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SUMMARY

A methodology is proposed for the ef cient solution of probabilistic nonconvex constrained optimization
problems with uncertain. Statistical properties of the underlying stochastic generator are characterized from
an initial statistical sample of function evaluations. A diffusion manifold over the initial set of data points

is rstidenti ed and an associated basis computed. The joint probability density function of this initial set

is estimated using a kernel density model and arstochastic differential equation constructed with this
model as its invariant measure. This ISDE is adapted to uctuate around the manifold yielding additional
joint realizations of the uncertain parameters, design variables, and function values are obtained as solutions
of the ISDE. The expectations in the objective function and constraints are then accurately evaluated without
performing additional function evaluations. The methodology brings together novel ideas from manifold
learning and stochastic Hamiltonian dynamics to tackle an outstanding challenge in stochastic optimization.
Three examples are presented to highlight different aspects of the proposed methodology.

Received ...

KEY WORDS: Optimization under uncertainty, Probabilistic optimization, Nonconvex constrained
optimization, Probability distribution on manifolds, MCMC generator, Diffusion maps

1. INTRODUCTION

The ef cient exploration of the set of design parameters is crucial to the optimization of expensive
functions. The development of mathematical and algorithmic constructs that promote learning with
successive optimization steps continues to be a key challenge in that regard. These methods have
progressed along many directions, including gradient-based learning, adapted to convex problems
[1,/2] and global search algorithms including stochastic, genetic, and evolutionary algorithms [3, 4].
Statistical learning methods, whereby a deterministic problem is construed as the representative
from a class of stochastic problems have also been developed with the bene t of enabling statistical
learning [%]. The learning process is typically manifested in the form of a surrogate model from
which approximations of the expensive function can be readily evaluated [6, 7]. The resulting error
and its repercussions on the attained optimal solution distinguish the various algofithms [8]. The
global character of the surrogate is typically achieved either through a deterministic interpolation
process, or a stochastic model whereby biases induced by complex dependencies between model
outputs and design parameters are captured through statistical correlations over parameter space.
Although Gaussian process models are most commonly used in this context [9, 10], more robust
alternatives based on Bayesian optimizatidn [5/ 11, 12] have also proven useful.
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2 R GHANEM, C SOIZE

Recent research in the eld of uncertainty quanti cation|[13] 14, [15,[16, 17] has underscored
the need for optimization algorithms with underlying stochastic operators and constraints. In these
situations, referred to as optimization under uncertainty (OUU), the challenge is magni ed since for
each design point along the optimization path, a suf ciently large statistical sample of function
outputs must be computed to evaluate the required expectations [8]. In essence, the function
output must be characterized as a stochastic process over the set of design variables in order to
facilitate such evaluations. For expensive function evaluations exhibiting uncertainty, computational
challenges remain currently signi cant enough to require simplifying assumptions in the form
of surrogate models for the stochastic function itself or approximations to relevant probabilities
[18,[19,20[7].

The present paper addresses this challenge and proposes an algorithm that maintains the
number of function evaluations required for OUU at a level essentially equal to that of the
deterministic problem. This is achieved by rst recognizing that the expensive function evaluator
generates samples that uctuate around a manifold. An algorithm is then introduced to sample
the neighborhood of this manifold from the joint distribution of random parameters and design
variables. The underlying manifold is learned from a diffusion process on a dafa set[21] 22, 23]
synthesized by evaluating one sample of the expensive function for each of a handful of design
variables. A target multivariate probability density function is then constructed from this data
set using nonparametric kernel density estimation and smoothing.8Astdthastic differential
equation, constructed with this distribution as its invariant measure, is then projected on the
manifold, ensuring that the ensuing solution remains in the neighborhood of that manifold. The
construction of this i equation, associated with a stochastic nonlinear dissipative Hamiltonian
dynamical system, follows recent developments that accelerate the convergence of MCMC
algorithms [24] to their steady-state distribution (invariant measure). Such a generator belongs
to the class of Hamiltonian Monte Carlo methods![24, 25, 26], which is an MCMC algorithm
[27,[28,2]. This paper extends recent work by the authors [29], where the above sampling on
manifolds was rst introduced, to the case where the joint distribution of multiple vectors, is
constructed and used to evaluate the conditional expectations that de ne objective functions and
constraints in an OUU problem. The paper is organized as follows. In S¢¢tion 2, the probabilistic
nonconvex constrained optimization problem is de ned. Se¢fjon 3 deals with a methodology based
on the use of a nonparametric statistical estimation of the conditional mathematical expectation
and the algorithm for evaluating the objective function and the constraints function at any point in
the admissible set by using only the given dataset. The method for generating additional samples
without performing additional function evaluations and the algorithm are presented in Sdction 5.
Finally three applications are presented for validating the method proposed. Some details concerning
the algorithms are given in three Appendices.

Notations

A lower case letter such as , oru, is a real deterministic variable.

A boldface lower case letter suchxs , oru is a real deterministic vector.

An upper case letter such #s H, or U, is a real random variable.

A boldface upper case lettet, H, or U, is a real random vector.

A lower case letter between brackets sucxdg ], or[u]), is a real deterministic matrix.

A boldface upper case letter between brackets sugi]agH], or [U], is a real random matrix.

( ;T;P): Probability triple.

N = f0;1;2;:::9: set of all the null and positive integers.
R: set of all the real numbers.

R": Euclidean vector space éhof dimensiom.

kxk: usual Euclidean norm iR".

Mnn @ setof allthe(ln  N) real matrices.

M : set of all the squarg ) real matrices.

[X]yj : entry of matrix[x].

0
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STOCHASTIC OPTIMIZATION 3

[X]": transpose of matrifx].
k[x]kr : Frobenius norm of matrif] such thakxkz = trf [x]" [x]g.
[I' ]: identity matrix inM .
kko: Kronecker's symbol such thagco = 0 if k 6 k®and= 1 if k = k°
14 (Q) is the indicator function of séi: 1p(a) =1 ifa2 A and=0 if a 2A.
E : Mathematical expectation.
pdf: probability density function.
ISDE: 1t6 Stochastic Differential Equation.
MCMC: Markov Chain Monte Carlo.

2. PROBLEM SET-UP

2.1. De nition of the optimization problem to be solved and objective of the paper

Letmy, 1andm. 1 be two given integers. Letv = (wj;:::;Wn,) be a vector of design
parameters that belongs to an admissibl&€geivhich is a subset @™ . We consider the following
probabilistic nonconvex constrained optimization problem with nonlinear constraints,

w' = arg Vrpzlg f(w); Q)
c(w)<W0

in whichw 7! f (w) is the objective function de ned 06,, with values inR, written as

f(w) = EfQ (w)g; )

R™c, such that

c(w) = EfB(w)g; 3)
and whereE is the mathematical expectation. In equatigns (2) and f@)w);w 2 C,g and
fB(W) = (Bi(w);:::; Bm.(W)); w2 Cyg are dependent second-order stochastic processes de ned

on a probability spacg ;T;P), indexed byG,, with values inR and R™¢ respectively.
Consequently, for allv xed in G,, the random variableQ(w) and B(w) are the mappings
7'Q(w; )and 7!fB(w; ), from into RandR™: respectively, which are such that
y4
EfQ(w)’g=  Q(w; )?dP()< +1;
Y4
Efk B(w)k’g=  kB(w; )k?dP( )< +1 :

It is assumed that, fow given inG,, the values (w) andc(w) of the cost and constraints functions

are calculated using a computational model with uncertainties (stochastic computational model),
and that the probabilistic optimization problem de ned by equafi¢n (1) has a unique soldtiom

G-

This paper proposes a probabilistic formulation that permits to solve the above probabilistic
nonconvex constrained optimization problem using a small number of evaluations of the objective
and constraints functions, thus limiting the calls to the expensive stochastic computational model.

