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SUMMARY

A methodology is proposed for the ef�cient solution of probabilistic nonconvex constrained optimization
problems with uncertain. Statistical properties of the underlying stochastic generator are characterized from
an initial statistical sample of function evaluations. A diffusion manifold over the initial set of data points
is �rst identi�ed and an associated basis computed. The joint probability density function of this initial set
is estimated using a kernel density model and an Itô stochastic differential equation constructed with this
model as its invariant measure. This ISDE is adapted to �uctuate around the manifold yielding additional
joint realizations of the uncertain parameters, design variables, and function values are obtained as solutions
of the ISDE. The expectations in the objective function and constraints are then accurately evaluated without
performing additional function evaluations. The methodology brings together novel ideas from manifold
learning and stochastic Hamiltonian dynamics to tackle an outstanding challenge in stochastic optimization.
Three examples are presented to highlight different aspects of the proposed methodology.
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KEY WORDS: Optimization under uncertainty, Probabilistic optimization, Nonconvex constrained
optimization, Probability distribution on manifolds, MCMC generator, Diffusion maps

1. INTRODUCTION

The ef�cient exploration of the set of design parameters is crucial to the optimization of expensive
functions. The development of mathematical and algorithmic constructs that promote learning with
successive optimization steps continues to be a key challenge in that regard. These methods have
progressed along many directions, including gradient-based learning, adapted to convex problems
[1, 2] and global search algorithms including stochastic, genetic, and evolutionary algorithms [3, 4].
Statistical learning methods, whereby a deterministic problem is construed as the representative
from a class of stochastic problems have also been developed with the bene�t of enabling statistical
learning [5]. The learning process is typically manifested in the form of a surrogate model from
which approximations of the expensive function can be readily evaluated [6, 7]. The resulting error
and its repercussions on the attained optimal solution distinguish the various algorithms [8]. The
global character of the surrogate is typically achieved either through a deterministic interpolation
process, or a stochastic model whereby biases induced by complex dependencies between model
outputs and design parameters are captured through statistical correlations over parameter space.
Although Gaussian process models are most commonly used in this context [9, 10], more robust
alternatives based on Bayesian optimization [5, 11, 12] have also proven useful.
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2 R GHANEM, C SOIZE

Recent research in the �eld of uncertainty quanti�cation [13, 14, 15, 16, 17] has underscored
the need for optimization algorithms with underlying stochastic operators and constraints. In these
situations, referred to as optimization under uncertainty (OUU), the challenge is magni�ed since for
each design point along the optimization path, a suf�ciently large statistical sample of function
outputs must be computed to evaluate the required expectations [8]. In essence, the function
output must be characterized as a stochastic process over the set of design variables in order to
facilitate such evaluations. For expensive function evaluations exhibiting uncertainty, computational
challenges remain currently signi�cant enough to require simplifying assumptions in the form
of surrogate models for the stochastic function itself or approximations to relevant probabilities
[18, 19, 20, 7].

The present paper addresses this challenge and proposes an algorithm that maintains the
number of function evaluations required for OUU at a level essentially equal to that of the
deterministic problem. This is achieved by �rst recognizing that the expensive function evaluator
generates samples that �uctuate around a manifold. An algorithm is then introduced to sample
the neighborhood of this manifold from the joint distribution of random parameters and design
variables. The underlying manifold is learned from a diffusion process on a data set [21, 22, 23]
synthesized by evaluating one sample of the expensive function for each of a handful of design
variables. A target multivariate probability density function is then constructed from this data
set using nonparametric kernel density estimation and smoothing. An Itô stochastic differential
equation, constructed with this distribution as its invariant measure, is then projected on the
manifold, ensuring that the ensuing solution remains in the neighborhood of that manifold. The
construction of this It̂o equation, associated with a stochastic nonlinear dissipative Hamiltonian
dynamical system, follows recent developments that accelerate the convergence of MCMC
algorithms [24] to their steady-state distribution (invariant measure). Such a generator belongs
to the class of Hamiltonian Monte Carlo methods [24, 25, 26], which is an MCMC algorithm
[27, 28, 2]. This paper extends recent work by the authors [29], where the above sampling on
manifolds was �rst introduced, to the case where the joint distribution of multiple vectors, is
constructed and used to evaluate the conditional expectations that de�ne objective functions and
constraints in an OUU problem. The paper is organized as follows. In Section 2, the probabilistic
nonconvex constrained optimization problem is de�ned. Section 3 deals with a methodology based
on the use of a nonparametric statistical estimation of the conditional mathematical expectation
and the algorithm for evaluating the objective function and the constraints function at any point in
the admissible set by using only the given dataset. The method for generating additional samples
without performing additional function evaluations and the algorithm are presented in Section 5.
Finally three applications are presented for validating the method proposed. Some details concerning
the algorithms are given in three Appendices.

Notations

A lower case letter such asx, � , or u, is a real deterministic variable.
A boldface lower case letter such asx, � , or u is a real deterministic vector.
An upper case letter such asX , H , or U, is a real random variable.
A boldface upper case letter,X, H, or U, is a real random vector.
A lower case letter between brackets such as[x], [� ], or [u]), is a real deterministic matrix.
A boldface upper case letter between brackets such as[X], [H], or [U], is a real random matrix.

(� ; T ; P): Probability triple.
N = f 0; 1; 2; : : :g: set of all the null and positive integers.
R: set of all the real numbers.
Rn : Euclidean vector space onR of dimensionn.
kxk: usual Euclidean norm inRn .
Mn;N : set of all the(n � N ) real matrices.
M� : set of all the square(� � � ) real matrices.
[x]kj : entry of matrix[x].
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STOCHASTIC OPTIMIZATION 3

[x]T : transpose of matrix[x].
k[x]kF : Frobenius norm of matrix[x] such thatkxk2

F = trf [x]T [x]g.
[I � ]: identity matrix inM� .
� kk 0: Kronecker's symbol such that� kk 0 = 0 if k 6= k0 and= 1 if k = k0.
1A (a) is the indicator function of setA : 1A (a) = 1 if a 2 A and= 0 if a =2 A .
E : Mathematical expectation.
pdf: probability density function.
ISDE: Itô Stochastic Differential Equation.
MCMC: Markov Chain Monte Carlo.

2. PROBLEM SET-UP

2.1. De�nition of the optimization problem to be solved and objective of the paper

Let mw � 1 and mc � 1 be two given integers. Letw = ( w1; : : : ; wm w ) be a vector of design
parameters that belongs to an admissible setCw, which is a subset ofRm w . We consider the following
probabilistic nonconvex constrained optimization problem with nonlinear constraints,

wopt = arg min
w2Cw

c(w)< 0

f (w) ; (1)

in whichw 7! f (w) is the objective function de�ned onCw, with values inR, written as

f (w) = E fQ (w)g ; (2)

wherew 7! c(w) = ( c1(w); : : : ; cm c (w)) is the constraints function de�ned onCw, with values in
Rm c , such that

c(w) = E f B(w)g ; (3)

and whereE is the mathematical expectation. In equations (2) and (3),fQ (w); w 2 Cwg and
f B(w) = ( B1(w); : : : ; Bm c (w)) ; w 2 Cwg are dependent second-order stochastic processes de�ned
on a probability space(� ; T ; P), indexed by Cw, with values in R and Rm c respectively.
Consequently, for allw �xed in Cw, the random variablesQ(w) and B(w) are the mappings
� 7! Q (w; � ) and� 7! f B(w; � ), from � into R andRm c respectively, which are such that

EfQ (w)2g =
Z

�
Q(w; � )2 dP(� ) < + 1 ;

E fk B(w)k2g =
Z

�
kB(w; � )k2 dP(� ) < + 1 :

It is assumed that, forw given inCw, the valuesf (w) andc(w) of the cost and constraints functions
are calculated using a computational model with uncertainties (stochastic computational model),
and that the probabilistic optimization problem de�ned by equation (1) has a unique solutionwopt in
Cw.

This paper proposes a probabilistic formulation that permits to solve the above probabilistic
nonconvex constrained optimization problem using a small number of evaluations of the objective
and constraints functions, thus limiting the calls to the expensive stochastic computational model.

Remarks.

(i) It should be noted that the constraints functionc de�ned by equation (3) is quite general. For
instance, let us consider thek-th constraint is speci�ed in the form,

ProbafGk (w) � � g > P c ;
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4 R GHANEM, C SOIZE

in which fGk (w); w 2 Cwg is a second-order real-valued stochastic process of interest, where� is a
given real number, and wherePc is a given level of probability. Consequently,ck (w) = E fB k (w)g,
with

Bk (w) = Pc � 1[�; + 1 [(Gk (w)) :

(ii) A typical procedure for calculating the mathematical expectations that appear on the right-hand
sides of equations (2) and (3) is as follows. For everyw given inCw, the stochastic computational
model evaluatesN 0

s independent samples (or realizations, or draws),Q(w; � ` 0) and B(w; � ` 0) of
random variablesQ(w) andB(w), for � ` 0 in � with `0 = 1 ; : : : ; N 0

s. For N 0
s suf�ciently large, an

accurate estimation off (w) andc(w) can be computed according to,

EfQ (w)g '
1

N 0
s

N 0
sX

` 0=1

Q(w; � ` 0) ; E f B(w)g '
1

N 0
s

N 0
sX

` 0=1

B(w; � ` 0) : (4)

If the optimization algorithm requiresNs evaluationsf (w` ) andc(w` ) of f andc for ` = 1 ; : : : ; Ns,
then the stochastic computational model must be calledN 0

s � Ns times, which could be prohibitive
for expensive function calls. The probabilistic approach proposed in this paper will drastically
reduce the number of required calls to the stochastic computational model to a valueN of similar
magnitude toNs.

