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Abstract: The objective of the work presented here is the inverse identifica-
tion of parameters describing the mechanical characteristics of high-speed train
suspensions for maintenance purposes. This identification is achieved by com-
paring simulation results to on-track accelerometric measurements. It requires
the introduction of an output predictive error as a noise added to simulation out-
puts to take into account measure and model uncertainties, the introduction of
an objective function defined on the parameter domain, and the optimization of
this objective function, performed by an EGO (Efficient Global Optimization)
algorithm thanks to the construction of a Kriging metamodel of the objective
function.

1 Introduction
Trains dynamic behavior strongly relies on their suspensions state, which undergo damage
throughout their lifetime. In order to ensure passengers safety and comfort, a good state of sus-
pensions must be guaranteed, thanks to regular maintenance. Presently, this maintenance mostly
relies on age or mileage criteria. The knowledge of the actual state of suspension characteris-
tics could however allow the use of maintenance rules closer to the real needs. The industrial
objective of the worked presented here is thus the development of a remote diagnosis method
for high-speed train suspensions based on accelerometric on-track measurements. This work is
part of a development project conducted by SNCF (the French National Railway Company).
Track geometry (also called track irregularities) constitutes the main excitation source of a
rolling train, and has consequently a major influence on the train dynamic behavior (see [6, 10,
7, 8]). Track geometry is also subject to damage caused by railway traffic (see [9, 1]). In order
to distinguish suspension damage from track geometry evolution in the accelerometric mea-
surements in the train, railway dynamics simulation is necessary. More precisely, we propose to
compare measured accelerations to simulated ones, computed on the track geometry which has
been measured together with the accelerations. The experimental data (track geometry and ac-
celerometric measurements) used for this work come from the train IRIS 320, a modified TGV
specially equiped to perform various measurements at high speed (see [3, 2])
From a scientific point of view, this problem consists in a statistical inverse identification of
the train model parameters describing the suspensions mechanical properties. The repetition of
this identification on measurements performed at different times should allow for observing the
time evolution of these parameters. Appropriate maintenance could then be triggered as soon as
they leave the acceptable domain.



2 Description of the analyzed system
2.1 Mechanical system
In this work, the system considered is a train rolling at variable speed on a track characterized
by its design and its geometry.
The track geometry is defined as the geometric irregularities of the rails position with respect to
the theoretical track design. It can be modeled as a R4-valued stochastic process (see [11]). The
track is divided in segments, a few kilometers each. For a fixed date, there is a given number
of segments on which geometry has been measured. Consequently, a limited number of track
geometry realizations is known, about one hundred. The input of the railway dynamical system
is the excitation induced by the track geometry.
The train is described as a multibody model. It consists of rigid bodies linked together by me-
chanical joints (mostly stiffnesses and dampers) with nonlinear behavior. Wheel-rail contact law
is also nonlinear. The train parameters involved in the identification process are solely mechan-
ical parameters modeling the train suspensions. Certain suspension parameters will eventually
be modeled as random variables, because their values are not known precisely. In this paper,
we however present a first step for which they are taken deterministic. The railway dynamics
software used for this work as a black box is Vampire.
The system output is the train accelerometric response to the track geometry at a certain (possi-
bly varying) speed. For this work, only vertical and lateral accelerations on various points of the
train carbodies and bogies are considered. The analysis of the response is done in the frequency
domain.

2.2 Quantities of interest
Two different time scales are considered: the short-time scale associated with the train dynamics
and the long-time scale associated with the evolution of the suspensions mechanical properties.
For a fixed date (related to the long-time scale), the following quantities are defined:

• X(t) as a real vector-valued stochastic process indexed by the time interval [0 ,T ], repre-
senting the displacement condition imposed to each wheel of the train, in the axis system
attached to the train, circulating at varying speed. Only a limited number of realizations
of this stochastic process is known. These realizations are directly deduced from the ge-
ometry measurements, the train speed record and the location of the wheelsets along the
train. In this work, no stochastic model of the track geometry is used.

• A(t) as a Rn-valued stochastic process indexed by [0 ,T ], representing the train accelero-
metric response in the axis system attached to the train.

