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The occurrence of a negative dynamic mass density is a striking property of metamaterials. It

appears when an inner local resonance is present. Results coming from an asymptotic theory are

recalled briefly, showing the scaling of physical properties leading to inner resonance in elastic

composites containing homogeneous soft inclusions, with negligible scattering of waves traveling

through the matrix. This appears for a large contrast of elastic properties between matrix and inclu-

sion. The frequency-dependent dynamic mass density depends on the resonance frequencies of the

inner inclusions and on their related participation factors. Having solved the dynamic elasticity

problem, these physical quantities are provided in the case of homogeneous cylindrical and spheri-

cal inclusions. It is shown that numerous resonance frequencies do not contribute to the dynamic

mass density or have small participation factors, which simplifies significantly the physics involved

in the concerned inner resonance phenomena. Finally, non-dimensional resonance frequencies

and participation factors are given for both cases of inclusions as functions of the Poisson’s ratio,

defining completely the dynamic mass density. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4995999]

[MRH] Pages: 890–901

I. INTRODUCTION

Even if the existence of metamaterials has been pre-

dicted initially in the case of electromagnetic properties,1,2

acoustic metamaterials have been studied extensively during

the last few decades, especially since the production of

experiments showing bandgaps when studying the propaga-

tion of elastic waves in phononic crystals3 followed a few

years after by experiments of wave propagation through

acoustic metamaterials.4 Acoustic metamaterials can have

more or less complex internal structures as proven in the

numerous papers in this field either studying properties of

metamaterials from a theoretical approach5–9 and/or showing

experimentally the properties of these materials.4,10–14 These

materials can have “effective” negative dynamic density

and/or elastic moduli for some frequency ranges, leading to

forbidden frequency bands. A recent review paper on acous-

tic metamaterials15 draws a large picture of this domain,

showing that the interesting properties of metamaterials are

enhanced by inserting local resonators. These resonators can

be a more or less complex combination of plates, beams,

spring-mass systems, Helmholtz resonators, or (homoge-

neous or heterogeneous) inclusions of different shapes. This

review paper also reports on several recent studies on the

conception of materials having simultaneously negative

effective mass density and elastic moduli.8,16,17

In the following, the study will be restricted to elastic

composites containing inclusions of different shapes. Even so,

the amount of literature devoted to this field is impressive. It is

known for a long time that every periodic composite

containing inclusions is characterized by forbidden frequency

bands, its response to wave propagation being studied usually

by Bloch waves. However, these forbidden frequencies appear

at high frequencies when the wavelength is on the order of the

inclusion size, i.e., the material being considered as a

“phononic crystal.” A few decades ago, it was recognized that

the frequency range of forbidden frequency bands is lowered

by introducing inner resonators and that the most simple way

to induce inner resonance is to use matrix-inclusion compo-

sites containing rigid inclusions surrounded by a soft coating

(i.e., “composite inclusions”), the whole being immersed

within an elastic matrix. This led to the concept of acoustic

metamaterials. The composite inclusions act as “spring-mass”

resonators, the mass being provided by the inner inclusion and

the spring by the surrounding coating. In the case of a large

contrast between elastic properties of coating and matrix, the

low resonance frequency of the spring-mass resonator can be

reached practically without scattering of the waves by the

inclusions. It is the extreme case of “inner-resonance with neg-

ligible scattering.” Obviously, when the elastic properties of

the coating become of the same order as the ones of the matrix,

it is necessary to take into account the coupling of the inner

resonance with the scattering of waves by the inclusions.

Several methods were used to account for this coupling,18–23

the most currently used being the Coherent Potential

Approximation.24 However, in the case of a soft coating, the

case of inner resonance with negligible scattering is certainly

an interesting comparison model, which becomes fully valid

for large contrasts of elastic properties of constituents.

Less work was devoted to homogeneous inclusions, and

these works deal mainly with scattering by inner inclusions.

However, early works using homogenization theory baseda)Electronic mail: guy.bonnet@univ-paris-est.fr

890 J. Acoust. Soc. Am. 142 (2), August 2017 VC 2017 Acoustical Society of America0001-4966/2017/142(2)/890/12/$30.00

http://dx.doi.org/10.1121/1.4995999
mailto:guy.bonnet@univ-paris-est.fr
http://crossmark.crossref.org/dialog/?doi=10.1121/1.4995999&domain=pdf&date_stamp=2017-08-01


on asymptotic expansion25,26 have shown that inner reso-

nance with negligible scattering can also occur in composites

containing homogeneous inclusions. This is the domain of

application of the present paper.