Remarks
(i) It should be noted that the constraints functmde ned by equation[(3) is quite general. For
instance, let us consider theth constraint is speci ed in the form,

ProbdGy (w) g>Pg;

0
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4 R GHANEM, C SOIZE

in which fGy (w); w 2 C,g is a second-order real-valued stochastic process of interest, wieee
given real number, and wheRg is a given level of probability. Consequentty(w) = EfB (w)g,
with

Bk(W) = Pc 1;. 41 ((G(W)):

(ii) A typical procedure for calculating the mathematical expectations that appear on the right-hand
sides of equation$|2) and] (3) is as follows. For ewergiven inG,, the stochastic computational
model evaluatedl? independent samples (or realizations, or draW@)y; o) andB(w; -o) of
random variable®(w) andB(w), for ~oin  with "0=1;:::;N2. For N2 suf ciently large, an
accurate estimation ¢f(w) andc(w) can be computed according to,

1 X¢ P R
EfQwW)g"' 5 Q(w; o) ; EfBWg' 5  B(w; -0): (4)
NS ~0=1 S ~0=1
If the optimization algorithm requirds evaluations (w-) andc(w-) of f andcfor™ =1;:::;Ns,

then the stochastic computational model must be call@d N times, which could be prohibitive

for expensive function calls. The probabilistic approach proposed in this paper will drastically
reduce the number of required calls to the stochastic computational model to d\valugimilar
magnitude to\s.

2.2. De nition of the dataset generated by the optimization algorithm with a xed number of
function evaluations and de nition of the associated random variables

In this section, we rst de ne the dataset of a xed numbir of data points denoted by =

samples. The probabilistic properties of these random variables depewdhari this dependence
is dropped, with any loss of generality, for notational simplicity.

De nition of the datasetFor anyw xed in G, and forany - xedin ,letQ(w; ) andB(w; )
be samples of the dependent random variaklés) and B(w) computed using the stochastic

w. These values can correspond either to a training procedure appledrt@are some values of
w generated by an optimization algorithm as it explores the feasible domaiqg;Let; gV be real

q=QWw; )2R ; b=BW; )2R"™ ; “=1;:::;N: (5)

X =(w;q;b)2R"=R™ R R" ; “=1;:::;N; (6)

in which
n=my+1+ me:

De nition of the random variables associated with the data¥¢¢ now de ne the random variables

random variables de ned of ;T;P) with values inR™», R, andR™¢, statistically dependent,
for which the joint probability distribution oGy, R R™c is unknown but for which a set of

0
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STOCHASTIC OPTIMIZATION 5

withn = my + 1+ mc, that is written as
X =(W;Q;B): (7)
The probability distributiorPy (dx) will be assumed to be represented by apdix) with respect to

areN statistically independent samplesXfwhich are represented by the matrix,
xal=[x':oxN]2 Moy

Remarks

(i) The stochastic computational model de nes a mapping between parameted the random
variablesQ(w) andB (w). The unknown pdpy is thus concentrated in a neighborhood of a subset
S, of R" associated with this mapping. This neighborhood of suBsetill be discovered by using
the method developed in [29] and summarized in Se¢fjon 4.

(i) For a xed numberN of function evaluations, the available dataset is thus made up of the
deterministic vectors?;:::;xV in R". Consequently, fow given inR™+, only one realization
(g;b)=(Q(w; -);B(w; -)) of random variablgQ(w );B(w )) with values inR R™c is
calculated by using the stochastic computational model. In accordance to Remark (i) in Segtion 2.1,
for a given valuew of w, N0 1 samplesf(Qw; );B(w; );'9=1;:::;N% are not
computed by calling\? times the stochastic computational model.

(i) For anyw xed in G, the probability distribution of the random vect@@(w); B(w)) with
values inR  R™w is not explicitly known.

3. METHODOLOGY FOR EVALUATING THE OBJECTIVE FUNCTION AND THE
CONSTRAINTS FUNCTION AT ANY POINTW® IN THE ADMISSIBLE SET USING THE
DATASET

The available information is only constituted of the xed numbepf data points< = (w ;q ;b )

(W; Q; B) de ned by equation[{7) (see Sectipn 2.2). The problem consists in calculating, for any
pointw?® given inG,, an estimate of (w°) de ned by equation(2) and an estimateogfv®) de ned

by equation[(B). It can easily be seen thal ifvas suf ciently large, then these estimates would be
written as

f(wd)' EfQjW = wlg: (8
(W) ' EfBkjW=wog ; k=1;::5;mc; 9)

in whichEfQjW = wg andEfBy jW = wg are the conditional mathematical expectations of
random variable®) and B, given W = w° in G,. We then have to estimate these conditional
mathematical expectations by using a data smoothing technique based on the available information
de ned by the dataset. For that, we begin by introducing a generic problem that we solve using
nonparametric statistical methods.

3.1. De nition of a generic problem related to the estimation of a conditional expectation from a
given dataset

Let (W; R) be the second-order random variable de ned(onT ;P) with values inR™  Rin
which W is the second-ordeR™v -valued random variable de ned in Sectibn]2.2 and wheris
a second-ordeR-valued random variable that depends\Wwn(R will refer to eitherQ or By). The
dataset is made up of;, > 1 given independent samples(@V; R),

(W:r)2R™ R ; “=1::500 gm: (10)

0
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6 R GHANEM, C SOIZE

The generic problem consists in estimat®&§R j W = wPg that is the conditional mathematical
expectation of the real-valued random variaRlgivenW = w° in G, using only the g, samples

Remarks

(i) Taking ¢»= N,R = Q,andr = q for> =1;:::;N, andifN is suf ciently large, an estimate
of the objective function at point® is given by equatiorf {8). Similarly, fdr=1;:::;m¢, by taking
sm= N,R= By, andr = q for " =1;:::;N, and ifN is suf ciently large, an estimate of the

componenty (W) of constraints functioie at pointw? is given by equatiorf {9).

(i) As we have explained in Remark (ii) of Sectjon]2.2, the available information is only made up
of the samplegw ;r’) for * =1;:::; 4n Consequently, for anw® xed in G, the conditional
mathematical expectatioBf R jW = w°g cannot be estimated using classical statistical method
because, for givew , only one sample is given, and these latter require a large number of
samples i1 :::;r N ° of R. In order to overcome this dif culty, a data smoothing technique based

on the use of the Gaussian kernel-density estimation method is used for estimating the conditional
mathematical expectatiddf R j W = wOg.

3.2. Nonparametric statistical estimation of the conditional mathematical expectation

In order to apply nonparametric statistics for estimating the conditional mathematical expectation
EfRjW = w on the basis of the dataset that is made up of theindependent realizations
f(w;r);"=1;:::; smg it iS necessary to rst normalize the dataset in order to obtain well-

fr;>=1;:::; 4mg. We then introduce the normalized random variaw?s‘orj =1;:::;my and
R de ned by
W=(wj w)=; ; R=(R p=;

for which the g, independent samples are given by

1
~—
=
[
N—r

wo=(w w)=; 5 e=(r D= T =10 e (12)

For anyw® = (w§;:::;wp, ) xedin Gy, we then have,

EfRjW=w’g=r+ E fRj{v = o’g; (13)

wl=(wd ow)=g o =1iiinmy (14)

Introducirllrg the joint pdpy,. (®; E) with respect taie de of random variable& andR and the pdf
Pe (&) = ¢ Py . (®; E) dewith respect tale of random variabldV, the conditional mathematical

expectatiorEf Rj W = wog can be written as
z
epw.ﬁ(wo; E) de: (15)
& ;

EfRjfv = w'g=
Pe, (®°)

Nonparametric statistical estimation of the conditional mathematical expectatidj W = e’g.
Each one of the dependent random variatﬂéls:::;f/vmw and R, has a zero empirical mean
value and a unit empirical standard deviation (calculated using $hesamples(® ;e)). The