2.2. De�nition of the dataset generated by the optimization algorithm with a �xed number of
function evaluations and de�nition of the associated random variables

In this section, we �rst de�ne the dataset of a �xed numberN of data points denoted byx` =
(w` ; q` ; b` ) for ` = 1 ; : : : ; N that are generated by the optimization algorithm and which requireN
calls of the stochastic computational model. We then construct the random variablesW, Q, B, and
X = ( W; Q; B) that admits theN data pointsx` = ( w` ; q` ; b` ) for ` = 1 ; : : : ; N asN independent
samples. The probabilistic properties of these random variables depend onN , but this dependence
is dropped, with any loss of generality, for notational simplicity.

De�nition of the dataset. For anyw �xed in Cw and for any� ` �xed in � , let Q(w; � ` ) andB(w; � ` )
be samples of the dependent random variablesQ(w) and B(w) computed using the stochastic
computational model. Let us now consider a �xed numberN of valuesw1; : : : ; wN in Cw of vector
w. These values can correspond either to a training procedure applied tow or are some values of
w generated by an optimization algorithm as it explores the feasible domain. Letq1; : : : ; qN be real
numbers inR and letb1; : : : ; bN be real vectors inRm c such that

q` = Q(w` ; � ` ) 2 R ; b` = B(w` ; � ` ) 2 Rm c ; ` = 1 ; : : : ; N : (5)

Let us now introduce theN data pointsx1; : : : ; xN in Rn such that

x` = ( w` ; q` ; b` ) 2 Rn = Rm w � R � Rm c ; ` = 1 ; : : : ; N ; (6)

in which
n = mw + 1 + mc :

De�nition of the random variables associated with the dataset. We now de�ne the random variables
W, Q, B, and X. Let W = ( W1; : : : ; Wm w ), Q, and B = ( B1; : : : ; Bm c ) be the second-order
random variables de�ned on(� ; T ; P) with values inRm w , R, andRm c , statistically dependent,
for which the joint probability distribution onCw � R � Rm c is unknown but for which a set ofN
independent samples is given and is de�ned as follows. For` = 1 ; : : : ; N , w` = ( w`

1; : : : ; w`
m w

), q` ,
and b` = ( b̀1; : : : ; b̀m c

) are N given independent samples ofW, Q, and B in which w` are the
given vectors inRm w introduced above, and whereq` and b` are de�ned by equation (5). Let
X = ( X 1; : : : ; X n ) be the second-order random variable de�ned on(� ; T ; P) with values inRn
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STOCHASTIC OPTIMIZATION 5

with n = mw + 1 + mc, that is written as

X = ( W; Q; B) : (7)

The probability distributionPX(dx) will be assumed to be represented by a pdfpX(x) with respect to
the Lebesgue measuredx onRn . While pX(x) is unknown,x1; : : : ; xN in Rn de�ned by equation (6)
areN statistically independent samples ofX, which are represented by the matrix,

[xd] = [ x1 : : : xN ] 2 Mn;N :

Remarks.

(i) The stochastic computational model de�nes a mapping between parameterw and the random
variablesQ(w) andB(w). The unknown pdfpX is thus concentrated in a neighborhood of a subset
Sn of Rn associated with this mapping. This neighborhood of subsetSn will be discovered by using
the method developed in [29] and summarized in Section 4.

(ii) For a �xed numberN of function evaluations, the available dataset is thus made up of the
deterministic vectorsx1; : : : ; xN in Rn . Consequently, forw` given in Rm w , only one realization
(q` ; b` ) = ( Q(w` ; � ` ); B(w` ; � ` )) of random variable(Q(w` ); B(w` )) with values inR � Rm c is
calculated by using the stochastic computational model. In accordance to Remark (ii) in Section 2.1,
for a given valuew` of w, N 0

s � 1 samplesf (Q(w` ; � ` 0
); B(w` ; � ` 0

); `0 = 1 ; : : : ; N 0
sg are not

computed by callingN 0
s times the stochastic computational model.

(iii) For anyw �xed in Cw, the probability distribution of the random vector(Q(w); B(w)) with
values inR � Rm w is not explicitly known.

3. METHODOLOGY FOR EVALUATING THE OBJECTIVE FUNCTION AND THE
CONSTRAINTS FUNCTION AT ANY POINTw0 IN THE ADMISSIBLE SET USING THE

DATASET

The available information is only constituted of the �xed numberN of data pointsx` = ( w` ; q` ; b` )
for ` = 1 ; : : : ; N , which areN independent samples of the constructed random variableX =
(W; Q; B) de�ned by equation (7) (see Section 2.2). The problem consists in calculating, for any
pointw0 given inCw, an estimate off (w0) de�ned by equation (2) and an estimate ofc(w0) de�ned
by equation (3). It can easily be seen that, ifN was suf�ciently large, then these estimates would be
written as

f (w0) ' E f Q j W = w0g; (8)

ck (w0) ' E f Bk j W = w0g ; k = 1 ; : : : ; mc ; (9)

in which Ef Q j W = w0g andEf Bk j W = w0g are the conditional mathematical expectations of
random variablesQ and Bk given W = w0 in Cw. We then have to estimate these conditional
mathematical expectations by using a data smoothing technique based on the available information
de�ned by the dataset. For that, we begin by introducing a generic problem that we solve using
nonparametric statistical methods.

3.1. De�nition of a generic problem related to the estimation of a conditional expectation from a
given dataset

Let (W; R) be the second-order random variable de�ned on(� ; T ; P) with values inRm w � R in
which W is the second-orderRm w -valued random variable de�ned in Section 2.2 and whereR is
a second-orderR-valued random variable that depends onW (R will refer to eitherQ or Bk ). The
dataset is made up of� sim > 1 given independent samples of(W; R),

(w` ; r ` ) 2 Rm w � R ; ` = 1 ; : : : ; � sim : (10)
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6 R GHANEM, C SOIZE

The generic problem consists in estimatingEf R j W = w0g that is the conditional mathematical
expectation of the real-valued random variableR givenW = w0 in Cw, using only the� sim samples
f (w` ; r ` ); ` = 1 ; : : : ; � simg de�ned by equation (10).

Remarks.

(i) Taking� sim = N , R = Q, andr ` = q` for ` = 1 ; : : : ; N , and ifN is suf�ciently large, an estimate
of the objective function at pointw0 is given by equation (8). Similarly, fork = 1 ; : : : ; mc, by taking
� sim = N , R = Bk , andr ` = b̀k for ` = 1 ; : : : ; N , and if N is suf�ciently large, an estimate of the
componentck (w0) of constraints functionc at pointw0 is given by equation (9).

(ii) As we have explained in Remark (ii) of Section 2.2, the available information is only made up
of the samples(w` ; r ` ) for ` = 1 ; : : : ; � sim. Consequently, for anyw0 �xed in Cw, the conditional
mathematical expectationEf R j W = w0g cannot be estimated using classical statistical method
because, for givenw` , only one sampler ` is given, and these latter require a large number of
samplesr `; 1; : : : ; r `;N 0

of R. In order to overcome this dif�culty, a data smoothing technique based
on the use of the Gaussian kernel-density estimation method is used for estimating the conditional
mathematical expectationEf R j W = w0g.

3.2. Nonparametric statistical estimation of the conditional mathematical expectation

In order to apply nonparametric statistics for estimating the conditional mathematical expectation
Ef R j W = w0g on the basis of the dataset that is made up of the� sim independent realizations
f (w` ; r ` ); ` = 1 ; : : : ; � simg, it is necessary to �rst normalize the dataset in order to obtain well-
conditioned numerical calculations.

Normalizing the dataset. For j = 1 ; : : : ; mw , let wj and� j be the empirical estimates of the mean
value and of the standard deviation of random variableWj constructed using the� sim independent
samplesf w`

j ; ` = 1 ; : : : ; � simg. Similarly, let r and � be the empirical estimates of the mean value
and of the standard deviation of random variableR constructed with the� sim independent samples
f r ` ; ` = 1 ; : : : ; � simg. We then introduce the normalized random variablesfWj for j = 1 ; : : : ; mw and
eR de�ned by

fWj = ( Wj � wj )=� j ; eR = ( R � r )=� ; (11)

for which the� sim independent samples are given by

ew`
j = ( w`

j � wj )=� j ; er ` = ( r ` � r )=� ; ` = 1 ; : : : ; � sim : (12)

For anyw0 = ( w0
1 ; : : : ; w0

m w
) �xed in Cw, we then have,

Ef R j W = w0g = r + � E f eR j fW = ew0g; (13)

in which fW = ( fW1; : : : ; fWm w ) and whereew0 = ( ew0
1 ; : : : ; ew0

m w
) with

ew0
j = ( w0

j � wj )=� j ; j = 1 ; : : : ; mw : (14)

Introducing the joint pdfpeW; eR ( ew; er ) with respect todew der of random variablesfW and eR and the pdf

peW( ew) =
R

R peW; eR ( ew; er ) der with respect todew of random variablefW, the conditional mathematical

expectationEf eR j fW = ew0g can be written as

Ef eR j fW = ew0g =
1

peW( ew0)