The physics of wave propagation through composite

materials is complex and a strong physical insight can be

gained by using an asymptotic series expansion27 of the

dynamic solution for different assumptions of the ratios

between physical parameters: elastic coefficients and mass

densities. First, homogenization results showing the occur-

rence of bandgaps in periodic elastic composites with inner

resonance with negligible scattering were obtained in early

works,25,26 but with the development of the ideas on meta-

materials, new results were obtained with the use of asymp-

totic expansions in dynamic elasticity.28–38 More

specifically, Auriault and Boutin28 have recently extended

the method of asymptotic expansion to materials containing

composite inclusions and characterized by inner resonance

with negligible scattering. It is worthwhile noticing that,

compared with results coming from other publications in this

field, an important aspect does appear in the papers written

by Auriault and co-workers that are at the basis of this

paper:25,26,28 it is shown indeed in these papers that the use
of different scalings on physical properties can lead to dif-
ferent macroscopic behaviours. In the case of a strong con-

trast, the method proves the occurrence of inner resonance

with negligible scattering; it provides the structure of the

effective constitutive equations and the local elasticity prob-

lems (usually called “localization problems” or “cell prob-

lems”) to be solved in order to obtain the macroscopic

physical properties, more particularly the dynamic mass den-

sity. It is worth noticing that in the absence of strong con-

trasts, the predicted dynamic behaviour can be non-local in

space39–42 while the behaviour described in the case of inner

resonance with negligible scattering is local in space (while

non-local in time). This point is of importance for modeling

wave propagation through a structure which would be made

of such a metamaterial.

In a recent paper43 the dynamic mass density has been

obtained by solving the localization problem described by the

homogenization theory in the case of materials displaying

inner resonance with negligible scattering and containing

spherical or cylindrical composite inclusions that act as spring-

mass resonators. Under suitable conditions, such a dynamic

mass density can be obtained by studying the static behaviour

(spring effect) of the composite inclusion. By comparison, in

the case of homogeneous inclusions described thereafter, the

dynamic mass density involves the full dynamic behaviour of

the inclusions.

In Sec. II, the results of asymptotic expansions in the

case of materials containing homogeneous inclusions are

synthesized and discussed, showing that suitable ratios of the

physical parameters can lead to inner resonance with negligi-

ble scattering. The method also specifies the dynamic bound-

ary value problem (“cell problem”) to be solved in order to

provide the dynamic mass density. In Sec. III, the inner

motion of inclusions made of cylindrical fibers is studied:

the eigenfrequencies are obtained and then participation fac-

tors and dynamic mass densities of these resonators are

given in a closed form. The case of spherical inclusions is

studied in Sec. IV and the full solution of the local elasticity

problem is given in this case, providing again the eigenfre-

quencies, participation factors, and dynamic mass densities.

Finally, numerical applications are presented in Sec. V.

II. DYNAMIC BEHAVIOUR OF ELASTIC COMPOSITES
CONTAINING HOMOGENEOUS INCLUSIONS

This section recalls briefly the main results from homog-

enization using asymptotic theory25,26,28 and the underlying

assumptions that justify the method used in Secs. II A–II D

to obtain the dynamic mass density. Let us consider a peri-

odic elastic composite material made up of a matrix contain-

ing homogeneous inclusions. This composite material is

defined by the geometry of the periodic cell containing the

inclusions and by the physical properties of the constituent

materials. These constituents are assumed elastic and isotro-

pic. They are characterized by their mass densities qðsÞ, their

volume concentrations cðsÞ, and their Lam�e elastic parame-

ters kðsÞ; lðsÞ. (s) corresponds to the matrix (m) or the inclu-

sion (i). The effective behaviour of the composite depends

strongly on the scaling parameters. In a first step, these scal-

ing parameters are defined and, next, the scaling assumptions

leading to the occurrence of a negative mass density will be

provided.

A. Scaling parameters

A first parameter is the geometric scaling ratio defined by

� ¼ l=L; where l is the size of the periodic cell and L is the

order of magnitude of the wavelength within the matrix in a

chosen frequency range. The case of interest is when the size

of the periodic cell is small compared with L and therefore

�� 1.