0
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STOCHASTIC OPTIMIZATION 7

nonparametric statistical estimation of the joint p@)‘;R(WO; E) at point(wo; E), constructed using
the Gaussian kernel-density estimation method[[3D, 31] and using;thiedependent realizations

f(w\;e‘); =101 gm0, IS written, for ¢, suf ciently large, as
e’ e o 4917 exp e e+ (e B%g ; (16)
Pe;re ! s g ( 25 ymw +1 232 )

in which s is the bandwidth parameter that can be chosen as the usual multidimensional optimal
Silverman bandwidth (in taking into account that the empirical estimation of the standard deviation
of each component is unity),

4 1=(4+ m,, +1)

ST v s D) ; (17)

R
From equation[(6), it can be deduced thg(@°) = pg,.o (&"; &) de can be estimated, for,
suf ciently large, by

1 Ksim

1 1 . 0,2 .

pw(wo) :

Using equationd (15); (16), and {18), it can be deduced thatfpsuf ciently large, an estimate
of EfRj W = w’gis given by
n ~
cmp exp  shke  wlk?
EfRjv = w'g" = ! P o : (19)

sim 1 ; 0 2‘-’
2T exp -k ek

3.3. Algorithm for estimating the objective function and the constraints function using only the
givenN data points

The proposed algorithm can be used for estimating the \taﬂwg) of the objective function and
the valuec(wig) of the constraints function, iny given pointswig in Gy belonging to the subset

[Xa] 2 Mqn -
Data allowing the algorithm to be initialized

1. Givenmy, m¢, N.

2. Deducingh = my, + 1+ mc.

3. Given[xq] =[x*:::xN]12 Myn suchthatfor =1;:::;N:

X =(w;gq:;b)2 R withw 2 R™:q 2 Rib 2 R™e.

Steps of the algorithm for estimating the objective function and the constraints func@gnusing
only the giverN data points

1. Computing
@a=# Lgandi=3 L@ 92
(b) b, = Nip Y, boand 2 = Nip N B)Z k=1;::me.
2. Applying equation[(1]1) for normalizing the samples, which yields:
(@) N samplegw ;@) 2 R™ Rfor =1;:::;N.
(b) N samples{w‘;ﬁk) 2R™ Rfor =1;:::;;N andfork =1;:::;mc.

0
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3. Computings using equatior[ (17) withg,, = N.
4. For each pointvg in Gy, C w, computingf (wj) andc(wy) as follows.

(a) Computing the normalizaticmig of wy, using equatior{ (14) witie® = wig andw® = wj.

(b) Computinge (wig) =expf %kw‘ wigkzgfor‘ =1;:::;N.
(c) Computing (&)= ', e (w}).

(d) Computing the estimate tb(w‘g) using equationg [8);, (13), ar{d {19):

f(wh) " a X e (@)
W, + - e .
9 9 (ng) *:1q 9

(e) Fork =1;:::;m¢, computing the estimate of (wj) by using equationg [9), (13), and
@:

a(wh) ' b+ —2 8 e ()

(&)

End of the algorithm

4. METHOD FOR GENERATING ADDITIONAL SAMPLES WITHOUT PERFORMING
ADDITIONAL FUNCTION EVALUATIONS

As explained in Remark (i) of Sectign 2.2, the unknown pgfof random variableX de ned by
equation((¥) is concentrated in the neighborhood of an unknown sBhs#iR" and the numbeX

of its samples, which are represented by mdii 2 M.y , is xed and is relatively small so as to

limit the number of calls to the stochastic computational model. With such a small va\ugfoie

choose 4, = N for estimating the conditional mathematical expectatidiR j v = &°g de ned

by equation[(19), the estimate may not be suf ciently accurate. As we have explained, the idea is to
generate additional samples #6rin order to use equatiop (JL9) with,,, N for obtaining a good
estimation of the conditional mathematical expectations, without performing any additional function
evaluations with the stochastic computational model. For doing that, we need to construct the pdf
px of X, to discover the subs&,, and to construct the associated generator of additional samples,
by using only the datasgty] 2 My.n . A solution to this non-trivial problem is given in applying

the recent methodology presented|[inl[29], which is brie y summarized in this section. It should
be noted that it was shown i [29] that a direct sampling of a random vector obtained by using
a nonparametric statistical estimation of its pdf and a MCMC method for generating additional
samples, yields samples that are not concentrated around the subset of interest, but are scattered
throughout the ambient Euclidean space. This was indeed the motivation for the method proposed
in [29], which is based on the use of the diffusion maps and which has been developed in order to
preserve the concentration of the probability measure around the manifold.

4.1. Introducing the random matr{X] associated with random vectrand normalization ofX]
in a random matriH]

Let X be theR"-valued second-order random vector de ned by equafipn (7) for which the dataset
[Xd] 2 Mq.n , de ned in Sectio, is assumed to be scaled. If it is not the case, a scaling must be

performed as explained in[29]. Lpt] = [X*;:::; X" ] be the random matrix with values M, ,
whose columns ard independent copies of random veckarThe normalization of random matrix
[X] is attained with random matripd] = [H?;:::; HV ] with values inM.y , whose columns are

N independent copies of a random vedtbrwith n, obtained by using principal component
analysis resulting in,

[X1=[x1+[" 11 1'% [H]; (20)
0
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in which[ ]is the( ) diagonal matrix of the positive eigenvalues of the empirical estimate
[cov] 2 M, of the covariance matrix of (computed using equatiop (55)), wherd is the(n )
matrix of the associated eigenvectors sfidh [' ] =[I ], and wherdx] is the matrix inM,y with
identical columns, each equal to the empirical estime2eR" of the mean value of random vector
X (computed using equatiof (55)). The samplg =[ *::: N]2 M.y of [H] (associated with
the sampldxq] of [X]) is computed by

[al=1 11T (%] [XD: (21)

Consequently, the empirical estimates of the mean value and of the covariance matrix of random
vectorH are exacthy0 and[l ], respectively. Such a normalization is required for obtaining well-
conditioned numerical calculations. In low dimensionrot too big), no statistical reduction is
performeda priori, and if all the eigenvalues are positive, thea n; if some eigenvalues are zero,

they must be eliminated and ther n . In high dimensionf is big), a statistical reduction can be
done as usual and therefore n in such a case.

4.2. Reduced-order representation of random mdtikby projection on a subspace spanned by a
diffusion-maps basis

As previously explained, the introduction of a reduced-order representation of random [id§trix
which is constructed by projection on a diffusion-maps basis, allows for preserving the concentration
of the probability measure of random matfi]. Letk-( ; 9 =exp( 4k %?) be the kernel
dened onR R, depending on a real smoothing paraméter 0. This kernel can be replaced

by another one satisfying the symmetry, the positivity preserving, and the positive semi-de niteness
properties. Fom N, let[g] =[g':::g™] 2 My:m be the "diffusion-maps basis” associated with
kernelk-, which is de ned and constructed in Appendix A (for = N, [g] is an algebraic basis

of RV). For =1;:::;m, the diffusion-maps vectog 2 RV is de ned by equation[(50). The
subspace oR" spanned by the vector badig g allows for characterizing the local geometry
structure of the dataset concentrated in the neighborhood of a subBkt Gfhe reduced-order
representation is obtained in projecting each column offe -valued random matrig]™ on the
subspace oR", spanned by g':::g"g. Introducing the random matriiZ] with values inM., ,

the following reduced-order representatiorildf is de ned,

[H1=1[Z][g]" : (22)

As the matrix[g]" [g] 2 My, is invertible, equatior] (22) yields the least squares approximati@n to
in the form,

[Z]=[Hl[a ; [a=[dl(el" [g) *2 Mym : (23)

In particular, matri{ 4] 2 M.y can be written ag 4] = [z4][g]" in which the matrixz4] 2 M.,
is given by

[za] =[ olla]2 M;m : (24)

Consequently, the following representation of random m@kpas function of random matripZ]
is deduced from equatior]s (20) and](23),

X1=[x1+[" 10 2 (2] 0g]" : (25)

The dimensiomm of the reduced-order representation is estimated by analyzing the convergence of
the representation with respectrio For a given value of integer related to the analysis scale of

the local geometric structure of the dataset (see equatipn (50) in Appendix A) and for a given value
of the smoothing parametér> 0, the decay in the graph 7! of the positive eigenvalues of

the transition matrixP] (see Appendik A) yields a criterion for choosing the valuenothat allows

the local geometric structure of the dataset represent¢dibjo be discovered. Nevertheless, this
criterion may not be suf cient, and thie?-convergence may need to be enforced by increasing, as
required, the value ofm. However, if the value om is chosen too large, the localization of the
geometric structure of the dataset is lost. Consequently, a compromise must be reached between a

0
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very small value ofn identi ed by the decay of the eigenvalues and a larger valua ofecessary
for obtaining a reasonable mean-square convergence. A criterion for estimating an optimal value of
m is given in Appendix B.

