L. Shamonina and . Solymar, Metamaterials: How the subject started, Metamaterials, vol.1, issue.1, pp.12-18, 2007.
DOI : 10.1016/j.metmat.2007.02.001

G. Veselago, THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND ??, Soviet Physics Uspekhi, vol.10, issue.4, pp.509-514, 1968.
DOI : 10.1070/PU1968v010n04ABEH003699

O. Vasseur, P. A. Deymier, G. Prantziskonis, and G. Hong, Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media, Journal of Physics: Condensed Matter, vol.10, issue.27, pp.6051-6064, 1998.
DOI : 10.1088/0953-8984/10/27/006

X. Liu, Y. Zhang, Y. Y. Mao, Z. Zhu, C. T. Yang et al., Locally Resonant Sonic Materials, Science, vol.289, issue.5485, pp.1734-1736, 2000.
DOI : 10.1126/science.289.5485.1734

. Baz, An Active Acoustic Metamaterial With Tunable Effective Density, Journal of Vibration and Acoustics, vol.132, issue.4, p.41011, 2010.
DOI : 10.1115/1.4000983

M. Cselyuszka, V. Secujski, and . Crnojevic-bengin, Novel negative mass density resonant metamaterial unit cell, Physics Letters A, vol.379, issue.1-2, pp.33-36, 2015.
DOI : 10.1016/j.physleta.2014.10.036

H. Huang and C. T. Sun, Locally resonant acoustic metamaterials with 2D anisotropic effective mass density, Philosophical Magazine, vol.26, issue.6, pp.981-996, 2011.
DOI : 10.1016/0165-2125(81)90026-3

H. Huang and C. T. Sun, Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young???s modulus, The Journal of the Acoustical Society of America, vol.132, issue.4, pp.2887-2895, 2012.
DOI : 10.1121/1.4744977

H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, Acoustic metamaterial with negative density, Physics Letters A, vol.373, issue.48, pp.4464-4469, 2009.
DOI : 10.1016/j.physleta.2009.10.013

J. Naify, C. M. Chang, G. Mcknight, and S. R. Nutt, Scaling of membrane-type locally resonant acoustic metamaterial arrays, The Journal of the Acoustical Society of America, vol.132, issue.4, pp.2784-2792, 2012.
DOI : 10.1121/1.4744941

B. Park, D. Park, J. Kim, and . Park, Determination of effective mass density and modulus for resonant metamaterials, The Journal of the Acoustical Society of America, vol.132, issue.4, pp.2793-2799, 2012.
DOI : 10.1121/1.4744940

X. X. Sheng, Z. Zhang, C. T. Liu, and . Chan, Locally resonant sonic materials, Physica B: Condensed Matter, vol.338, issue.1-4, pp.201-205, 2003.
DOI : 10.1016/S0921-4526(03)00487-3

J. Yang, M. Mei, N. H. Yang, P. Chan, and . Sheng, Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass, Physical Review Letters, vol.101, issue.20, p.204301, 2008.
DOI : 10.1063/1.3058151

URL : http://repository.ust.hk/ir/bitstream/1783.1-6034/1/PhysRevLett.101.204301.pdf

X. Yao, G. Zhou, and . Hu, Experimental study on negative effective mass in a 1D mass???spring system, New Journal of Physics, vol.10, issue.4, p.43020, 2008.
DOI : 10.1088/1367-2630/10/4/043020

P. Ma and . Sheng, Acoustic metamaterials: From local resonances to broad horizons, Science Advances, vol.2, issue.2, p.1501595, 2007.
DOI : 10.1126/sciadv.1501595

URL : http://doi.org/10.1126/sciadv.1501595

Y. Ding, Z. Liu, C. Qiu, and J. Shi, Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density, Physical Review Letters, vol.99, issue.9, p.93904, 2010.
DOI : 10.1103/PhysRevLett.93.024301

D. Gracia-salgado, J. Torrent, and . Sanchez-dehesa, Double-negative acoustic metamaterials based on quasi-two-dimensional fluid-like shells, New Journal of Physics, vol.14, issue.10, p.103052, 2012.
DOI : 10.1088/1367-2630/14/10/103052

C. T. Liu, P. Chan, and . Sheng, Analytic model of phononic crystals with local resonances, Physical Review B, vol.71, issue.1, p.14103, 2005.
DOI : 10.1103/PhysRevB.62.278

Z. Mei, W. Liu, P. Wen, and . Sheng, Effective dynamic mass density of composites, Physical Review B, vol.340, issue.13, p.134205, 2007.
DOI : 10.1103/PhysRevE.52.1135

URL : http://repository.ust.hk/ir/bitstream/1783.1-18801/1/PhysRevB.76.134205.pdf

Y. Wu, Z. Lai, and . Zhang, Effective medium theory for elastic metamaterials in two dimensions, Physical Review B, vol.44, issue.20, p.205313, 2007.
DOI : 10.1103/PhysRevB.72.014305

URL : http://repository.ust.hk/ir/bitstream/1783.1-19073/1/PhysRevB.76.205313.pdf

G. Yang, Y. Ma, Z. Wu, P. Yang, and . Sheng, Homogenization scheme for acoustic metamaterials, Physical Review B, vol.89, issue.6, p.64309, 2014.
DOI : 10.1016/j.apacoust.2004.11.005

V. F. Yuan, J. Humphrey, X. Wena, and . Wena, On the coupling of resonance and Bragg scattering effects in three-dimensional locally resonant sonic materials, Ultrasonics, vol.53, issue.7, pp.1332-1343, 2013.
DOI : 10.1016/j.ultras.2013.03.019

G. Zhou and . Hu, Analytic model of elastic metamaterials with local resonances, Physical Review B, vol.79, issue.19, p.195109, 2009.
DOI : 10.1063/1.2803315

. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, p.66, 1995.