• Y(ω) as a Rn-valued stochastic process indexed by the frequency domain Ω, representing
the amplitude of the Fourier transform of A(t) in dB:

Y(ω) = 10 log10
∣∣Â(ω)

∣∣ , (1)

with

Â(ω) =
∫ T

0

1√
T

A(t)e−iω tdt . (2)

• w as a deterministic vector with value in the admissible set Cw, subset of Rq, representing
the parameters describing the mechanical properties of the train suspensions.



The output quantity of interest is process Y rather than process A. Only the amplitude of the
Fourier transform is considered in order to avoid systematic phase-shift issues between mea-
sured and simulated processes in the time domain. This amplitude is taken in dB in order to
characterize the system resonances as well as antiresonances.
The previous formulation is preferred to the computation of the power spectral density function
of A because the emphasis is put on the calibration of the train model rather than on the analysis
of the input variability propagation through the system. A similar approach could be performed
with a fully deterministic track input. In that case the stochastic property of the output would
only come from the uncertainty on the parameters, the computation of the power spectral density
function would not be appropriate.
In the following sections, three different versions of process Y are used:

• Ymes(ω) directly computed from the accelerometric measurements.

• Ysim(ω,w) computed from the simulated accelerations, which depends on the w param-
eter.

• Ymod(ω,w) computed from Ysim(ω,w) to which a noise is added. This noise models the
measurement and train model uncertainties (see Section 2.3).

2.3 Measure and train model uncertainties
To perform a correct parameter identification, it is necessary to introduce a model uncertainty
to the simulation results Ysim(ω,w). An identification performed without uncertainty could re-
sult in nonrobust parameters, potentially very different from the real values. The simulation
being used as a black box, the model uncertainty can only be introduced as an additive output
predictive error. Moreover, a measurement uncertainty must be taken into account. These two
types of uncertainty are globally introduced with an additive noise, B(ω), on the response of
the system. This noise must be identified from the available measurements. The noise identi-
fication is performed once and for all at a given reference date. It is then supposed than the
identified process B(ω) can be kept unchanged for all other dates. At reference date, accelero-
metric measurements provide a set of ν0 sample paths {ymes,i(ω),ω ∈ Ω}1≤i≤ν0 of process
{Ymes(ω),ω ∈ Ω}. On the corresponding track irregularity measurements, a set of ν0 sample
paths {ysim,i(ω,w0),ω ∈Ω}1≤i≤ν0 of process {Ysim(ω,w0),ω ∈Ω} is computed by the simu-
lation software. The nominal value of parameter w is denoted by w0. From those two sets, ν0
sample paths of noise {B(ω),ω ∈Ω} are then computed:

bi(ω) = ymes,i(ω)−ysim,i(ω,w0) , 1≤ i≤ ν0 . (3)

The stochastic process B is modeled as a Gaussian process independent from processes Ymes

and Ysim(. ,w0). The mean and covariance functions of B are estimated by using the ν0 sample
paths {bi(ω),ω ∈ Ω}1≤i≤ν0 . Such a Gaussian model allows an easy sampling of process B to
be generated.
Figure 1 shows the comparison between Ymes(ω) (black) with Ysim(ω,w0) (red) on the one
hand (top graph), and Ymes(ω) (black) with Ymod(ω,w0) (blue) on the other hand (bottom
graph), for the component k of these processes. This component corresponds to a carbody ver-
tical acceleration. It can be noticed that the addition of the noise allows for obtaining a good
match between the measured and the simulated mean functions. Moreover, the confidence re-
gion of process Ymod overlaps the one of measured process Ymes.
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Figure 1: Mean and quantiles comparison of Y mes
k (ω) with Y sim

k (ω,w0) (top graph), and of Y mes
k (ω) with

Y mod
k (ω,w0) (bottom graph), for the component k corresponding to a carbody vertical acceleration.

3 Estimation of the optimal model parameters with Kriging meta-
model

This section presents an approach for the identification of an optimal deterministic parameter
wopt, relying on Kriging metamodeling. For a given parameter w, an objective function J (w)
representing the distance between the measurements and the simulation results needs to be
defined. A Kriging metamodel of this objective function is then built from an experimental
design on Cw. The computation of wopt is performed thanks to this metamodel. This procedure
has been tested by using a numerical experiment.
For this part, all the quantities previously introduced are relative to the date at which the mea-
surements have been made, which is different from the reference date used for the noise identi-
fication.