Other scaling parameters contain the various physical

parameters that characterize the constituents of the composite.

They comprise:

(i) the ratio between the mass densities of the constitu-

ents qðiÞ=qðmÞ and

(ii) the ratio between the orders of magnitude of the elas-

tic coefficients of the different constituents.

The order of magnitude of the elasticity coefficients of a

given material will be defined by the value of aðsÞ ¼ kðsÞ

þ 2lðsÞ (i.e., a norm of the elasticity tensor). The scaling ratio

related to elastic coefficients will be defined by ðkðiÞ þ 2lðiÞÞ=
ðkðmÞ þ 2lðmÞÞ ¼ aðiÞ=aðmÞ.

B. Scaling assumptions leading to the occurrence of a
negative dynamic mass density

Using asymptotic expansion along the scaling parameter

e, Auriault and Bonnet25 (see also Refs. 26 and 28) studied

the effect of different values of the previously defined scal-

ing ratios on the overall behaviour of the composite. These

authors showed that the resonance of the inner inclusions

can be obtained when the inclusions are very soft compared

with the matrix, the densities being of the same order of

magnitude. More precisely, the inner resonance is obtained
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when the scaling ratios meet the following

conditions: a ið Þ=a mð Þ ¼ O �2ð Þ for the elastic parameters, and

q ið Þ=q mð Þ ¼ 0 1ð Þ for the mass densities.

C. The dynamic mass density

Under the previously defined conditions, the composite

has an overall effective behaviour for harmonic time excita-

tion at radial frequency x that is characterized by the

dynamic equation

@ a
ðeffÞ
ijkl ekl

� �
@xj

þ x2qðeffÞ
ij uj ¼ 0; (1)

where a
ðeffÞ
ijkl are the effective elastic coefficients of the com-

posite, ekl are the components of the overall strain tensor, uj

are the components of the displacement, and qðeffÞ
ij are the

components of a frequency-dependent dynamic mass den-

sity. With a periodic array of inclusions, the effective elastic

behaviour is not isotropic, contrary to the behaviour of the

constituents. Due to the scaling assumptions, the inclusions

are very soft compared with the matrix. As a consequence,

the effective elastic coefficients a
ðeffÞ
ijkl can be computed as for

a matrix that contains voids in place of inclusions by usual

means to obtain effective properties of heterogeneous elastic

materials.

Concerning the components qðeffÞ
ij of the mass density,

they must be considered as the ones of a tensor of second

rank. In the following, it will be assumed that the inclusions

have three orthogonal symmetry planes. In this case, the

dynamic mass density is diagonal for a coordinate system

whose axes are parallel to the symmetry planes, with

qðeffÞ
ii ðxÞ ¼ hqi þ cðiÞqðiÞhiiðxÞ; (2)

where Einstein’s convention summation must not be applied

to the repeated index i in qðeffÞ
ii ; hii. hqi is the volume average

of the density within the periodic cell and cðiÞ is the volume

concentration of inclusions. hii are the components of a diag-

onal second order tensor.

The homogenization method provides the localization

problems (cell problems) allowing to compute the effective

elastic properties and the tensor of components hij, as recalled

in Appendix A. The asymptotic process proves that, at the first

order, due to the large wavelength within the matrix, the fluc-

tuation of displacement of the matrix ~uðmÞ within the periodic

cell is on the order of e (while the fluctuations of strain field

are of the same order as the macroscopic strain). It means that

the displacement and acceleration of the matrix are nearly

constant inside a periodic cell. As a consequence, the localiza-

tion problem obtained by homogenization theory recalled in

Appendix A corresponds to a dynamic localization problem

within the inclusion moved by a uniform acceleration induced

by the matrix. It can be expressed by using the relative dis-

placement ~w ¼ ~uðiÞ �~uðmÞ. This relative displacement is null

over the boundary of the inclusion and is the solution of

lðiÞD~w þ ðkðiÞ þ lðiÞÞ ~gradðdivð~wÞÞ þ qðiÞðxÞ2~w

¼ �qðiÞðxÞ2~uðmÞ: (3)

It means that the motion within a given inclusion, in a local

reference frame moving with the matrix, is impulsed by the

inertial acceleration �qðiÞðxÞ2~uðmÞ.
The solution of this problem can be expressed by using

the eigenfrequencies xp and eigenmodes ~up of the inclusions

for fixed boundaries in the reference frame moving with the
matrix, i.e., the solutions of

lðiÞD~up þ ðkðiÞ þ lðiÞÞ ~gradðdivð~upÞÞ þ qðiÞðxpÞ2~up ¼ 0;

(4)

with~up ¼ 0 on the boundary of the inclusion.