Z

R
er p eW; eR ( ew0; er ) der : (15)

Nonparametric statistical estimation of the conditional mathematical expectationEf eR j eW = ew0g.
Each one of the dependent random variablesfW1; : : : ; fWm w and eR, has a zero empirical mean
value and a unit empirical standard deviation (calculated using the� sim samples( ew` ; er ` )). The
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STOCHASTIC OPTIMIZATION 7

nonparametric statistical estimation of the joint pdfpeW; eR ( ew0; er ) at point( ew0; er ), constructed using
the Gaussian kernel-density estimation method [30, 31] and using the� sim independent realizations
f ( ew` ; er ` ); ` = 1 ; : : : ; � simg, is written, for� sim suf�ciently large, as

peW; eR ( ew0; er ) '
1

� sim

� simX

` =1

1

(
p

2� s )m w +1
exp

�
�

1
2s2 fk ew` � ew0k2 + ( er ` � er )2g

�
; (16)

in which s is the bandwidth parameter that can be chosen as the usual multidimensional optimal
Silverman bandwidth (in taking into account that the empirical estimation of the standard deviation
of each component is unity),

s =
�

4
� sim(2 + mw + 1)

� 1=(4+ m w +1)

: (17)

From equation (16), it can be deduced thatpeW( ew0) =
R

R peW; eR ( ew0; er ) der can be estimated, for� sim

suf�ciently large, by

peW( ew0) '
1

� sim

� simX

` =1

1

(
p

2� s )m w
exp

�
�

1
2s2 kew` � ew0k2

�
: (18)

Using equations (15), (16), and (18), it can be deduced that, for� sim suf�ciently large, an estimate
of Ef eR j fW = ew0g is given by

Ef eR j fW = ew0g '

P � sim
` =1 er ` exp

n
� 1

2s2 kew` � ew0k2
o

P � sim
` =1 exp

n
� 1

2s2 kew` � ew0k2
o : (19)

3.3. Algorithm for estimating the objective function and the constraints function using only the
givenN data points

The proposed algorithm can be used for estimating the valuef (wi
g) of the objective function and

the valuec(wi
g) of the constraints function, in� g given pointswi

g in Cw belonging to the subset
Cwg = f wi

g = ( wi
g;1; wi

g;2); i = 1 ; : : : ; � gg � C w using only theN data points represented by matrix
[xd] 2 Mn;N .

Data allowing the algorithm to be initialized.

1. Givenmw , mc, N .

2. Deducingn = mw + 1 + mc.

3. Given[xd] = [ x1 : : : xN ] 2 Mn;N such that for̀ = 1 ; : : : ; N :
x` = ( w` ; q` ; b` ) 2 Rn with w` 2 Rm w ; q` 2 R; b` 2 Rm c .

Steps of the algorithm for estimating the objective function and the constraints function inCwg using
only the givenN data points.

1. Computing

(a) q = 1
N

P N
` =1 q` and� 2

q = 1
N

P N
` =1 (q` � q)2.

(b) bk = 1
N

P N
` =1 b̀k and� 2

bk
= 1

N

P N
` =1 (b̀k � bk )2, k = 1 ; : : : ; mc.

2. Applying equation (11) for normalizing the samples, which yields:

(a) N samples( ew` ; eq` ) 2 Rm w � R for ` = 1 ; : : : ; N .

(b) N samples( ew` ;eb̀k ) 2 Rm w � R for ` = 1 ; : : : ; N and fork = 1 ; : : : ; mc.
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3. Computings using equation (17) with� sim = N .

4. For each pointwi
g in Cwg � C w, computingf (wi

g) andc(wi
g) as follows.

(a) Computing the normalizationewi
g of wi

g using equation (14) withew0 = ewi
g andw0 = wi

g.

(b) Computingè ( ewi
g) = exp f� 1

2s2 kew` � ewi
gk2g for ` = 1 ; : : : ; N .

(c) Computing
 ( ewi
g) =

P N
` =1 è ( ewi

g).

(d) Computing the estimate off (wi
g) using equations (8), (13), and (19):

f (wi
g) ' q +

� q


 ( ewi
g)

NX

` =1

eq` e` ( ewi
g) :

(e) Fork = 1 ; : : : ; mc, computing the estimate ofck (wi
g) by using equations (9), (13), and

(19):

ck (wi
g) ' bk +

� bk


 ( ewi
g)

NX

` =1

eb`
k e` ( ewi

g) :

End of the algorithm.

4. METHOD FOR GENERATING ADDITIONAL SAMPLES WITHOUT PERFORMING
ADDITIONAL FUNCTION EVALUATIONS

As explained in Remark (i) of Section 2.2, the unknown pdfpX of random variableX de�ned by
equation (7) is concentrated in the neighborhood of an unknown subsetSn of Rn and the numberN
of its samples, which are represented by matrix[xd] 2 Mn;N , is �xed and is relatively small so as to
limit the number of calls to the stochastic computational model. With such a small value ofN , if we
choose� sim = N for estimating the conditional mathematical expectationEf eR j fW = ew0g de�ned
by equation (19), the estimate may not be suf�ciently accurate. As we have explained, the idea is to
generate additional samples forX in order to use equation (19) with� sim � N for obtaining a good
estimation of the conditional mathematical expectations, without performing any additional function
evaluations with the stochastic computational model. For doing that, we need to construct the pdf
pX of X, to discover the subsetSn , and to construct the associated generator of additional samples,
by using only the dataset[xd] 2 Mn;N . A solution to this non-trivial problem is given in applying
the recent methodology presented in [29], which is brie�y summarized in this section. It should
be noted that it was shown in [29] that a direct sampling of a random vector obtained by using
a nonparametric statistical estimation of its pdf and a MCMC method for generating additional
samples, yields samples that are not concentrated around the subset of interest, but are scattered
throughout the ambient Euclidean space. This was indeed the motivation for the method proposed
in [29], which is based on the use of the diffusion maps and which has been developed in order to
preserve the concentration of the probability measure around the manifold.

4.1. Introducing the random matrix[X] associated with random vectorX and normalization of[X]
in a random matrix[H]

Let X be theRn -valued second-order random vector de�ned by equation (7) for which the dataset
[xd] 2 Mn;N , de�ned in Section 2.2, is assumed to be scaled. If it is not the case, a scaling must be
performed as explained in [29]. Let[X] = [ X1; : : : ; XN ] be the random matrix with values inMn;N ,
whose columns areN independent copies of random vectorX. The normalization of random matrix
[X] is attained with random matrix[H] = [ H1; : : : ; HN ] with values inM�;N , whose columns are
N independent copies of a random vectorH, with � � n, obtained by using principal component
analysis resulting in,

[X] = [ x] + [ ' ] [� ]1=2 [H] ; (20)
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STOCHASTIC OPTIMIZATION 9

in which [� ] is the(� � � ) diagonal matrix of the� positive eigenvalues of the empirical estimate
[cov] 2 Mn of the covariance matrix ofX (computed using equation (55)), where[' ] is the(n � � )
matrix of the associated eigenvectors such[' ]T [' ] = [ I � ], and where[x] is the matrix inMn;N with
identical columns, each equal to the empirical estimatex 2 Rn of the mean value of random vector
X (computed using equation (55)). The sample[� d] = [ � 1 : : : � N ] 2 M�;N of [H] (associated with
the sample[xd] of [X]) is computed by

[� d] = [ � ]� 1=2[' ]T ([xd] � [x]) : (21)

Consequently, the empirical estimates of the mean value and of the covariance matrix of random
vectorH are exactly0� and[I � ], respectively. Such a normalization is required for obtaining well-
conditioned numerical calculations. In low dimension (n not too big), no statistical reduction is
performeda priori, and if all the eigenvalues are positive, then� = n; if some eigenvalues are zero,
they must be eliminated and then� < n . In high dimension (n is big), a statistical reduction can be
done as usual and therefore� < n in such a case.

4.2. Reduced-order representation of random matrix[H] by projection on a subspace spanned by a
diffusion-maps basis

As previously explained, the introduction of a reduced-order representation of random matrix[H],
which is constructed by projection on a diffusion-maps basis, allows for preserving the concentration
of the probability measure of random matrix[H]. Let k" (� ; � 0) = exp( � 1

4" k� � � 0k2) be the kernel
de�ned onR� � R� , depending on a real smoothing parameter" > 0. This kernel can be replaced
by another one satisfying the symmetry, the positivity preserving, and the positive semi-de�niteness
properties. Form � N , let [g] = [ g1 : : : gm ] 2 MN;m be the ”diffusion-maps basis” associated with
kernelk" , which is de�ned and constructed in Appendix A (form = N , [g] is an algebraic basis
of RN ). For � = 1 ; : : : ; m, the diffusion-maps vectorg� 2 RN is de�ned by equation (50). The
subspace ofRN spanned by the vector basisf g� g� allows for characterizing the local geometry
structure of the dataset concentrated in the neighborhood of a subset ofRN . The reduced-order
representation is obtained in projecting each column of theMN;� -valued random matrix[H]T on the
subspace ofRN , spanned byf g1 : : : gm g. Introducing the random matrix[Z] with values inM�;m ,
the following reduced-order representation of[H] is de�ned,

[H] = [ Z] [g]T : (22)

As the matrix[g]T [g] 2 Mm is invertible, equation (22) yields the least squares approximation toZ
in the form,

[Z] = [ H] [a] ; [a] = [ g] ([g]T [g]) � 1 2 MN;m : (23)

In particular, matrix[� d] 2 M�;N can be written as[� d] = [ zd] [g]T in which the matrix[zd] 2 M�;m

is given by
[zd] = [ � d] [a] 2 M�;m : (24)

Consequently, the following representation of random matrix[X] as function of random matrix[Z]
is deduced from equations (20) and (23),

[X] = [ x] + [ ' ] [� ]1=2 [Z] [g]T : (25)

The dimensionm of the reduced-order representation is estimated by analyzing the convergence of
the representation with respect tom. For a given value of integer� related to the analysis scale of
the local geometric structure of the dataset (see equation (50) in Appendix A) and for a given value
of the smoothing parameter" > 0, the decay in the graph� 7! � � of the positive eigenvalues of
the transition matrix[P] (see Appendix A) yields a criterion for choosing the value ofm that allows
the local geometric structure of the dataset represented by[� d] to be discovered. Nevertheless, this
criterion may not be suf�cient, and theL 2-convergence may need to be enforced by increasing, as
required, the value ofm. However, if the value ofm is chosen too large, the localization of the
geometric structure of the dataset is lost. Consequently, a compromise must be reached between a
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10 R GHANEM, C SOIZE

very small value ofm identi�ed by the decay of the eigenvalues and a larger value ofm necessary
for obtaining a reasonable mean-square convergence. A criterion for estimating an optimal value of
m is given in Appendix B.