The generation of additional sample]; : : : ; [za*°] of random matriZ] is carried out by using

an unusual MCMC method which is constructed as the projection on the diffusion-maps basis of
an ISDE related to a dissipative Hamiltonian dynamical system for which the invariant measure is
the pdf of random matrifH] constructed with the Gaussian kernel-density estimation method. This
method preserves the concentration of the probability measure and avoids the scatter phenomenon
described above. Fan, ", and xed, we introduce the Markov stochastic proceg$Z (r)];
[Y(r)]);r2 R*g,denedon( ;T;P), indexed byR" =[0;+1 [, with values inM.;, M., ,

which is the unique second-order stationary (for the shift semi-group’ grand ergodic diffusion
stochastic process, of the following reduced-order ISDEt for0,

diz (r)]=[Y()ldr; (26)
diy (0] =[L(Z (r)D] dr %fo[Y(r)]dr P fo[dW (N)]; (27)

with the initial condition
[Z(©O)]=[Halla] ; [Y(©]=[N ][a] as; (28)

in which the random matricdt ([Z (r)])] and[dW (r)] with values inM., are such that

[LAZ (DI =[LAZ (OIgIM)Ial 5 [dW (r)]=[dW(r)][a]: (29)
() Forall [u]=[ut:::uN]in My with u = (ug;:::;u ) in R, the matrix[L([u])] in M.y is
de ned,forallk =1;:::; andforall =1;:::;N, by
LDl = oy 1 PG (30)
. 1 X 1 B . .

p(u)= szl expf @k; I ukg; (31)

. 11X 5 1 6 . .
ro plu)= EWH(; I u) expf @k; I uKeg; (32)

~ 4 1=( +4) . b ~ S .
S - m y - q82+77NN71 . (33)

(i) The stochastic proces$[dW(r)];r 0Og with values in M.y is such that[dW(r)] =

normalized Wiener proces#/ dened on ( ;T;P), indexed byR" with values inR . The
matrix-valued autocorrelation functiofRw(r;r 9] = EfW(r) Wr9Tg of W is then written as

[Rw(r;r 91 =min( r;rO[ 1.

(i) The probability distribution of the random matrfid4] with values inM.y is identical to the
probability distribution of random matrifH]. A known sample ofHy] is matrix[ 4] de ned by
equation[(2lL). The random matriX ] with values inM.y is written as[N ]=[N *:::N N7]in

N areN independent copies of the normalized Gaussian veéttor
with values inR (this means thaEfN g= 0 andEfNN Tg=[I ]). The random matricefH4]

0
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and[N ], and the normalized Wiener procdd4(r);r  Og are assumed to be independent.

(iv) The free parametdry > 0 allows the dissipation term of the nonlinear second-order dynamical
system (dissipative Hamiltonian system) to be controlled.

(v) The algorithm for solving equation§ (26) to [28) is detailed[in| [29] and is summarized in
AppendiXC.

The generation of additional samplps,]; : ::; [x5)°] of random matrix{X] is then performed
as follows. For xed in , the deterministic quantitieW (r; )];r 0g, [Z (0; )] =[ 4][al,
and[Y (0; )] =[N ( )][a] are independent samples of the stochastic prod@€gr)];r 0g, of
the random matrifZ (0)], and of the random matriRr (0)]. Let f([Z (r; );[Y(r; )]);r 2 R*g
be the corresponding sample of the unique stationary diffusion pré¢esée)]; [Y (r)]);r 2 R* g
of the problem de ned by equations (26) fo [28)). The reduced-order ISDE is solved on the nite
intervalR =[0 ;M r],inwhich r isthe sampling step of the continuous index paranretsed
in the integration scheme (see Apper{d|x C). The intdé¢es written asM = My nyc, in which
Mg andnyc are positive integers greater or equalltdntroducing = Mg r, thenyc additional
samplegzi];:::;[z5°] of random matrix{Z] and the corresponding sampleg];:::;[ 5] of
random matri{H] are given by

Zad=1ZC 5N 3 [ad=lzadldl” 5 “=1;:n0c: (34)

If Mg=1, then = r and theny: additional samples are dependent, but the ergodic
property of f[Z (r)];r 2 R* g can be invoked for ensuring the convergence of statistics

considered as independent samples of random niaffix

Using equation[(25), theyc additional samplegx];:::; [x5] of random matrix[X] can be
generated according to the following expression,
Xad = [XI+ [ 10 P2 [zad [AT 5 "= 15iimye: (35)

5. PROPOSED ALGORITHM FOR SOLVING THE PROBABILISTIC NONCONVEX
CONSTRAINED OPTIMIZATION PROBLEM WITH A FIXED NUMBER OF FUNCTION
EVALUATIONS

The proposed algorithm used for solving the probabilistic nonconvex constrained optimization
problem de ned by equation§](1) tp](3) with a xed numbr of function evaluations is based

on the following procedure. Instead of computing a large number of sampleach one requiring

to call the stochastic computational model a large number of times, the nidnlbbércomputed
samplesx by calling the stochastic computational model is restricted to a relatively small value
N. In this condition,N is not suf ciently large for obtaining a good estimate of the objective
function and of the constraints function using the algorithm detailed in Sectipn 3.3. The method
proposed herein consists in enriching tNe samples that are represented by the columns of

without calling the stochastic computational model but that are computed by using the generator of
samples presented in Sect[dn 4. Using these= nyc N additional samples, a good estimate of
EfRjW = wPg can be obtained from equatiofis13) and (19). The algorithm is then as follows:

Data allowing the algorithm to be initialized

1. Givenmy, m¢, N.
2. Deducingh = my, + 1+ m.

0
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X =(w;q:b)2R withw 2 R";q 2 Rib 2 R"..
If necessary, scaling the data set represented by nfiggtiin M.y .

Steps of the algorithm

1.
2.
3.

10.
11.

Computing the meax2 R" and the covariance matrjgoy] 2 M, with equation[(5p).
Constructing matrix] = [x:::X] 2 My (theN columns are the same).

Solving the eigenvalue problem for the covariance matax]: computing n, matrices
[ Tand[' ] (see equatior (20)).

. For" xed, computing the matrifg] in My.m constituted of the diffusion-maps basis by using

the algorithm detailed in Appendix|A, for which the valuerof< N is selected as explained
in AppendiX{B.

. Calculating the matrifa] in My.m de ned by equation[(23).
. For givenfg, r, Mg, andnyc, computingnyc additional samples@xgr] 2 My for * =

1;:::; nyc of random matriXX] by using the algorithm detailed in Sectjon]4.3.

