E} \left(Q_{r,s} \chi e^{iu\delta} \right) - \frac{i\sigma^2 u}{\sqrt{N}(1 + \sigma^2 c_N \alpha)} \mathbb{E} \left(\left(Q^* C \right)_{r,s} \chi e^{iu\delta} \right) - \frac{\sigma^2 c_N}{1 + \sigma^2 c_N \alpha} \mathbb{E} \left(\beta^0 \chi e^{iu\delta} \right) \delta(r = s) + O \left(\frac{1}{N^p} \right)
\]

(145)

In order to evaluate α, we take $u = 0$ and sum over $r = s$ in (145), and obtain that

\[
\alpha = \frac{1}{\sigma^2(1 - c_N)} + \frac{1}{1 - c_N} \mathbb{E} \left(\beta^0 \chi \right) + O \left(\frac{1}{N^p} \right)
\]

(146)

for each p. As a consequence, we also get that

\[
\mathbb{E} \left(Q_{r,s} \chi \right) = \frac{1}{\sigma^2(1 - c_N)} \delta(r = s) + O \left(\frac{1}{N^p} \right)
\]

(147)

We now use (145) in order to evaluate $\mathbb{E} \left(\left(Q_{r,s} \chi \right)^2 \chi e^{iu\delta} \right)$. For this, we first establish that the use of (130) and of the Poincaré-Nash inequality implies that

\[
\text{Var}(\beta) = \mathbb{E} \left(\left(\beta^0 \right)^2 \right) = O \left(\frac{1}{N^p} \right)
\]

(148)

To check this, we use the Poincaré-Nash inequality:

\[
\text{Var}(\beta) \leq \frac{\sigma^2}{N} \left(\sum_{i,j} \left| \frac{\partial \beta}{\partial \Sigma_{i,j}} \right|^2 + \left| \frac{\partial \beta}{\partial \Sigma_{i,j}} \right|^2 \right)
\]
We just evaluate the terms corresponding to the derivatives with respect to the terms \((\Sigma_{i,j})\)\(_{i=1,\ldots,M,j=1,\ldots,N}\). It is easily seen that
\[
\frac{\partial \beta}{\partial \Sigma_{i,j}} = - \frac{1}{M} (\epsilon_i^T Q^2 \xi_j) \chi + \frac{1}{M} \text{Tr}(Q) \frac{\partial \chi}{\partial \Sigma_{i,j}}.
\]
Therefore, it holds that
\[
\left| \frac{\partial \beta}{\partial \Sigma_{i,j}} \right|^2 \leq 2 \frac{1}{M^2} \xi_j^T Q^2 \epsilon_i^T Q^2 \xi_j \chi^2 + 2 \frac{1}{M} \text{Tr}(Q) \left| \frac{\partial \chi}{\partial \Sigma_{i,j}} \right|^2
\]
Using the identity \(Q \Sigma \Sigma^* = I\) as well that \(\frac{\partial \chi}{\partial \Sigma_{i,j}} = \mathbb{1}_A \frac{\partial \chi}{\partial \Sigma_{i,j}}\) (see (140)), we obtain that
\[
\frac{\sigma^2}{N} \sum_{i,j} \left(\mathbb{E} \left| \frac{\partial \beta}{\partial \Sigma_{i,j}} \right|^2 \right) \leq 2 \sigma^2 \frac{1}{MN} \mathbb{E} \left(\frac{1}{M} \text{Tr}(Q^3) \chi \right) + 2 \frac{\sigma^2}{N} \mathbb{E} \left(\frac{1}{M} \text{Tr}(Q) \mathbb{1}_A \sum_{i,j} \left| \frac{\partial \chi}{\partial \Sigma_{i,j}} \right|^2 \right)
\]
On the set \(A\), the eigenvalues of \(\Sigma \Sigma^*\) are located into \([\sigma^2(1-\sqrt{c})^2 - 2\epsilon, \sigma^2(1+\sqrt{c})^2 + 2\epsilon]\). Therefore, we get that
\[
\frac{1}{M} \text{Tr}(Q) \mathbb{1}_A \leq \frac{1}{\sigma^2(1-\sqrt{c})^2 - 2\epsilon}
\]
Using (131), we obtain that
\[
2 \frac{\sigma^2}{N} \mathbb{E} \left(\frac{1}{M} \text{Tr}(Q) \mathbb{1}_A \sum_{i,j} \left| \frac{\partial \chi}{\partial \Sigma_{i,j}} \right|^2 \right) = O \left(\frac{1}{N^p} \right)
\]
for each \(p\). Moreover, (130) implies that
\[
\frac{1}{M} \text{Tr}(Q^3) \chi \leq \frac{1}{\sigma^2(1-\sqrt{c})^2 - 2\epsilon}
\]
and that
\[
2 \sigma^2 \frac{1}{MN} \mathbb{E} \left(\frac{1}{M} \text{Tr}(Q^3) \chi \right) = O \left(\frac{1}{N^2} \right)
\]
This establishes (148).