4.3. Generation of additional samples[x1
ar]; : : : ; [xn MC

ar ] of random matrix[X]

The generation of additional samples[z1
ar]; : : : ; [zn MC

ar ] of random matrix[Z] is carried out by using
an unusual MCMC method which is constructed as the projection on the diffusion-maps basis of
an ISDE related to a dissipative Hamiltonian dynamical system for which the invariant measure is
the pdf of random matrix[H] constructed with the Gaussian kernel-density estimation method. This
method preserves the concentration of the probability measure and avoids the scatter phenomenon
described above. Form, " , and � �xed, we introduce the Markov stochastic processf ([Z (r )];
[Y (r )]) ; r 2 R+ g, de�ned on(� ; T ; P), indexed byR+ = [0 ; + 1 [, with values inM�;m � M�;m ,
which is the unique second-order stationary (for the shift semi-group onR+ ) and ergodic diffusion
stochastic process, of the following reduced-order ISDE, forr > 0,

d[Z (r )] = [ Y (r )] dr ; (26)

d[Y (r )] = [ L ([Z (r )])] dr �
1
2

f 0 [Y (r )] dr +
p

f 0 [dW (r )] ; (27)

with the initial condition

[Z (0)] = [ Hd] [a] ; [Y (0)] = [ N ] [a] a:s ; (28)

in which the random matrices[L ([Z (r )])] and[dW (r )] with values inM�;m are such that

[L ([Z (r )])] = [ L ([Z (r )] [g]T )] [a] ; [dW (r )] = [ dW(r )] [a] : (29)

(i) For all [u] = [ u1 : : : uN ] in M�;N with u` = ( u`
1; : : : ; u`

� ) in R� , the matrix[L ([u])] in M�;N is
de�ned, for allk = 1 ; : : : ; � and for all` = 1 ; : : : ; N , by

[L ([u])]k` =
1

p(u` )
f r u` p(u` )gk ; (30)

p(u` ) =
1
N

NX

j =1

expf�
1

2bs2
�

k
bs�

s�
� j � u` k2g; (31)

r u` p(u` ) =
1
bs2

�

1
N

NX

j =1

(
bs�

s�
� j � u` ) expf�

1
2bs2

�
k

bs�

s�
� j � u` k2g; (32)

s� =
�

4
N (2 + � )

� 1=( � +4)

; bs� =
s�q

s2
� + N � 1

N

: (33)

(ii) The stochastic processf [dW(r )]; r � 0g with values in M�;N is such that [dW(r )] =
[dW1(r ) : : : dWN (r )] in which the columnsW1; : : : ; WN are N independent copies of the
normalized Wiener processW de�ned on (� ; T ; P), indexed byR+ with values in R� . The
matrix-valued autocorrelation function[RW(r; r 0)] = E f W(r ) W(r 0)T g of W is then written as
[RW(r; r 0)] = min( r; r 0) [I � ].

(iii) The probability distribution of the random matrix[Hd] with values inM�;N is identical to the
probability distribution of random matrix[H]. A known sample of[Hd] is matrix [� d] de�ned by
equation (21). The random matrix[N ] with values inM�;N is written as[N ] = [ N 1 : : : N N ] in
which the columnsN 1; : : : ; N N areN independent copies of the normalized Gaussian vectorN
with values inR� (this means thatEf N g = 0 andEf N N T g = [ I � ]). The random matrices[Hd]
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STOCHASTIC OPTIMIZATION 11

and[N ], and the normalized Wiener processf W(r ); r � 0g are assumed to be independent.

(iv) The free parameterf 0 > 0 allows the dissipation term of the nonlinear second-order dynamical
system (dissipative Hamiltonian system) to be controlled.

(v) The algorithm for solving equations (26) to (28) is detailed in [29] and is summarized in
Appendix C.

The generation of additional samples[x1
ar]; : : : ; [xn MC

ar ] of random matrix[X] is then performed
as follows. For� �xed in � , the deterministic quantitiesf [W (r ; � )]; r � 0g, [Z (0; � )] = [ � d] [a],
and [Y (0; � )] = [ N (� )] [a] are independent samples of the stochastic processf [W (r )]; r � 0g, of
the random matrix[Z (0)], and of the random matrix[Y (0)]. Let f ([Z (r ; � )]; [Y (r ; � )]) ; r 2 R+ g
be the corresponding sample of the unique stationary diffusion processf ([Z (r )]; [Y (r )]) ; r 2 R+ g
of the problem de�ned by equations (26) to (28)). The reduced-order ISDE is solved on the �nite
intervalR = [0 ; M � r ], in which � r is the sampling step of the continuous index parameterr used
in the integration scheme (see Appendix C). The integerM is written asM = M 0 � nMC, in which
M 0 andnMC are positive integers greater or equal to1. Introducing� = M 0 � r , thenMC additional
samples[z1

ar]; : : : ; [zn MC
ar ] of random matrix[Z] and the corresponding samples[� 1

ar]; : : : ; [� n MC
ar ] of

random matrix[H] are given by

[z`
ar] = [ Z (` � � ; � )] ; [� `

ar] = [ z`
ar] [g]T ; ` = 1 ; : : : ; nMC : (34)

� If M 0 = 1 , then � = � r and thenMC additional samples are dependent, but the ergodic
property of f [Z (r )]; r 2 R+ g can be invoked for ensuring the convergence of statistics
constructed using[z1

ar]; : : : ; [zn MC
ar ] for random matrix[Z] .

� If integerM 0 is chosen suf�ciently large (such that� is much larger than the relaxation time
of the dissipative Hamiltonian dynamical system), then[z1

ar]; : : : ; [zn MC
ar ] can approximately be

considered as independent samples of random matrix[Z].

Using equation (25), thenMC additional samples[x1
ar]; : : : ; [xn MC

ar ] of random matrix[X] can be
generated according to the following expression,

[x `
ar] = [ x] + [ ' ] [� ]1=2 [z`

ar] [g]T ; ` = 1 ; : : : nMC : (35)

5. PROPOSED ALGORITHM FOR SOLVING THE PROBABILISTIC NONCONVEX
CONSTRAINED OPTIMIZATION PROBLEM WITH A FIXED NUMBER OF FUNCTION

EVALUATIONS

The proposed algorithm used for solving the probabilistic nonconvex constrained optimization
problem de�ned by equations (1) to (3) with a �xed numberN of function evaluations is based
on the following procedure. Instead of computing a large number of samplesx` , each one requiring
to call the stochastic computational model a large number of times, the numberN of computed
samplesx` by calling the stochastic computational model is restricted to a relatively small value
N . In this condition,N is not suf�ciently large for obtaining a good estimate of the objective
function and of the constraints function using the algorithm detailed in Section 3.3. The method
proposed herein consists in enriching theN samples that are represented by the columns of
matrix [xd] = [ x1 : : : xN ] in Mn;N , with nMC additional samples[x1

ar]; : : : ; [xn MC
ar ] that are computed

without calling the stochastic computational model but that are computed by using the generator of
samples presented in Section 4. Using these� sim = nMC � N additional samples, a good estimate of
Ef RjW = w0g can be obtained from equations (13) and (19). The algorithm is then as follows:

Data allowing the algorithm to be initialized.

1. Givenmw , mc, N .

2. Deducingn = mw + 1 + mc.
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3. Given[xd] = [ x1 : : : xN ] 2 Mn;N such that for̀ = 1 ; : : : ; N :
x` = ( w` ; q` ; b` ) 2 Rn with w` 2 Rm w ; q` 2 R; b` 2 Rm c .

4. If necessary, scaling the data set represented by matrix[xd] in Mn;N .

Steps of the algorithm.

1. Computing the meanx 2 Rn and the covariance matrix[cov] 2 Mn with equation (55).

2. Constructing matrix[x] = [ x : : : x] 2 Mn;N (theN columns are the same).

3. Solving the eigenvalue problem for the covariance matrix[cov]: computing� � n, matrices
[� ] and[' ] (see equation (20)).