L. Auriault and G. Bonnet, Dynamique des composites elastiques p eriodiques Dynamics of elastic periodic composites, Arch. Mech, vol.37, issue.4, pp.269-284, 1985.

L. Auriault, Acoustics of heterogeneous media: Macroscopic behavior by homogenization, Current Topics Acoust. Res, vol.1, pp.63-90, 1994.

J. L. Bensoussan, G. Lions, and . Papanicolaou, Asymptotic Analysis for Periodic Structures (North-Holland, pp.1-392, 1978.
DOI : 10.1090/chel/374

L. Auriault and C. Boutin, Long wavelength inner-resonance cut-off frequencies in elastic composite materials, International Journal of Solids and Structures, vol.49, issue.23-24, pp.23-24, 2012.
DOI : 10.1016/j.ijsolstr.2012.07.002

URL : http://doi.org/10.1016/j.ijsolstr.2012.07.002

G. Avila, B. Griso, and C. Miara, Bandes phononiques interdites en elasticit e lin earis ee " ( " Phononic bandgaps in linearized elasticity

O. Babych, I. V. Kamotski, and V. P. Smyshlyaev, Homogenization of spectral problems in bounded domains with doubly high contrasts, Networks Heterogeneous Media, vol.3, issue.3, pp.413-436, 2008.

S. Bakhvalov and G. P. Panasenko, Homogenization Averaging Process in Periodic Media, Mathematical Problems in the Mechanics of Composite Materials, pp.1-366, 1989.

F. Carbonell, J. Cervera, J. Sanchez-dehesa, L. Ariaga, A. Gumen et al., Homogenization of two-dimensional anisotropic dissipative photonic crystal, Applied Physics Letters, vol.97, issue.23, p.231122, 2010.
DOI : 10.1103/PhysRevE.71.036617

W. Milton, New metamaterials with macroscopic behavior outside that of continuum elastodynamics, New Journal of Physics, vol.9, issue.10, p.359, 2007.
DOI : 10.1088/1367-2630/9/10/359

W. Milton and J. R. Willis, On modifications of Newton's second law and linear continuum elastodynamics, Proc. R. Soc. A. 463, pp.855-880, 2007.
DOI : 10.1098/rspa.2006.1795

J. R. Nemat-nasser, A. Willis, A. V. Srivastava, and . Amirkhizi, Homogenization of periodic elastic composites and locally resonant sonic materials, Physical Review B, vol.2008, issue.68246, p.104103, 2011.
DOI : 10.1016/j.ijsolstr.2008.01.002

N. Norris, A. L. Shuvalov, and A. A. Kutsenko, Analytical formulation of three-dimensional dynamic homogenization, Proc. R. Soc. A 468, pp.1629-1651, 2012.
DOI : 10.1098/rspa.2011.0698

URL : http://rspa.royalsocietypublishing.org/content/royprsa/468/2142/1629.full.pdf

J. Parnell and I. D. Abrahams, Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves, Wave Motion, vol.43, issue.6, pp.474-498, 2006.
DOI : 10.1016/j.wavemoti.2006.03.003

C. Soubestre and . Boutin, Non-local dynamic behavior of linear fiber reinforced materials, Mechanics of Materials, vol.55, pp.16-32, 2012.
DOI : 10.1016/j.mechmat.2012.06.005

URL : https://hal.archives-ouvertes.fr/hal-00943749

T. Dang, M ethodes num eriques pour l'homog en eisation elastodynamique des mat eriaux h et erogènes p eriodiques " ( " Numerical methods for obtaining the dynamic effective properties of periodical heterogeneous materials, 2015.

Q. Nassar, N. He, and . Auffray, A generalized theory of elastodynamic homogenization for periodic media, International Journal of Solids and Structures, vol.84, pp.139-146, 2016.
DOI : 10.1016/j.ijsolstr.2016.01.022

URL : https://hal.archives-ouvertes.fr/hal-01265019

Q. Nassar, N. He, and . Auffray, On asymptotic elastodynamic homogenization approaches for periodic media, Journal of the Mechanics and Physics of Solids, vol.88, pp.274-290, 2016.
DOI : 10.1016/j.jmps.2015.12.020

R. Willis, Effective constitutive relations for waves in composites and metamaterials, Proc. R. Soc. A 467, pp.1865-1879, 2011.
DOI : 10.1016/0020-7683(85)90084-8

P. Debye, Zur Theorie der spezifischen W??rmen, Annalen der Physik, vol.67, issue.14, pp.789-839, 1912.
DOI : 10.1002/andp.19123441404

J. Schafbuch and F. J. Rizzo, Eigenfrequencies of an Elastic Sphere With Fixed Boundary Conditions, Journal of Applied Mechanics, vol.59, issue.2, pp.458-459, 1992.
DOI : 10.1115/1.2899545