. Extracting from the g, = nyc N columns of thenyc matricegx3]; : : :; [Xa¥°l:
(@) «msamplegw,;q,) 2 R™ Rfor>=1;:::; g
(b) omSamplegwy;by) 2 R™  RMefor® =1;::1; g

. Computing

P .
(a) gar = % ilin Gar and gar =

Si

P .
(G,
(b) bapy = ﬁ by and § = ﬁ (b Bag)? k=150 me.

. Applying equation[(T1) for normalizing the samples, which yields:

(@) smsampleg®,;6,) 2 R™  Rfor =1;::1 gm
(o) samples(w;r;%nk) 2R™ Rfor =1;:::; smwandfork =1::::;me.

Computings by using equatior] (17).
For each point? in G, proposed by the optimization algorithm, computfr@v®) andc(w®)
by replacing the function evaluation with the stochastic computational model by the following
procedure that does not use any function evaluation with the stochastic computational model:
(a) Computing the normalizatioa® of w° by using equatiori (14).
(b) Computinge (&°) = expf Lke, @’k?gfor’ =1;:::; g
(c) Computing (&%) = = .27 e (@°).
(d) Computing the estimate 6{w°) by using equation$[8), (13), arfld [19):
XKsim

Fwo)' g+ —2% e (@°):
—ar (WO) . r

19):
(W) " by + (jg) By € (80):
=1

End of the algorithm

0
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6. APPLICATIONS

6.1. Application 1

De nition of the probabilistic nonconvex constrained optimization probl8ine admissible set
Gy R™ with my, =2 and the stochastic proce$d (w);w 2 C,g with values inR of the
optimization problem (see equatiop$ (1)[td (3)) are de ned by

Gv=fw=(wi;wp) 2 [0;1:15F  Rég;

and
QW) =0:11 1( »+0:05wy)( 2 +0:05w,) Sr'[](lro) +0:08 5 | (36)
in which
q

wp=20w; 10 ; w;=20wp, 10 ; r = w+0:9w5+0:01:

The components of the™«-valued stochastic procetB (w); w 2 C,g with m. = 4 are de ned as,

Bi(w)= wy + wp, 124+ 4; (37)
Ba(W) = wo Wi+ 2, (38)
B3(W) =w; w, 060+ 3; (39)
B4(W) = WwW; Wy+0:4+ 4: (40)

In the previous equations, the*-valued random variable = ( 1; 2; 3; 4) on( ;T;P) is
de ned by

1=1+2 1 (1 0O5);
2=1+ 2 1;

3=1+ 3 2;

4= 4( 1 05);

in which 1 and ; are two independent uniform random variable§®yi] de ned on( ;T;P),

and where; 0, 0, 3 0, and 5 O are the hyperparameters that allow the level of
uncertainties to be controlled, and that have been xed for the numerical application to the following
values 1 = .= 3=0:2and 4 =0:05.

Construction of the optimal solution of referenag®. The admissible seGy is meshed with

a regular cartesian grid @0 60 nodes that de ne § = 3600 points W' = (wg LW g:2) With
i=1;::1; ¢ in Gy. For every pointw = w' of the grid,f (w) and c(w) are estlmated by using
equation [(#) withN2 = 10;000 and equat|ons[@6) t¢_(#0). The graphs of the objective function
and of the constramts function are displayed in glre 1. The optimal solution of reference,

WePt = (weP s wi), of the probabilistic constrained optimization problem is estimated by

weopt ! arg m|n f(Wg)

and yieldswy®; = 0:74, w;¥, = 0:49, andf (we™) =  0:123 It should be noted that, if the constraints
were removed, the solution, notegE!, would bew %, = 1:11, w %, = 1:15, andf (W) = 0:218
indicating that the constraints are indeed active.

De nition of the xed numbeiN of data pointsFor this numerical application,= my,, + 1 + m¢ =
7=2+1+4,and3values ofN are considered in order to evaluate the ef ciency of the proposed

algorithm: N = 100, N =400, andN =900. For a xed value ofN, we de ne the data set
fx =(w;q;b)2R";"=1;:::;Ngintroduced in Section 2.2 as follows. For 1;:::;N, the

0
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fw)

0 02 04 06 08 1

(a) Reference f(w) ®)

Reference f(w) (contour plot)

00 1

(c) Reference c1(w) (d) Reference cz(w)

0.5 0.5

(e) Reference c (w) (f) Reference c,(w)

Figure 1. Solution of reference: Graph of the objective functiont f (w) in 3D (a) and in contour plot (b)

pointsw = (w,;Ww,) are generated by, = 1:15 ; andw, = 1:15 , in whichf ,g andf ,g

areN independent samples of the independent uniform random variapbesd , on[0; 1]that are
independent of ; and . By using the stochastic mod@(w) andB (w) de ned by equationd (36)

to (40), we thus deduog 2 Randb 2 R™¢ for * = 1;:::;N by using equatiod {5). It should be
noted that the surface de ned by the graph of the objective funatiatt f (w) of the reference

(see gurd]) presents many oscillations and consequently, it cannot be reconstructed using a small
numberN of data points. To explore this point, results were obtained\forarying from100to

900

0
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Construction of the optimal solutipnvy”, estimated with the data points The methodology
presented in Sectiop| 3 is used for est|mating the optimal solutiffh= (wg’;; wg’,) of the
probabilistic constrained optimization problem, using onlykhdata points, and which is given by

opt

Wy arg min f(w,

c(w )<O

in which the objective functioh and the constraints functiarare computed by using the algorithm
presented in Sectign 3.3, and which are estimated by using only tteta points. In Tablg |, for the
three values ol , the three lines (c) entitled "Data points” give the resultsi(ff. Figure (aﬂ?
(a), and 4- (a) display the graph of the objective functiod! f (w) in contour plot, evaluated in the
g pointswy = (Wy.1;Wy,);i = 1;::1; ¢ of the grid, and estimated witk = 100, N = 400, and
=500. These results show that the optimal solution of referem¢&, cannot be approximated
by using only theN data points represented py], even forN = 900.

Construction of the optimal solutipmvdy, estimated with the xed numbéd of evaluations and

with additional samples without additional function evaluatiofer each one of the values Nf,

the algorithm presented in Sectiph 5 is used. For the three valubls of=4 (the null space

of matrix [coV] is found to be equal t®), the smoothing parametér=5, andm is estimated

by using Appendif B yieldingn =5, independent ofN. The relative errore.(m) computed

with equation [(5}) yields:44 10 3 for N =100, 8:25 10 4 for N =400, and9:89 10 4

for N =900. The parameters for the generation of the additional samples performed by using
Section[4.B aréo =1:5, r =0:11828 andM, = 100. For each one of the considered values
of N, the number of additional samples that are computeghiss nycN with nyc =2, nye = 10,
andnyc = 100 Steps 7 to 11 of the algorithm presented in Sedtion 5 are carried out for evaluating
the estimated objective functioh and the constraints functioa at the ¢ points w® = Wig =

(Wy,1; Wyo);i = 1;:::; g of the grid. The optimal solutiowgy’ = (wgry; Way,) of the probabilistic
constralned optimization problem, using thg, additional samples is given by

wgr ' arg I_ﬂggp f(wj):
c(w )<O

In Table], for the three values of, the three blocks of lines (c) entitled "Additional samples” give
the results fowg} as a function of the numbet;, of additional samples. Fdd = 100, N = 400,
andN =500, Flgure{]z[,:]:% anl4 display the graph of the objective funatioft f (w) in contour
plot, evaluated at they pointswg = (w' l,w'g »);1=1;::1; 4 of the grid, estimated with g,
additional samples. These gures cIearIy show tNat 100 is not suf cient for reconstructing
the surface for any number of additional samples and consequefitlgannot be approximated by
war. On the other hand, fad = 400 anda fortiori for N = 900, as soon asq, is suf ciently large,
then the surface is reconstructed with a reasonable accuracy and consequi§ntig/ds a good
approximation ofwv™,

For illustration, forN = 900 data points, gurg b-(a) displays the eigenvaluesoim ,-scale of the
transition matrix for random vectdt, which clearly shows thah is a good value for parameter
m, and gure[§-(b) shows the graph of the objective functier?! f (w) in 3D evaluated in the

g pointswy = (wg 1 g,2) i=1;:::; 4 of the grid, and estimated withy,, = 9000 additional
samples correspondlng tqc = 10. It can be seen that this surface, which is reconstructed from
the900data points by usin§ 000additional samples, is close to the surface of reference shown in
gure fI}(a).