4. For" �xed, computing the matrix[g] in MN;m constituted of the diffusion-maps basis by using
the algorithm detailed in Appendix A, for which the value ofm < N is selected as explained
in Appendix B.

5. Calculating the matrix[a] in MN;m de�ned by equation (23).

6. For givenf 0, � r , M 0, and nMC, computingnMC additional samples[x `
ar] 2 Mn;N for ` =

1; : : : ; nMC of random matrix[X] by using the algorithm detailed in Section 4.3.

7. Extracting from the� sim = nMC � N columns of thenMC matrices[x1
ar]; : : : ; [xn MC

ar ]:

(a) � sim samples(w`
ar; q`

ar) 2 Rm w � R for ` = 1 ; : : : ; � sim.

(b) � sim samples(w`
ar; b`

ar) 2 Rm w � Rm c for ` = 1 ; : : : ; � sim.

8. Computing

(a) qar = 1
� sim

P � sim
` =1 q`

ar and� 2
qar

= 1
� sim

P � sim
` =1 (q`

ar � qar)
2.

(b) bar;k = 1
� sim

P � sim
` =1 b̀ar;k and� 2

bar;k
= 1

� sim

P � sim
` =1 (b̀ar;k � bar;k )2, k = 1 ; : : : ; mc.

9. Applying equation (11) for normalizing the samples, which yields:

(a) � sim samples( ew`
ar; eq`

ar) 2 Rm w � R for ` = 1 ; : : : ; � sim.

(b) � sim samples( ew`
ar;eb̀ar;k ) 2 Rm w � R for ` = 1 ; : : : ; � sim and fork = 1 ; : : : ; mc.

10. Computings by using equation (17).

11. For each pointw0 in Cw proposed by the optimization algorithm, computingf (w0) andc(w0)
by replacing the function evaluation with the stochastic computational model by the following
procedure that does not use any function evaluation with the stochastic computational model:

(a) Computing the normalizationew0 of w0 by using equation (14).

(b) Computingè ( ew0) = exp f� 1
2s2 kew`

ar � ew0k2g for ` = 1 ; : : : ; � sim.

(c) Computing
 ( ew0) =
P � sim

` =1 è ( ew0).

(d) Computing the estimate off (w0) by using equations (8), (13), and (19):

f (w0) ' qar +
� qar


 ( ew0)

� simX

` =1

eq`
ar e

` ( ew0) :

(e) Fork = 1 ; : : : ; mc, computing the estimate ofck (w0) by using equations (9), (13), and
(19):

ck (w0) ' bar;k +
� bar;k


 ( ew0)

� simX

` =1

eb`
ar;k e` ( ew0) :

End of the algorithm.
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6. APPLICATIONS

6.1. Application 1

De�nition of the probabilistic nonconvex constrained optimization problem. The admissible set
Cw � Rm w with mw = 2 and the stochastic processfQ (w); w 2 Cwg with values in R of the
optimization problem (see equations (1) to (3)) are de�ned by

Cw = f w = ( w1; w2) 2 [0; 1:15]2 � R2g;

and

Q(w) = 0 :11� 1(� 2 + 0 :05w1)( � 2 + 0 :05w2)
�

sin(r )
r 0:10 + 0 :08� 3

�
; (36)

in which

w1 = 20 w1 � 10 ; w2 = 20 w2 � 10 ; r =
q

w2
1 + 0 :9w2

2 + 0 :01:

The components of theRm c -valued stochastic processf B(w); w 2 Cwg with mc = 4 are de�ned as,

B1(w) = w1 + w2 � 1:24 + � 1 ; (37)

B2(w) = w2 � w1 + � 2 ; (38)

B3(w) = w1 � w2 � 0:60 + � 3 ; (39)

B4(w) = � w1 � w2 + 0 :4 + � 4 : (40)

In the previous equations, theR4-valued random variable� = ( � 1; � 2; � 3; � 4) on (� ; T ; P) is
de�ned by

� 1 = 1 + 2 � 1� 2(� 1 � 0:5) ;

� 2 = 1 + � 2� 1 ;

� 3 = 1 + � 3� 2 ;

� 4 = � 4(� 1 � 0:5) ;

in which � 1 and� 2 are two independent uniform random variables on[0 ; 1] de�ned on(� ; T ; P),
and where� 1 � 0, � 2 � 0, � 3 � 0, and � 4 � 0 are the hyperparameters that allow the level of
uncertainties to be controlled, and that have been �xed for the numerical application to the following
values� 1 = � 2 = � 3 = 0 :2 and� 4 = 0 :05.

Construction of the optimal solution of reference, wopt
r . The admissible setCw is meshed with

a regular cartesian grid of60� 60 nodes that de�ne� g = 3 600 points wi
g = ( wi

g;1; wi
g;2) with

i = 1 ; : : : ; � g in Cw. For every pointw = wi
g of the grid, f (w) and c(w) are estimated by using

equation (4) withN 0
s = 10;000 and equations (36) to (40). The graphs of the objective function

and of the constraints function are displayed in �gure 1. The optimal solution of reference,
wopt

r = ( wopt
r; 1; wopt

r; 2), of the probabilistic constrained optimization problem is estimated by

wopt
r ' arg min

i =1 ;:::;� g

c(wi
g )< 0

f (wi
g)

and yieldswopt
r; 1 = 0 :74, wopt

r; 2 = 0 :49, andf (wopt
r ) = � 0:123. It should be noted that, if the constraints

were removed, the solution, notedwopt
rsc, would bewopt

rsc;1 = 1 :11, wopt
rsc;2 = 1 :15, andf (wopt

rsc) = � 0:218,
indicating that the constraints are indeed active.

De�nition of the �xed numberN of data points. For this numerical application,n = mw + 1 + mc =
7 = 2 + 1 + 4 , and3 values ofN are considered in order to evaluate the ef�ciency of the proposed
algorithm: N = 100, N = 400, and N = 900. For a �xed value ofN , we de�ne the data set
f x` = ( w` ; q` ; b` ) 2 Rn ; ` = 1 ; : : : ; N g introduced in Section 2.2 as follows. For` = 1 ; : : : ; N , the
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Figure 1. Solution of reference: Graph of the objective functionw 7! f (w) in 3D (a) and in contour plot (b)
evaluated in the� g pointswi

g = ( wi
g;1; wi

g;2); i = 1 ; : : : ; � g of the grid. The optimal solution of reference is
the black diamond in (a) and the white diamond in (b). Graphs of the constraint functionsw 7! c1(w) (c),
c2(w) (d), c3(w) (e), andc4(w) (f) evaluated in the� g pointswi

g = ( wi
g;1; wi

g;2); i = 1 ; : : : ; � g of the grid.

pointsw` = ( w`
1; w`

2) are generated byw`
1 = 1 :15� `

3 andw`
2 = 1 :15� `

4 in which f � `
3g` andf � `

4g`

areN independent samples of the independent uniform random variables� 3 and� 4 on [0 ; 1] that are
independent of� 1 and� 2. By using the stochastic modelQ(w) andB(w) de�ned by equations (36)
to (40), we thus deduceq` 2 R andb` 2 Rm c for ` = 1 ; : : : ; N by using equation (5). It should be
noted that the surface de�ned by the graph of the objective functionw 7! f (w) of the reference
(see �gure 1) presents many oscillations and consequently, it cannot be reconstructed using a small
numberN of data points. To explore this point, results were obtained forN varying from100 to
900.
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STOCHASTIC OPTIMIZATION 15

Construction of the optimal solution, wopt
d , estimated with theN data points. The methodology

presented in Section 3 is used for estimating the optimal solutionwopt
d = ( wopt

d;1; wopt
d;2) of the

probabilistic constrained optimization problem, using only theN data points, and which is given by

wopt
d ' arg min

i =1 ;:::;� g

c(wi
g )< 0

f (wi
g) ;

in which the objective functionf and the constraints functionc are computed by using the algorithm
presented in Section 3.3, and which are estimated by using only theN data points. In Table I, for the
three values ofN , the three lines (c) entitled ”Data points” give the results forwopt

d . Figures 2-(a), 3-
(a), and 4-(a) display the graph of the objective functionw 7! f (w) in contour plot, evaluated in the
� g pointswi

g = ( wi
g;1; wi

g;2); i = 1 ; : : : ; � g of the grid, and estimated withN = 100, N = 400, and
N = 500. These results show that the optimal solution of reference,wopt

r , cannot be approximated
by using only theN data points represented by[xd], even forN = 900.