3.1 Definition of the objective function
In the present case, the objective function J is a real-valued function of the parameter w used
to represent the distance between the processes Ymes and Ymod(. ,w). The higher the objective
function is, the smaller the distance between these processes will be. Consequently, in order to
find the optimal parameter wopt for which the simulation best matches the measurements, the
objective function must be maximized:

wopt = arg max
w∈Cw

(J (w)) . (4)

Two sets {ymes,i}1≤i≤ν and {ymod,i(. ,w)}1≤i≤ν of ν sample paths of processes Ymes and
Ymod(. ,w) are known. For ω fixed in Ω, for w fixed in Cw, and for component k fixed in
{1, . . . ,n}, the probability density functions of the real-valued random variables Y mes

k (ω) and
Y mod

k (ω,w) are written as pY mes
k

(. ;ω) and pY mod
k

(. ;ω,w). They are estimated with the Gaussian
kernel etimation method in the framework of nonparametric statistics from the realizations at
each ω .
The objective function is defined according to equation (5):

J (w) =
n

∑
k=1

αkΨk(w) , (5)

with ∑
n
k=1 αk = 1. This equation aggregates the contribution of the different components of the

Rn-valued process Y, with weights {αk}1≤k≤n.
The function Ψk is constructed to compare the R-valued processes Y mes

k and Y mod
k (. ,w). Two

different constructions are proposed:

• The first one is inspired by the log-likelihood function (see [14]), written as:

Ψk(w) =
1
|Ω|

∫
Ω

log
ν

∏
i=1

pY mod
k

(ymes,i
k (ω);ω,w)dω . (6)

• The second one is based on an overlaping criterion (see [4]), which computes the overlap
between the probability density function pY mes

k
(.;ω) and pY mod

k
(.;ω,w):

Ψk(w) =
1
|Ω|

∫
Ω

OVL
(

pY mes
k

(.;ω), pY mod
k

(.;ω,w)
)

dω , (7)

with
OVL(p1, p2) = 1− 1

2

∫
R
|p1(u)− p2(u)|du . (8)

3.2 Optimization with Kriging metamodel
In order to maximize a function J over the admissible set Cw, numerous calls to the function
are necessary. In our case, the evaluation of objective function J requires the simulation of the
train dynamic response over several hundreds of kilometers of track. The acceptable number
of calls to the function is thus limited. This limitation becomes even more problematic as the
dimension of the admissible set Cw increases.
An optimization method with a limited number of calls to the function is proposed in [5]. This
method, called the EGO algorithm (standing for Efficient Global Optimization) relies on the
construction of a Kriging metamodel J̃ of the functionJ (see [12, 13]). It consists in a Gaussian
stochastic process conditionned by the points where the value of the function J is known. The



construction of the metamodel requires a preliminary evaluation ofJ on a set {w j}1≤ j≤m0 of m0

points in Cw. This set is distributed as a space-filling experimental design on Cw, so that J̃ allows
for approximating of J in the whole set Cw. Contrary to the use of the full computational model
for evaluating the objective function, the use of the metamodel allows for quickly computing the
objective function at any point in Cw. To find the optimum, the EGO algorithm then allows for
computing at most m1 new values of J . The metamodel is used to determine the best location
of these new points. The criterion used to designate the next candidate point is the expected
improvement, defined on Cw by the equation (9) (in the case when J needs to be maximized):

EI(w) = E
{

max(0, J̃ (w)− Jmax)
}
, (9)

where Jmax is the current known maximum of J , and E{.} denotes the mathematical expec-
tation. The candidate point is the one that maximizes this expected improvement. The main
interest of this criterion is that it offers a compromise between local search (where the meta-
model mean function is maximum) and global search (where the objective function is poorly
known). Objective function J is then evaluated on this candidate point. The current maximum
Jmax and the metamodel J̃ are then updated, and the search for a new candidate begins. If the
maximum of expected improvement goes below a given tolerance ε , the search for new can-
didates is stopped, even though the acceptable number of new points m1 is not reached. This
stopping condition is set to avoid unnecessary iterations. This algorithm is summed up by the
following pseudo code:

Initialize J̃ with the points {(w j ,J (w j))}1≤ j≤m0

for `= m0 +1 : m0 +m1 do
Set Jmax = max

j∈{1,...,`−1}

{
J (w j)