Quantitative summary of the results obtained for the three value$.df Table[], the rst line

(a) of results entitled "Reference no constraint” is the optimal solution of refereffte wo:
computed without the constraints while the second line (b), entitled "Reference” is the optimal
solution of referencev*™ = wg* computed with the constraints. In Table I, line (c) corresponds to
the optimal solution with constraints® = wg", estimated by using only the data points and
lines (d) correspond to the optimal solution Wlth constraint®! = wd'r, estimated by usingsm

0
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additional samples. The results given in lines (c) and (d) must be compared to line (b) "Reference”.
These results provide a closer quanti cation of the illustrations in gfifes|2 to 4.

Table I. Table de ning the optimal values of the optimization problem (a) corresponding to the reference

solution without the constraints, (b) corresponding to the reference solution with the constraints, and for

the optimization problem with the constraints, (c) estimated witH\thdata points, (d) estimated within
additional samples.

N | nye sm | W[ WP | F (WP
(a) Reference no constraint 1.11| 1.15| -0.218
(b) Reference 0.74 | 0.49| -0.123
(c) Data points 100 0.74 | 0.00 | -0.025

(d) Additional samples 100| 2 200 | 0.64| 0.00| -0.027
100| 10 | 1000 | 0.68| 0.55| -0.049
100 | 100 | 10000| 0.68 | 0.37 | -0.063
(c) Data points 400 0.17| 0.17| 0.008
(d) Additional samples 400 | 2 800 | 0.21| 0.00| -0.085
400 | 10 | 4000 | 0.70| 0.53| -0.067
400 | 100 | 40000| 0.72| 0.45| -0.107
(c) Data points 900 0.70 | 0.00| 0.001
(d) Additional samples 900 | 2 1800 | 0.68 | 0.55| -0.013
900 | 10 | 9000 | 0.70| 0.49| -0.081
900 | 100 | 90000| 0.72| 0.49| -0.112

6.2. Application 2

The second application is devoted to the probabilistic nonconvex unconstrained optimization
problem for which the objective function is the Rosenbrock function [32] in dimensfonwhich
both a multiplicative noise and an additive noise have been added.

De nition of the probabilistic honconvex unconstrained optimization probldime admissible
setGy, R™ with my, =4 and the stochastic procef3 (w);w 2 C,g with values inR of the
optimization problem (see equatiof$ (1)[tp (2)) are de ned by

Gy = (W= (w1, W Wa;Wy) 2 [0:85;1:15] Rig;

Qw)= 1RW+ »; (41)
in whichw 7! R (w) is the Rosenbrock function that, for,, = 4, is written as

X2
R(w) = 100wz W5 )2 +(1 Wy 1)?; (42)
i=1

and where th&?-valued random variable = ( 1; 2) on( ;T;P)isde ned by

1=1+2 1 2( 1 05); (43)
2= 2( 1 05); (44)

in which 1 and , are two independent uniform random variable§@yi] de ned on( ;T;P),
and where; 0Oand , 0 are the hyperparameters that allow the level of uncertainties to be
controlled, and that have been xed for the numerical application & , = 0:4.

Construction of the optimal solution of reference®. (i) As Ef ;g=1 andEf ,9=0, the
exact expression of the objective function de ned by equafion (2)Yve) = R(w). Consequently,

the exact solution of the probabilistic optimization problem de ned by equations (1)[@nd (2) is
wiPt = woP = wg = wi =1 andf (W) =0.

0
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(a) f(w) estimated with 100 data points
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(c) f(w) estimated with 1000 additional samples (d) f(w) estimated with 10 000 additional samples

Figure 2. Graph of the objective functiom 7! f (w) in contour plot, evaluated in they points w‘g =

additional samples correspondingrigc =2 (b), with sm =1000 additional samples corresponding to

nuc = 10 (c), and with sm = 10 000 additional samples correspondingi@ = 100 (c). The white diamond

is the optimal solution of reference, the white disc is the optimal solution estimated with the additional
samples, and the white square is the optimal solution estimated with the data points.

(i) The optimal solution of reference is constructed numerically as follows. The admissible set
Gv is meshed with a regular cartesian grid of nodes with 2, which de ne 4 points
Wy = (w'g;l;w;};z;_w;;;g;w'g;z!) with i =1;:::; ¢ in G,. For every pointw}, of the grid,_f (W) is_
estimated by using equatidr (4) with® = 100;000and equation$(41) td}14). The optimal solution
of referencew?® = (w;7y; wi™; webs; wy¥,), of the probabilistic unconstrained optimization problem
is estimated by

WP arg  min f(Wy); (45)

9

and the results are given in Taljlé Il as a function of the resolutiai the grid. The extreme
sensitivity of the reference solution to is clear. For the grids3*, 15%, and 17%, the exact
solution is reached, but it is by chance associated with the fact that the regular grid has a node
that coincides with the exact solution and in additi@p 000samples are used to evaluate the
mathematical expectations for each point W‘gj of the grid. This aspect must be carefully kept

in mind because, for the method proposed in this paper, we will use a datadet @66 data

in G, (and therefore, that are not nodes of a regular neness grid) and for which, in each one
of these data points, we have only one sample (and1A6t000samples as for the reference
solution) for estimating the objective function. Consequently, the statistical uctuatioQ@gw)

play a fundamental role. The accuracy of the localization of the solution that is constructed with
the proposed algorithm without additional evaluations of the objective function, must be interpreted
statistically. A grid with15* nodes is adopted in the following.

0
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(a) f(w) estimated with 400 data points (b) f(w) estimated with 800 additional samples
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(c) f(w) estimated with 4000 additional samples

Figure 3. Graph of the objective functiom 7! f (w) in contour plot, evaluated in they points wig =

additional samples correspondingrigc =2 (b), with sm =4000 additional samples corresponding to

nuc = 10 (c), and with sm = 40 000 additional samples correspondingi@ = 100 (c). The white diamond

is the optimal solution of reference, the white disc is the optimal solution estimated with the additional
samples, and the white square is the optimal solution estimated with the data points.

Table II. Table de ning the optimal solution of referend®™ = (w;’y;wp'; wy's; wy") as a solution of
equation[4p) in function of the neness of the grid.

Number

of nodes Wiy Wiy W' Wiy f (W)

in the grid
13*=28561 | 1.0000| 1.0000| 1.0000| 1.0000| -0.0001
14* =38416 | 0.9192| 0.8500| 0.9192| 0.8500| 0.0180
15* =50625 | 1.0000| 1.0000| 1.0000| 1.0000| -0.0001
16* =65536 | 0.9300| 0.8700| 0.9300| 0.8700| 0.0149
174 =83521 | 1.0000| 1.0000| 1.0000| 1.0000| -0.0001
18*=104976 | 1.0618| 1.1324| 1.0618| 1.1324| 0.0126

De nition of the xed numbeN of data pointsFor this numerical applicatiom,= m,, +1=5=

independent of ; and . By using the stochastic modél(w) de ned by equationg (41) t¢ (44),
we thus deducg for ™ =1;:::;N by using equatior {5).

0
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Figure 4. Graph of the objective functiom 7! f (w) in contour plot, evaluated in they points w‘g =

additional samples correspondingrigc =2 (b), with sm = 9000 additional samples corresponding to

nuc = 10 (c), and with sm = 90 000 additional samples correspondingti@: = 100 (c). The white diamond

is the optimal reference solution, the white disc is the optimal solution estimated with the additional samples,
and the white square is the optimal solution estimated with the data points.