Construction of the optimal solution, wopt
ar , estimated with the �xed numberN of evaluations and

with additional samples without additional function evaluations. For each one of the values ofN ,
the algorithm presented in Section 5 is used. For the three values ofN : � = 4 (the null space
of matrix [cov] is found to be equal to3), the smoothing parameter" = 5 , and m is estimated
by using Appendix B yieldingm = 5 , independent ofN . The relative errorered(m) computed
with equation (54) yields1:44� 10� 3 for N = 100, 8:25� 10� 4 for N = 400, and9:89� 10� 4

for N = 900. The parameters for the generation of the additional samples performed by using
Section 4.3 aref 0 = 1 :5, � r = 0 :11828, andM 0 = 100. For each one of the considered values
of N , the number of additional samples that are computed is� sim = nMCN with nMC = 2 , nMC = 10,
andnMC = 100 Steps 7 to 11 of the algorithm presented in Section 5 are carried out for evaluating
the estimated objective functionf and the constraints functionc at the � g points w0 = wi

g =
(wi

g;1; wi
g;2); i = 1 ; : : : ; � g of the grid. The optimal solutionwopt

ar = ( wopt
ar;1; wopt

ar;2) of the probabilistic
constrained optimization problem, using the� sim additional samples is given by

wopt
ar ' arg min

i =1 ;:::;� g

c(wi
g )< 0

f (wi
g) :

In Table I, for the three values ofN , the three blocks of lines (c) entitled ”Additional samples” give
the results forwopt

ar as a function of the number� sim of additional samples. ForN = 100, N = 400,
andN = 500, Figures 2, 3, and 4 display the graph of the objective functionw 7! f (w) in contour
plot, evaluated at the� g points wi

g = ( wi
g;1; wi

g;2); i = 1 ; : : : ; � g of the grid, estimated with� sim

additional samples. These �gures clearly show thatN = 100 is not suf�cient for reconstructing
the surface for any number of additional samples and consequently,wopt

r cannot be approximated by
wopt

ar . On the other hand, forN = 400 anda fortiori for N = 900, as soon as� sim is suf�ciently large,
then the surface is reconstructed with a reasonable accuracy and consequently,wopt

ar yields a good
approximation ofwopt

r .

For illustration, forN = 900 data points, �gure 5-(a) displays the eigenvalues inlog10-scale of the
transition matrix for random vectorH, which clearly shows that5 is a good value for parameter
m, and �gure 5-(b) shows the graph of the objective functionw 7! f (w) in 3D evaluated in the
� g points wi

g = ( wi
g;1; wi

g;2); i = 1 ; : : : ; � g of the grid, and estimated with� sim = 9 000 additional
samples corresponding tonMC = 10. It can be seen that this surface, which is reconstructed from
the900data points by using9 000additional samples, is close to the surface of reference shown in
�gure 1-(a).

Quantitative summary of the results obtained for the three values ofN . In Table I, the �rst line
(a) of results entitled ”Reference no constraint” is the optimal solution of referencewopt = wopt

rsc

computed without the constraints while the second line (b), entitled ”Reference” is the optimal
solution of referencewopt = wopt

r computed with the constraints. In Table I, line (c) corresponds to
the optimal solution with constraints,wopt = wopt

d , estimated by using only theN data points and
lines (d) correspond to the optimal solution with constraints,wopt = wopt

a r , estimated by using� sim
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additional samples. The results given in lines (c) and (d) must be compared to line (b) ”Reference”.
These results provide a closer quanti�cation of the illustrations in �gures 2 to 4.

Table I. Table de�ning the optimal values of the optimization problem (a) corresponding to the reference
solution without the constraints, (b) corresponding to the reference solution with the constraints, and for
the optimization problem with the constraints, (c) estimated with theN data points, (d) estimated with� sim

additional samples.

N nMC � sim wopt
1 wopt

2 f (wopt)
(a) Reference no constraint 1.11 1.15 -0.218
(b) Reference 0.74 0.49 -0.123
(c) Data points 100 0.74 0.00 -0.025
(d) Additional samples 100 2 200 0.64 0.00 -0.027

100 10 1000 0.68 0.55 -0.049
100 100 10 000 0.68 0.37 -0.063

(c) Data points 400 0.17 0.17 0.008
(d) Additional samples 400 2 800 0.21 0.00 -0.085

400 10 4000 0.70 0.53 -0.067
400 100 40 000 0.72 0.45 -0.107

(c) Data points 900 0.70 0.00 0.001
(d) Additional samples 900 2 1800 0.68 0.55 -0.013

900 10 9000 0.70 0.49 -0.081
900 100 90 000 0.72 0.49 -0.112

6.2. Application 2

The second application is devoted to the probabilistic nonconvex unconstrained optimization
problem for which the objective function is the Rosenbrock function [32] in dimension4 for which
both a multiplicative noise and an additive noise have been added.

De�nition of the probabilistic nonconvex unconstrained optimization problem. The admissible
set Cw � Rm w with mw = 4 and the stochastic processfQ (w); w 2 Cwg with values inR of the
optimization problem (see equations (1) to (2)) are de�ned by

Cw = f (w = ( w1; w2; w3; w4) 2 [0:85; 1:15]4 � R4g;

Q(w) = � 1 R(w) + � 2 ; (41)

in whichw 7! R (w) is the Rosenbrock function that, formw = 4 , is written as

R(w) =
2X

i =1

100 (w2i � w2
2i � 1)2 + (1 � w2i � 1)2 ; (42)

and where theR2-valued random variable� = ( � 1; � 2) on (� ; T ; P) is de�ned by

� 1 = 1 + 2 � 1� 2(� 1 � 0:5) ; (43)

� 2 = � 2(� 1 � 0:5) ; (44)

in which � 1 and� 2 are two independent uniform random variables on[0 ; 1] de�ned on(� ; T ; P),
and where� 1 � 0 and � 2 � 0 are the hyperparameters that allow the level of uncertainties to be
controlled, and that have been �xed for the numerical application as� 1 = � 2 = 0 :4.

Construction of the optimal solution of reference, wopt
r . (i) As Ef � 1g = 1 and Ef � 2g = 0 , the

exact expression of the objective function de�ned by equation (2) isf (w) = R(w). Consequently,
the exact solution of the probabilistic optimization problem de�ned by equations (1) and (2) is
wopt

1 = wopt
2 = wopt

3 = wopt
4 = 1 andf (wopt) = 0 .
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STOCHASTIC OPTIMIZATION 17

Figure 2. Graph of the objective functionw 7! f (w) in contour plot, evaluated in the� g points wi
g =

(wi
g;1; wi

g;2); i = 1 ; : : : ; � g of the grid, and estimated withN = 100 data points (a), with� sim = 200
additional samples corresponding tonMC = 2 (b), with � sim = 1000 additional samples corresponding to
nMC = 10 (c), and with� sim = 10 000 additional samples corresponding tonMC = 100 (c). The white diamond
is the optimal solution of reference, the white disc is the optimal solution estimated with the additional

samples, and the white square is the optimal solution estimated with the data points.

(ii) The optimal solution of reference is constructed numerically as follows. The admissible set
Cw is meshed with a regular cartesian grid of� 4 nodes with � � 2, which de�ne � g points
wi

g = ( wi
g;1; wi

g;2; wi
g;3; wi

g;4) with i = 1 ; : : : ; � g in Cw. For every pointwi
g of the grid, f (wi

g) is
estimated by using equation (4) withN 0

s = 100;000and equations (41) to (44). The optimal solution
of reference,wopt

r = ( wopt
r; 1; wopt

r; 2; wopt
r; 3; wopt

r; 4), of the probabilistic unconstrained optimization problem
is estimated by

wopt
r ' arg min

i =1 ;:::;� g

f (wi
g) ; (45)

and the results are given in Table II as a function of the resolution� of the grid. The extreme
sensitivity of the reference solution to� is clear. For the grids134, 154, and 174, the exact
solution is reached, but it is by chance associated with the fact that the regular grid has a node
that coincides with the exact solution and in addition,100 000samples are used to evaluate the
mathematical expectations for each pointw = wi

g of the grid. This aspect must be carefully kept
in mind because, for the method proposed in this paper, we will use a dataset ofN = 256 data
points f w` ; ` = 1 ; : : : ; N g (very small number for4 dimensions) that are randomly distributed
in Cw (and therefore, that are not nodes of a regular �neness grid) and for which, in each one
of these data points, we have only one sample (and not100 000samples as for the reference
solution) for estimating the objective function. Consequently, the statistical �uctuations inQ(w)
play a fundamental role. The accuracy of the localization of the solution that is constructed with
the proposed algorithm without additional evaluations of the objective function, must be interpreted
statistically. A grid with154 nodes is adopted in the following.
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Figure 3. Graph of the objective functionw 7! f (w) in contour plot, evaluated in the� g points wi
g =

(wi
g;1; wi

g;2); i = 1 ; : : : ; � g of the grid, and estimated withN = 400 data points (a), with� sim = 800
additional samples corresponding tonMC = 2 (b), with � sim = 4000 additional samples corresponding to
nMC = 10 (c), and with� sim = 40 000 additional samples corresponding tonMC = 100 (c). The white diamond
is the optimal solution of reference, the white disc is the optimal solution estimated with the additional

samples, and the white square is the optimal solution estimated with the data points.

Table II. Table de�ning the optimal solution of referencewopt
r = ( wopt

r; 1; wopt
r; 2; wopt

r; 3; wopt
r; 4) as a solution of

equation (45) in function of the �neness of the grid.