Therefore, the Schwartz inequality leads to \(\mathbb{E} (\beta^o \chi e^{iu\delta}) = O(\frac{1}{N_p})\). Writing \(\mathbb{E} (Q_{r,s} \chi e^{iu\delta})\) as
\[
\mathbb{E} (Q_{r,s} \chi e^{iu\delta}) = \mathbb{E} (Q_{r,s} \chi e^{iu\delta}) + O \left(\frac{1}{N^p} \right) = \mathbb{E} (Q_{r,s} \chi e^{iu\delta}) + \mathbb{E} \left((Q_{r,s} \chi) e^{iu\delta} \right) + O \left(\frac{1}{N^p} \right) = \mathbb{E} (Q_{r,s} \chi) e^{iu\delta} + \mathbb{E} \left((Q_{r,s} \chi) e^{iu\delta} \right) + O \left(\frac{1}{N^p} \right)
\]
(146), (147) and (145) lead to
\[
\mathbb{E} \left((Q_{r,s} \chi) e^{iu\delta} \right) = \frac{iu}{\sqrt{N}} \mathbb{E} \left((Q^2 C)_{r,s} \chi e^{iu\delta} \right) + O \left(\frac{1}{N} \right)
\]
or equivalently to
\[
\mathbb{E} \left(\delta^o e^{iu\delta} \right) = iu \mathbb{E} \left(\text{Tr}(Q^2 C^2) \chi e^{iu\delta} \right) + O \left(\frac{1}{\sqrt{N}} \right)
\]
Using the Nash-Poincaré inequality, it can be checked that
\[
\text{Var} \left(\text{Tr}(Q^2 C^2) \chi \right) = O \left(\frac{1}{N} \right)
\]
Therefore, the Schwartz inequality leads to
\[
\mathbb{E} \left(\text{Tr}(Q^2 C^2) \chi e^{iu\delta} \right) = \mathbb{E} \left(\text{Tr}(Q^2 C^2) \chi \right) e^{iu\delta} + O \left(\frac{1}{\sqrt{N}} \right)
\]
and we get that
\[
\mathbb{E} \left(\delta^o e^{iu\delta} \right) = iu \mathbb{E} \left(\text{Tr}(Q^2 C^2) \chi \right) e^{iu\delta} + O \left(\frac{1}{\sqrt{N}} \right)
\]
Plugging \(\delta = \delta^o + \mathbb{E}(\delta)\) into (150) eventually leads to
\[
\mathbb{E} \left(\delta^o e^{iu\delta^o} \right) = iu \mathbb{E} \left(\text{Tr}(Q^2 C^2) \chi \right) e^{iu\delta^o} + O \left(\frac{1}{\sqrt{N}} \right)
\]
which is equivalent to (135). This, in turn, establishes Proposition 5.

We now complete the proof of (134). We integrate (135), and obtain that
\[
\psi^o(u) = \exp \left[- \frac{u^2}{2} \mathbb{E} \left(\text{Tr}(Q^2 C^2) \chi \right) \right] + O \left(\frac{1}{\sqrt{N}} \right)
\]
(see section V-C of [10] for more details). (82) implies that
\[
\text{Tr}(Q^2 C^2) \chi - \text{Tr}(Q^2 C^2) \to 0 \text{ a.s.}
\]
As \(\text{Tr}(Q^2 C^2) \chi - \text{Tr}(Q^2 C^2)\) also converges to 0 almost surely, we obtain that
\[
\text{Tr}(Q^2 C^2) \chi - \text{Tr}(C^2) \to 0 \text{ a.s.}
\]
As matrix \(Q^2 \chi\) is bounded and \(\sup_{N} \text{Tr}(C^2) < +\infty\), it is possible to use the Lebesgue dominated convergence theorem and to conclude that
\[
\mathbb{E} \left(\text{Tr}(Q^2 C^2) \chi \right) - \frac{\text{Tr}(C^2)}{\sigma^2(1-cN)^3} \to 0
\]
This proves (134).

It remains to establish (133). For this, we use (147), and obtain that
\[
\mathbb{E} \left(\text{Tr}(QC) \chi \right) - \frac{\text{Tr}(C)}{\sigma^2(1-cN)^3} = O \left(\frac{1}{N^p} \right)
\]
for each \(p\). This, of course, implies (133).

REFERENCES