Figure 5. FoN =900 data points: (a) Eigenvaluesliog,,-scale of the transition matrix for random vector
H. (b) Graph of the objective functiow 7! f (w) in 3D evaluated in theg pointswg = (Wg.1; Wg.5);i =

black diamond is the optimal solution of reference, the black disc is the optimal solution estimated with the
additional samples.

Construction of the optimal solutipnvy”, estimated with theN data points The methodology

presented in Sectigr} 3 is used for estimating the optimal solwfiire (g, g , W, We'y) of

0
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the probabilistic unconstrained optimization problem, using onlyNhdata points, and which is
given by
ngt 1

; iy -
arg | _min f(wg);
in which the objective functiofi is computed by using the algorithm presented in Se¢tion 3.3, and
which is estimated by using only ti data points. In Table IJI, the rst line entitled "Data points”
gives the results fow$". These results show that the optimal reference solutigh, cannot be
approximated by using only th¢ data points represented pg] with N = 256 in dimensior4.

Table Ill. Table de ning the optimal values of the probabilistic unconstrained optimization problem
estimated with thé\ data points and estimated withm = N nyc additional samples without evaluation
of the objective functions.

N =256 Nue | Wars | Warz | Wars | Wars | f (War
Data points 1.1071| 1.1500| 1.0000| 1.1500| 1.3140

Additional sampleg 2 1.0857| 1.1286| 1.0214| 1.0429| 1.2663
10 | 1.0857| 1.1500| 1.0214| 1.0429| 0.9453
50 | 0.9786| 0.9357| 1.0429| 1.1071| 0.7963
100 | 0.9786| 0.9357| 1.0429| 1.0857| 0.7272

300 | 0.9786| 0.9357| 1.0429| 1.0857| 0.6715
700 | 0.9786| 0.9357| 1.0429| 1.1071| 0.6345

800 | 1.0429| 1.0643| 1.0000| 0.9357| 0.3112

900 | 1.0429| 1.0429| 0.9786| 0.9357| 0.3065

1000 | 1.0429| 1.0429| 0.9786| 0.9357| 0.3024

Construction of the optimal solutipwg}, estimated with the xed numbe¥ of evaluations and with

additional samples without additional function evaluationke algorithm presented in Sectfgn 5 is
used. The null space of matrjigoV] is found to be equal t6 and therefore, = n. The smoothing
parameter' = 10, andm is estimated by using Appendjx B yielding = 6. The relative error
€.d(m) computed with equatiof (b4) yields29 10 3. The parameters for the generation of the
additional samples performed by using Secfior] 4.3fgre 1:5, r =0:14239 andMg = 100.

The number of additional samples that are computed.iss nycN for the values ohyc given in
Table[IT]. Steps 7 to 11 of the algorithm presented in Sedtjon 5 are carried out for evaluating the
estimated objective functidnat the 4 pointsw® = Wig;i =1;:::; 4 ofthe grid. For each value of

Nue, the optimal solutiowg} of the probabilistic unconstrained optimization problem is estimated
using the 4, additional samples,

wg 't oarg  min f(Wy):
..... o
In Tablelﬂ, the block o® lines entitled "Additional samples” gives the resultsfeff' as a function
of the number ¢ such that 3, = N n, is the number of additional samples. These results show
thatf (war) decreases whem,c increases and that the uctuations arouraf each coordinatery;,
also decreases whep, increases. Famyc = 900, the level of these uctuations arourids of the
order of the uctuations given in Tab[e] Il that are generated by the variation of the neness of the

grid.

Remark For the deterministic optimization problem for which the objective functibm) = R (w)

is the Rosenbrock function de ned by equatipn|(42), the Dakota softwélrelis [33]. For this dimension
myw = 4 and using an initial with coordinates poing = 0:86, w, = 0:9, wz = 1:1, andw, = 1:15,

for whichf (w) = 2:96, the following two observations are made,

(i) the gradient-based search algorithm nds the solutigfi = (0:9998 0:9996 0:9997, 0:9994)

with f (we?) = 1:27 10 7 by usingN, = 55 evaluations of functioff .

(ii) the global search algorithm nds the solutions:

weP = (0:9532 0:9086 1:0479 1:0982)with f (W) = 4:48 10 3 afterN, = 3;400evaluations of

0
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functionf .

WPt = (0:9968 0:9936 1:0029 1:0059) with f (w?) =1:91 10 ° by usingN, = 34;710evalua-
tions of the functiorf .

For cases (i) and (ii), if the expressionfofwas not explicitly known (which is generally the case
of interest here), theh(w) would have to be estimated using samplesQ(w; 9 of Q(w), and
consequently, the total number of evaluationQofvould beN.  N2. For instance, foN2 = 100
(that is a minimum), such an algorithm would reqir@00evaluations of) for case (i) and40,000

or 3;471;,000for case (ii) (what has to be comparedNo= 256 evaluations ofQ for the proposed
method).

6.3. Application 3

The third application is introduced to demonstrate the applicability of the proposed method in higher
dimensions. Speci cally, we consider a valog, = 10 in a problem that is somewhat similar to
Application 2 above. We will thus refrain from detailing this problem and we limit ourselves to
brie y summarizing the speci cations of the objective functions, the associated parameters and the
solutions sets.

De nition of the probabilistic honconvex unconstrained optimization probldime admissible
setGy, R™ with my, =10 and the stochastic procef® (w);w 2 C,g with values inR of
the optimization problem (see equatiop$ (1)[tp (2)) are de nedShy fw = (w;:::;Wn, ) 2
[ 01;0:2" R™gand

Qw)= 1HW+ 2; (46)

in whichw 7! H (w) is the function that is written as
H(w) = sin(4kwk)=(4 kwk) : 47

In equation [(4]7), theR?-valued random variable = ( 1; ;) is de ned by equations (43) and
(44) for which the hyperparameters that control the level of uncertainty are xed at values of
1= 2=0:1 It can be easily seen that that functian7! f (w) = EfQ (w)g is not convex on

Gv. The exact solution of the probabilistic nonconvex unconstrained optimization problem de ned
by equationg[ (1) and[(2) w"pt 0 forallj =1;:::;my andf (woP) = 1.

De nition of the xed numberN of data points For this numerical applicatiom = my, +1 =
10+1 =11, and the value oN is 7;000. The data sek =(w ;q) for * =1;:::;Ng, which

has been de ned in Sectign 2.2 is constructed as follows. Forl;:::;N, the pointsw =
(wy;::1;wy,, ) are generated, fok =1;:::;my by w, = 0:1+0: 2bk in which f b, g are
my N mdependent samples of the mdependent uniform random varigble& = 1;:::;myg

on [0; 1], which are independent of; and ,. By using the stochastic modé&l(w) de ned by
equation[(4p), we thus dedugefor* =1;:::;N by using equatior {5).