Number
of nodes wopt

r; 1 wopt

r; 2 wopt

r; 3 wopt

r; 4 f (wopt

r )
in the grid

134 = 28 561 1.0000 1.0000 1.0000 1.0000 -0.0001
144 = 38 416 0.9192 0.8500 0.9192 0.8500 0.0180
154 = 50 625 1.0000 1.0000 1.0000 1.0000 -0.0001
164 = 65 536 0.9300 0.8700 0.9300 0.8700 0.0149
174 = 83 521 1.0000 1.0000 1.0000 1.0000 -0.0001
184 = 104 976 1.0618 1.1324 1.0618 1.1324 0.0126

De�nition of the �xed numberN of data points. For this numerical application,n = mw + 1 = 5 =
4 + 1, and the value ofN is 256. The data setx` = ( w` ; q` ) for ` = 1 ; : : : ; N g, which has been
de�ned in Section 2.2 is constructed as follows. For` = 1 ; : : : ; N , the pointsw` = ( w`

1; w`
2; w`

3; w`
4)

are generated, fork = 1 ; : : : ; 4 by w`
k = 0 :85 + 0:3 b� `

k in which f b� `
k gk;` are 4 � N independent

samples of the independent uniform random variablesf b� k ; k = 1 ; : : : ; 4g on [0 ; 1], which are
independent of� 1 and� 2. By using the stochastic modelQ(w) de�ned by equations (41) to (44),
we thus deduceq` for ` = 1 ; : : : ; N by using equation (5).
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STOCHASTIC OPTIMIZATION 19

Figure 4. Graph of the objective functionw 7! f (w) in contour plot, evaluated in the� g points wi
g =

(wi
g;1; wi

g;2); i = 1 ; : : : ; � g of the grid, and estimated withN = 900 data points (a), with� sim = 1800
additional samples corresponding tonMC = 2 (b), with � sim = 9000 additional samples corresponding to
nMC = 10 (c), and with� sim = 90 000 additional samples corresponding tonMC = 100 (c). The white diamond
is the optimal reference solution, the white disc is the optimal solution estimated with the additional samples,

and the white square is the optimal solution estimated with the data points.

Figure 5. ForN = 900 data points: (a) Eigenvalues inlog10-scale of the transition matrix for random vector
H. (b) Graph of the objective functionw 7! f (w) in 3D evaluated in the� g pointswi

g = ( wi
g;1; wi

g;2); i =
1; : : : ; � g of the grid, and estimated with� sim = 9000 additional samples corresponding tonMC = 10 . The
black diamond is the optimal solution of reference, the black disc is the optimal solution estimated with the

additional samples.

Construction of the optimal solution, wopt
d , estimated with theN data points. The methodology

presented in Section 3 is used for estimating the optimal solutionwopt
d = ( wopt

d;1, wopt
d;2 , wopt

d;3, wopt
d;4) of
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the probabilistic unconstrained optimization problem, using only theN data points, and which is
given by

wopt
d ' arg min

i =1 ;:::;� g

f (wi
g) ;

in which the objective functionf is computed by using the algorithm presented in Section 3.3, and
which is estimated by using only theN data points. In Table III, the �rst line entitled ”Data points”
gives the results forwopt

d . These results show that the optimal reference solution,wopt
r , cannot be

approximated by using only theN data points represented by[xd] with N = 256 in dimension4.

Table III. Table de�ning the optimal values of the probabilistic unconstrained optimization problem
estimated with theN data points and estimated with� sim = N � nMC additional samples without evaluation

of the objective functions.

N = 256 nMC wopt
ar;1 wopt

ar;2 wopt
ar;3 wopt

ar;4 f (wopt
ar )

Data points 1.1071 1.1500 1.0000 1.1500 1.3140
Additional samples 2 1.0857 1.1286 1.0214 1.0429 1.2663

10 1.0857 1.1500 1.0214 1.0429 0.9453
50 0.9786 0.9357 1.0429 1.1071 0.7963
100 0.9786 0.9357 1.0429 1.0857 0.7272
300 0.9786 0.9357 1.0429 1.0857 0.6715
700 0.9786 0.9357 1.0429 1.1071 0.6345
800 1.0429 1.0643 1.0000 0.9357 0.3112
900 1.0429 1.0429 0.9786 0.9357 0.3065
1000 1.0429 1.0429 0.9786 0.9357 0.3024

Construction of the optimal solution, wopt
ar , estimated with the �xed numberN of evaluations and with

additional samples without additional function evaluations. The algorithm presented in Section 5 is
used. The null space of matrix[cov] is found to be equal to0 and therefore,� = n. The smoothing
parameter" = 10, and m is estimated by using Appendix B yieldingm = 6 . The relative error
ered(m) computed with equation (54) yields6:29� 10� 3. The parameters for the generation of the
additional samples performed by using Section 4.3 aref 0 = 1 :5, � r = 0 :14239, andM 0 = 100.
The number of additional samples that are computed is� sim = nMCN for the values ofnMC given in
Table III. Steps 7 to 11 of the algorithm presented in Section 5 are carried out for evaluating the
estimated objective functionf at the� g pointsw0 = wi

g; i = 1 ; : : : ; � g of the grid. For each value of
nMC, the optimal solutionwopt

ar of the probabilistic unconstrained optimization problem is estimated
using the� sim additional samples,

wopt
ar ' arg min

i =1 ;:::;� g

f (wi
g) :

In Table III, the block of9 lines entitled ”Additional samples” gives the results forwopt
ar as a function

of the number� MC such that� sim = N � nMC is the number of additional samples. These results show
thatf (wopt

ar ) decreases whennMC increases and that the �uctuations around1 of each coordinatewopt
ar;k

also decreases whennMC increases. FornMC = 900, the level of these �uctuations around1 is of the
order of the �uctuations given in Table II that are generated by the variation of the �neness of the
grid.

Remark. For the deterministic optimization problem for which the objective functionf (w) = R(w)
is the Rosenbrock function de�ned by equation (42), the Dakota software is [33]. For this dimension
mw = 4 and using an initial with coordinates pointw1 = 0 :86, w2 = 0 :9, w3 = 1 :1, andw4 = 1 :15,
for which f (w) = 2 :96, the following two observations are made,
(i) the gradient-based search algorithm �nds the solutionwopt

r = (0 :9998, 0:9996, 0:9997, 0:9994)
with f (wopt

r ) = 1 :27� 10� 7 by usingNe = 55 evaluations of functionf .
(ii) the global search algorithm �nds the solutions:
wopt

r = (0 :9532; 0:9086; 1:0479; 1:0982)with f (wopt
r ) = 4 :48� 10� 3 afterNe = 3 ;400evaluations of
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function f .
wopt

r = (0 :9968; 0:9936; 1:0029; 1:0059) with f (wopt
r ) = 1 :91� 10� 5 by usingNe = 34;710 evalua-

tions of the functionf .
For cases (i) and (ii), if the expression off was not explicitly known (which is generally the case
of interest here), thenf (w) would have to be estimated usingN 0

s samplesQ(w; � 0
` ) of Q(w), and

consequently, the total number of evaluations ofQ would beNe � N 0
s. For instance, forN 0

s = 100
(that is a minimum), such an algorithm would require5;000evaluations ofQ for case (i) and340;000
or 3;471;000 for case (ii) (what has to be compared toN = 256 evaluations ofQ for the proposed
method).

6.3. Application 3

The third application is introduced to demonstrate the applicability of the proposed method in higher
dimensions. Speci�cally, we consider a valuemw = 10 in a problem that is somewhat similar to
Application 2 above. We will thus refrain from detailing this problem and we limit ourselves to
brie�y summarizing the speci�cations of the objective functions, the associated parameters and the
solutions sets.

De�nition of the probabilistic nonconvex unconstrained optimization problem. The admissible
set Cw � Rm w with mw = 10 and the stochastic processfQ (w); w 2 Cwg with values inR of
the optimization problem (see equations (1) to (2)) are de�ned byCw = f w = ( w1; : : : ; wm w ) 2
[� 0:1 ; 0:1]m w � Rm w g and

Q(w) = � 1 H(w) + � 2 ; (46)

in whichw 7! H (w) is the function that is written as

H(w) = � sin(4kwk)=(4 kwk) : (47)

In equation (47), theR2-valued random variable� = ( � 1; � 2) is de�ned by equations (43) and
(44) for which the hyperparameters that control the level of uncertainty are �xed at values of
� 1 = � 2 = 0 :1. It can be easily seen that that functionw 7! f (w) = E fQ (w)g is not convex on
Cw. The exact solution of the probabilistic nonconvex unconstrained optimization problem de�ned
by equations (1) and (2) iswopt

j = 0 for all j = 1 ; : : : ; mw andf (wopt) = � 1.

De�nition of the �xed numberN of data points. For this numerical application,n = mw + 1 =
10 + 1 = 11 , and the value ofN is 7;000. The data setx` = ( w` ; q` ) for ` = 1 ; : : : ; N g, which
has been de�ned in Section 2.2 is constructed as follows. For` = 1 ; : : : ; N , the pointsw` =
(w`

1; : : : ; w`
m w

) are generated, fork = 1 ; : : : ; mw by w`
k = � 0:1 + 0:2 b� `

k in which f b� `
k gk;` are

mw � N independent samples of the independent uniform random variablesf b� k ; k = 1 ; : : : ; mw g
on [0 ; 1], which are independent of� 1 and � 2. By using the stochastic modelQ(w) de�ned by
equation (46), we thus deduceq` for ` = 1 ; : : : ; N by using equation (5).