}
Set EI : w 7→ E

{
max(0, J̃ (w)− Jmax)

}
Search w` = arg max

w∈Cw

{EI(w)}

if EI(w`)< ε then
Break loop

else
Compute J (w`)

Update J̃ with the point (w` ,J (w`))
end if

end for
Return wopt = arg max

j∈{1,...,`−1}

{
J (w j)

}
3.3 Optimization results on a numerical experiment case
The algorithm described in the previous section has been tested on a numerical experiment with
the two types of objective function described in Section 3.1.
What we call here a numerical experiment is an artificial measurement generated by simulation
with known suspension parameters. Let wref be these known parameters representing damaged
suspensions. The ν sample paths {ysim,i(. ,wref)}1≤i≤ν of the dynamic response are computed
by simulation with parameter wref. A set of ν sample paths {bi}1≤i≤ν of the noise B are gen-
erated using the model identified in Section 2.3. This noise is added to the simulated response
to obtain a reference response as close as possible from the measurements, but with known
suspension parameters:



yref,i(ω) = ysim,i(ω,wref)+bi(ω) , 1≤ i≤ ν . (10)

This set {yref,i}1≤i≤ν replaces set {ymes,i}1≤i≤ν for the computation of the objective function.
For the test presented here, Cw is a hypercube of dimension q = 7. The initial experimental
design is a Latin Hypercube Sample of m0 = 500 points, optimized with a maximin criterion.
The tolerance ε for the stopping condition of the EGO algorithm is set at 10−4 times the size of
the variation interval of the objective function. The two types of objective function have been
tested, starting with the same initial experimental design. The weights {αk}1≤k≤n are chosen all
equal to 1

n .
Optimization results are presented in Table 1 and Figure 2. For each objective function, Table
1 gives the number of necessary iterations to reach stopping condition and the error between
the reference and the estimated optimal value for each of the q components of parameter w.
This error is calculated as the difference between the reference and the estimated optimal value,
in percentage of the length of the admissible interval of the corresponding component. Figure
2 represents the values of the different components of reference parameter wref and estimated
optimal parameter wopt on a normalized scale, that is to say, the admissible interval of each
component has been shrinked to [0 ,1].
The results of the optimization is globally satisfying. Apart from the second component that
is discussed afterwards, the errors obtained with the overlap objective function are below 4%
for every component. The likelihood objective function gives slightly better results on certain
component, however its maximum error (on the third component) is bigger. Moreover, the opti-
mization converges faster with the overlap objective function than with the likelihood one. If the
second component can be ignored, the overlap objective function appears to be slightly better
than the likelihood one.
The optimization result for the overlap function is bad on the second component. One can
actually observe on Figure 2 that its value is stuck on the boundary of the admissible interval.
This shows that this component could not be identified at all. An explanation for this is the
fact that this second component is very coupled with the first one, while being significantly
less influent on the measured acceleration. They both control stiffnesses linked to the vertical
motion of the carbody, but the stiffness corresponding to the first component is located much
closer to the sensor than the stiffness corresponding to the second component.

Table 1: Comparison of the optimization results using the two types of objective function: number of
necessary iterations to reach stopping condition, and the error calculated as the difference between the
reference and the optimal value in percentage of the admissible interval length, for each parameter
component.

Objective function Iterations Error for each parameter component
Likelihood 50 2.4 5.2 7.4 2.4 1.8 0.4 3.2

Overlap 18 2.9 25 3.6 0.04 1.1 1.1 3.9

4 Conclusion and perspectives
In this paper, we have presented a robust identification method by solving a statistical inverse
problem. This method allows for identifying the mechanical parameters of high-speed train
suspensions, through the use of on-track measurements and railway dynamic simulation. This
method focuses on the optimization of an objective function with the EGO algorithm using a
Kriging metamodel of this objective function. This optimization has been tested on a numer-
ical experiment. Results are promising for the two types of objective function that have been
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Figure 2: Optimization results: wopt for likelihood objective function (red triangles) and overlap objective
function (blue dots) are compared component by component to wref (black squares) on a normalized
scale.

proposed. The validation on actual measurements is in progress.
For this work, the mechanical parameters have been kept deterministic. The results obtained
here set a good basis for the introduction of uncertainties on the parameters. The identification
would then concern the probability distribution of these parameters.
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