Construction of the optimal solutlorw"a’}‘, estimated with the xed numbeX of evaluations
and with additional samples without additional function evaluationBe algorithm presented
in Section[5 is used. The null space of matftoy is found to be equal t® and therefore,

= n. The smoothing parameter is taken"as 10, and seven eigenvectors are retained for the
diffusion maps ih = 11) which are associated with the eigenvalues of rarik 12. The relative
error e.(m) computed with equatio (b4) yields44 10 *. The parameters for the generation
of the additional samples performed by using Sedfioh 4.3 gre150, r =0:12582 My =1
andnyc = 100. The number of additional samples that are computed;iss nycN = 700;000.
Steps 7 to 11 of the algorithm presented in Sedtion 5 are carried out for evaluating the estimated
objective functiorf at the pointsvy generated by the genetic algorithm that is used for solving the
nonconvex unconstrained optimization problem. The initial population for the genetic algorithm is
a sample of siz&;000 drawn from a uniform distribution oG,. The optimal solution obtained
is wePt= (' 0:037,0:033 0:009 0:008 0:02G, 0:018 0:025 0:027.0:017 0:006) with f (wer) =

1:001, which is in close agreement with the exact solution.
Itisis clear from the sequence of applications presented in this paper that the proposed methodology

0
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relies on the availability of a repertoire of deterministic optimization algorithms adapted to the
problem at hand. The proposed methodology then accelerates statistical evaluations and averages
required by these algorithms. From this perspective, it is apparent that scalability of the proposed
method is inextricably tied to scalability of the underlying optimization algorithm. The added cost
associated with sampling from the manifold-constrained distribution is a very small fraction of the
cost of typical function evaluations. This involves solving an initial value problem for a system of
coupled ordinary differential equations, requiring no additional calls to the expensive function.

It is also apparent from the three examples presented above that although the proposed method
was not designed to accelerate the convergence rate of deterministic functions, it does serve that
purpose to a signi cant extent. Speci cally, accuracy in the estimated optimal solution is achieved
that is consistent with orders of magnitude more function evaluations than is actually used. While
this improvement has the most signi cant rami cations in OUU problems where the statistical
uctuations can be traced to speci ¢ random variables in the underlying models, it remains very
valuable in deterministic problems. In these cases, the convergence acceleration to the deterministic
problem must also be interpreted and analyzed statistically, a task that is outside the scope of this
paper.

7. CONCLUSIONS

The paper presented a new perspective on optimization under uncertainty whereby the objective
function is viewed as the average of data scattered around a manifold. By integrating methods from
machine learning, statistical smoothing, and stochastic analysis, the distribution of this scattered
data is characterized and ab kquation projected onto an underlying manifold is constructed to
generate associated statistical samples. The savings from the proposed procedure will be greater
the more uncertainty is present in the problem, resulting in greater scatter in the data. In these
situations, standard procedures typically require a very large number of function evaluations at each
design point.

The purpose of the present paper was to introduce the method with its mathematical background
and numerical demonstrations. The extent of comparison with other methods is currently limited to
the impressive reduction in the number of function evaluations required for estimating the statistical
averages present in the objective and constraint functions. Applications to high dimensional
optimization problems will greatly bene t from the development of adapted optimization logic,

a task beyond the scope of the present paper.

A. CONSTRUCTION OF THE DIFFUSION-MAPS BASIS

In this appendix, we summarize the construction of the diffusion map basis based|onl[21, 22]
andpdetalled in([29]. Lefb] be the posmve -de nite diagonal real matrix My such thafb]; =

i JO 1 [KTj o in which [K]jo=ke( '; %). Let [P] be the transition matrix iy such that
[P]=[b] *[K] and let[Ps] be the symmetrlc matrix iMy such thafPs] = [b]**2 [P][b] 72 =

[b] ¥?[K][b] 7. Letm be anintegersuchthatc m  N.Theeigenvalues gPs] =

are positive and such that= ;> , ::: m. Let [ ] be the matrix inMy.m such that
[ 1"[ 1=[Im], whose columns are tha orthonormal eigenvectors®;:::: ™ associated with
;17 m. The right e|genvectors ;o0 ™ associated with 1::::: m, which are such that
[P] = , are written as
=[b] ¥2 2RV =1;::;m; (48)
and consequently, the matfix]=[ *::: ™]=[b] ¥2[ 12 My is such that

[ 17[bI[ 1=[1m] (49)
0

Prepared usingimeauth.cls



STOCHASTIC OPTIMIZATION 23

which de nes the normalization of the right eigenvector$Rif A "diffusion-maps basis” is de ned
by[g] =[g':::g™] 2 My:m (Which is an algebraic basis &' for m = N) such that

g = 2RY =1;::;m; (50)

in which is an integer that is chosen for xing the analysis scale of the local geometric structure
of the dataset. It should be noted that the farhily g of diffusion maps are de ned [21, 22] by the
vector =( , %:::; ., ™) inorder to construct a diffusion distance, and integés thus

such that the probability of transition is insteps. However, as it has been explained in [29], we do
not use such a diffusion distance.

B. CRITERION FOR ESTIMATING AN OPTIMAL VALUE OFm

In this Appendix, we recall the criterion introduced in[29] for estimating a value of dimemsion
Let [xq] 2 Myn  be the matrix of the dataset introduced in Secfion 4.1 anfl 2 M,y be the
matrix computed with equatiop (21). We then introduce the m@trim)] 2 M,y such that (see

equations[(Z_3) and (25)),
Xed(m)] = [XI+[" 10 "% [zalld]" 5 [2a] =1 allal: (51)
Let x%

L (m);::;xN(m) be theN vectors inR", which constitute theN columns of matrix
[Xred(M)] 2 Man . We then introduce the empirical estimates(m) 2 R" and [COV,e(m)] 2

M, of the mean value and of the covariance matrix calculated with the saplém)] =

XL (m)::oxN(m)] 2 My such that

red

1 X
lred(m) = W Xred(m) ; (52)
=1
1 X .
[Covred(m)] = ﬁ (Xred(m) Xred(m)) (Xred(m) xred(m))T : (53)

_—
A criterion for the mean-square convergence is then speci ed as

klcovies(m)]  [cOVIKE |
k[covlke '

€red(M) = (54)

in which [coV] is the empirical estimate of the covariance matrix of random vettevhich is such

that
. . 1 X
x N 0T 5 ox= o X (55)
=1 =1

[cov =

1
N 1
Sincelxq(N)] = [ Xq], it can be deduced thaty(m) ! Owhenm goestaN . For a xed reasonable

value o > 0 of the relative tolerance.4(m), an estimate ofn will consist of looking for the
smallest value of such thage(m) "o.

C. ALGORITHM FOR SOLVING THE REDUCED-ORDER ISDE

The algorithm for solving the reduced-order ISDE de ned by equatipns (26) {o (28) is detailed in
[29] and is summarized hereinafter. Thé@®her-Verlet scheme is used. Ldt = nyc Mg be the
positive integer in whichyc andM( have been introduced in Sectjon]4.3. The reduced-order ISDE
is solved on the nite intervaR =[0 ;M r], in which r is the sampling step of the continuous
index parameter. The integration scheme is based on the use oMhe 1 sampling pointg o

0
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[Y o] =[Y (r-o)], and[W o] = [W (r-0)], for '°=0;:::; M, with

[Zo]=[Hdlla] ; [Yol=[N][a] ; [Wo]=[0m] ais: (56)
For%=0;::::M 1, let
[ W ]=[ Woq][a]; (57)

be the sequence of random matrices with valuesin , in which[ W, ]=[Wog]  [WO).
The increment§ Wi];:::;[ Wwu]areM independent random matrices with valuedMny . For
alk=1;:::; and for aIIJ =1;:::;N, the real-valued random variabl&s W1 Jj 0« are
independent, Gaussian, second order, and centered random variables such that

Ef[ W°+1]kj[ Wo+1]k0jog: ' kko jjo: (58)

For'0=0;:::;M 1, the Sbrmer-Verlet scheme applied to equatiofis] (26) &nfl (27) yields

Z o 31= (2 0+ — Vool (59)

b r p*
[Yooa]= m[Y‘O]*’ m['—‘%%] 1+ b[ W oi ] (60)
Z 012 [Z 0y 31+ — [V ooul; (61)

with the initial condition de ned by equatiof (8), whebe= fo r=4, and wherdL -o, 1] is the
M.m -valued random variable such that

Lo 3]=[LAZ 00 s D= [LAZ or 11T (62)

in which, for all [u] = [u?:::uN]in My with u” = (uy;:::;u”) in R, the entries of matrix
[L([u]] in M.y are de ned by equatlonE(]SO) to (33).
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