Construction of the optimal solution, wopt
ar , estimated with the �xed numberN of evaluations

and with additional samples without additional function evaluations. The algorithm presented
in Section 5 is used. The null space of matrix[cov] is found to be equal to0 and therefore,
� = n. The smoothing parameter is taken as" = 10, and seven eigenvectors are retained for the
diffusion maps (m = 11) which are associated with the eigenvalues of rank2 to 12. The relative
error ered(m) computed with equation (54) yields5:44� 10� 4. The parameters for the generation
of the additional samples performed by using Section 4.3 aref 0 = 150, � r = 0 :12582, M 0 = 1 ,
andnMC = 100. The number of additional samples that are computed is� sim = nMCN = 700;000.
Steps 7 to 11 of the algorithm presented in Section 5 are carried out for evaluating the estimated
objective functionf at the pointsw0 generated by the genetic algorithm that is used for solving the
nonconvex unconstrained optimization problem. The initial population for the genetic algorithm is
a sample of size7;000 drawn from a uniform distribution onCw. The optimal solution obtained
is wopt

r = ( � 0:037; 0:033; 0:009; 0:008; 0:020; 0:018; 0:025; � 0:027; 0:017; � 0:006) with f (wopt
r ) =

� 1:001, which is in close agreement with the exact solution.
It is is clear from the sequence of applications presented in this paper that the proposed methodology
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relies on the availability of a repertoire of deterministic optimization algorithms adapted to the
problem at hand. The proposed methodology then accelerates statistical evaluations and averages
required by these algorithms. From this perspective, it is apparent that scalability of the proposed
method is inextricably tied to scalability of the underlying optimization algorithm. The added cost
associated with sampling from the manifold-constrained distribution is a very small fraction of the
cost of typical function evaluations. This involves solving an initial value problem for a system of
coupled ordinary differential equations, requiring no additional calls to the expensive function.

It is also apparent from the three examples presented above that although the proposed method
was not designed to accelerate the convergence rate of deterministic functions, it does serve that
purpose to a signi�cant extent. Speci�cally, accuracy in the estimated optimal solution is achieved
that is consistent with orders of magnitude more function evaluations than is actually used. While
this improvement has the most signi�cant rami�cations in OUU problems where the statistical
�uctuations can be traced to speci�c random variables in the underlying models, it remains very
valuable in deterministic problems. In these cases, the convergence acceleration to the deterministic
problem must also be interpreted and analyzed statistically, a task that is outside the scope of this
paper.

7. CONCLUSIONS

The paper presented a new perspective on optimization under uncertainty whereby the objective
function is viewed as the average of data scattered around a manifold. By integrating methods from
machine learning, statistical smoothing, and stochastic analysis, the distribution of this scattered
data is characterized and an Itô equation projected onto an underlying manifold is constructed to
generate associated statistical samples. The savings from the proposed procedure will be greater
the more uncertainty is present in the problem, resulting in greater scatter in the data. In these
situations, standard procedures typically require a very large number of function evaluations at each
design point.

The purpose of the present paper was to introduce the method with its mathematical background
and numerical demonstrations. The extent of comparison with other methods is currently limited to
the impressive reduction in the number of function evaluations required for estimating the statistical
averages present in the objective and constraint functions. Applications to high dimensional
optimization problems will greatly bene�t from the development of adapted optimization logic,
a task beyond the scope of the present paper.

A. CONSTRUCTION OF THE DIFFUSION-MAPS BASIS

In this appendix, we summarize the construction of the diffusion map basis based on [21, 22]
and detailed in [29]. Let[b] be the positive-de�nite diagonal real matrix inMN such that[b]ij =
� ij

P N
j 0=1 [K ]ij 0 in which [K ]ij 0 = k" (� i ; � j 0

). Let [P] be the transition matrix inMN such that
[P] = [ b]� 1 [K ] and let[PS ] be the symmetric matrix inMN such that[PS ] = [ b]1=2 [P] [b]� 1=2 =
[b]� 1=2 [K ] [b]� 1=2. Letm be an integer such that1 < m � N . The eigenvalues of[PS ] � � = � � � �

are positive and such that1 = � 1 > � 2 � : : : � � m . Let [� ] be the matrix inMN;m such that
[� ]T [� ] = [ I m ], whose columns are them orthonormal eigenvectors� 1; : : : ; � m associated with
� 1; : : : ; � m . The right eigenvectors 1; : : : ;  m associated with� 1; : : : ; � m , which are such that
[P]  � = � �  � , are written as

 � = [ b]� 1=2 � � 2 RN ; � = 1 ; : : : ; m ; (48)

and consequently, the matrix[ ] = [  1 : : :  m ] = [ b]� 1=2 [� ] 2 MN;m is such that

[ ]T [b] [ ] = [ I m ] (49)

()
Prepared usingnmeauth.cls



STOCHASTIC OPTIMIZATION 23

which de�nes the normalization of the right eigenvectors of[P]. A ”diffusion-maps basis” is de�ned
by [g] = [ g1 : : : gm ] 2 MN;m (which is an algebraic basis ofRN for m = N ) such that

g� = � �
�  � 2 RN ; � = 1 ; : : : ; m ; (50)

in which � is an integer that is chosen for �xing the analysis scale of the local geometric structure
of the dataset. It should be noted that the familyf 	 � g of diffusion maps are de�ned [21, 22] by the
vector 	 � = (� �

1  1; : : : ; � �
m  m ) in order to construct a diffusion distance, and integer� is thus

such that the probability of transition is in� steps. However, as it has been explained in [29], we do
not use such a diffusion distance.

B. CRITERION FOR ESTIMATING AN OPTIMAL VALUE OFm

In this Appendix, we recall the criterion introduced in [29] for estimating a value of dimensionm.
Let [xd] 2 Mn;N be the matrix of the dataset introduced in Section 4.1 and let[� d] 2 M�;N be the
matrix computed with equation (21). We then introduce the matrix[x red(m)] 2 Mn;N such that (see
equations (23) and (25)),

[x red(m)] = [ x] + [ ' ] [� ]1=2 [zd] [g]T ; [zd] = [ � d] [a] : (51)

Let x1
red(m); : : : ; xN

red(m) be the N vectors in Rn , which constitute theN columns of matrix
[x red(m)] 2 Mn;N . We then introduce the empirical estimatesxred(m) 2 Rn and [covred(m)] 2
Mn of the mean value and of the covariance matrix calculated with the sample[x red(m)] =
[x1

red(m) : : : xN
red(m)] 2 Mn;N such that

xred(m) =
1
N

NX

` =1

x`
red(m) ; (52)

[covred(m)] =
1

N � 1

NX

` =1

(x`
red(m) � xred(m)) ( x`

red(m) � xred(m))T : (53)

A criterion for the mean-square convergence is then speci�ed as

ered(m) =
k[covred(m)] � [cov]kF

k[cov]kF
: (54)

in which [cov] is the empirical estimate of the covariance matrix of random vectorX, which is such
that

[cov] =
1

N � 1

NX

` =1

(x` � x) (x` � x)T ; x =
1
N

NX

` =1

x` : (55)

Since[x red(N )] = [ xd], it can be deduced thatered(m) ! 0 whenm goes toN . For a �xed reasonable
value � 0 > 0 of the relative toleranceered(m), an estimate ofm will consist of looking for the
smallest value ofm such thatered(m) � "0.

C. ALGORITHM FOR SOLVING THE REDUCED-ORDER ISDE

The algorithm for solving the reduced-order ISDE de�ned by equations (26) to (28) is detailed in
[29] and is summarized hereinafter. The Störmer-Verlet scheme is used. LetM = nMC � M 0 be the
positive integer in whichnMC andM 0 have been introduced in Section 4.3. The reduced-order ISDE
is solved on the �nite intervalR = [0 ; M � r ], in which � r is the sampling step of the continuous
index parameterr . The integration scheme is based on the use of theM + 1 sampling pointsr ` 0

such thatr ` 0 = `0� r for `0 = 0 ; : : : ; M . The following notations are introduced:[Z ` 0] = [ Z (r ` 0)],

()
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[Y ` 0] = [ Y (r ` 0)], and[W ` 0] = [ W (r ` 0)], for `0 = 0 ; : : : ; M , with

[Z 0] = [ Hd] [a] ; [Y 0] = [ N ] [a] ; [W 0] = [0 �;m ] a:s : (56)

For `0 = 0 ; : : : ; M � 1, let
[� W ` 0+1 ] = [� W` 0+1 ] [a] ; (57)

be the sequence of random matrices with values inM�;m , in which [� W` 0+1 ] = [ W` 0+1 ] � [W0
` ].

The increments[� W1]; : : : ; [� WM ] areM independent random matrices with values inM�;N . For
all k = 1 ; : : : ; � and for all j = 1 ; : : : ; N , the real-valued random variablesf [� W` 0+1 ]kj gkj are
independent, Gaussian, second-order, and centered random variables such that

Ef [� W` 0+1 ]kj [� W` 0+1 ]k 0j 0g = � r � kk 0 � jj 0 : (58)

For `0 = 0 ; : : : ; M � 1, the Sẗormer-Verlet scheme applied to equations. (26) and (27) yields

[Z ` 0+ 1
2
] = [ Z ` 0] +

� r
2

[Y ` 0] ; (59)

[Y ` 0+1 ] =
1 � b
1 + b

[Y ` 0] +
� r

1 + b
[L ` 0+ 1

2
] +

p
f 0

1 + b
[� W ` 0+1 ] ; (60)

[Z ` 0+1 ] = [ Z ` 0+ 1
2
] +

� r
2

[Y ` 0+1 ] ; (61)

with the initial condition de�ned by equation (28), whereb = f 0 � r =4, and where[L ` 0+ 1
2
] is the

M�;m -valued random variable such that

[L ` 0+ 1
2
] = [ L ([Z ` 0+ 1

2
])] = [ L ([Z ` 0+ 1

2
] [g]T )] [a] ; (62)

in which, for all [u] = [ u1 : : : uN ] in M�;N with u` 0
= ( u` 0

1 ; : : : ; u` 0

� ) in R� , the entries of matrix
[L ([u])] in M�;N are de�ned by equations (30) to (33).
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