Finally, for an acceleration of the matrix given by c~ej

where ~ej is a unit vector along one of the axes, the related

component hjjðxÞ is given by

hjj xð Þ ¼
X1
p¼1

Kp
jj �

1

xp

x

� �2

� 1

; (5)

where the participation factors Kp
jj do not depend on x and

are given by

Kp
jj ¼

h~upi ið Þ � ~ej

� �2

hjj~upjj2i ið Þ ; (6)

the volume average hf iðiÞ being computed over the volume

of the inclusion. Due to the dependence on x, hjj tends to

minus infinity just above each resonance frequency. As a

consequence, the related component of the overall dynamic

mass density qðeffÞ
jj tends also to minus infinity and remains

negative until its negative frequency dependent part is equili-

brated by the static overall mass density hqi in Eq. (2).

It is worthwhile noticing that, due to the condition at

the boundary of the inclusion (induced obviously by the

assumption of “negligible scattering”), the contributions of

different separate inclusions within a periodic cell are

completely independent and can be summed in order to

compute the overall dynamic mass density for any distribu-

tion of inclusions.

Finally, the eigenfrequencies and eigenmodes (xp;~up)

must be obtained for each direction of ~ej by solving a

“localized eigenmodes problem” [Eq. (4)]. Next, the aver-

ages in Eq. (6) are computed to produce the three compo-

nents of the participation factors. In Secs. III and IV, the

localization problems will be solved for cylindrical and

spherical inclusions.

D. Physical discussion of the results

The results obtained from asymptotic expansion may be

surprising by some aspects. Indeed, these results show that

the inclusion behaves as if the surrounding material moves

uniformly at its boundary. In addition, the field inside the
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inclusion does not depend on the wavelength within the sur-

rounding material and is therefore not affected by the scatter-

ing of these waves by the inclusions.

Obviously, the displacement within the matrix is not

exactly uniform due to the varying strain around the inclu-

sion. However, the ratio of strain fields between matrix and

inclusion is very large, due to the elasticity contrast, and as a

consequence, the fluctuation of displacement around the

inclusion is very small compared with the displacement

inside the inclusion and may be considered as negligible.

The absence of scattering comes naturally from the initial

assumption of a large ratio between the wavelength related

to the propagation within the matrix and the size of inclu-

sions. Finally, the results coming from the asymptotic theory

appear as physically sound. Indeed, numerous devices enter-

ing the composition of metamaterials use inner resonators

whose resonance appears at low frequencies, below frequen-

cies inducing a scattering by the cells containing the resona-

tors (Helmholtz resonators, spring-mass resonators, etc.).

Another point of discussion is the fact that the dynamic

density tends to infinity at the resonance frequencies.

Obviously, this result comes from the assumption of per-

fectly elastic materials. For real materials, the physical

damping must be taken into account. This can be affected by

assuming the inclusion material as viscoelastic.

In this case, the viscoelastic behaviour of the inclusion

material can be taken into account by using complex and fre-

quency dependent elastic moduli. As a result of the use of

complex moduli, the orthogonality of modes is no more

ensured. Due to this loss of orthogonality, the method pre-

sented previously cannot be used as such in the case of vis-

coelasticity and will not be studied thereafter. For a slight

damping, an asymptotic procedure can again be used in

order to provide the viscoelastic solution.28 It leads to a finite

value of the dynamic density and to a small shift of the reso-

nance frequency.

III. DYNAMIC MASS DENSITY FOR CYLINDRICAL
INCLUSIONS

Let us consider a composite containing long parallel

cylindrical inclusions, i.e., long cylindrical fibers of radius a.

As seen in Sec. II, the dynamic contribution to the dynamic

mass density depends only on the properties of the inclu-

sions. Therefore, in the following, the notation kðiÞ

¼ k; lðiÞ ¼ l; qðiÞ ¼ q will be used. In a first step, the general

dynamic displacement within the fiber is given by using sep-

arate variables. Next, it will be shown that numerous contri-

butions to this general field do not provide contributions to

the participation factors. Finally, the expression of the

dynamic mass density will be given.

A. Dynamic displacement field within a cylindrical
domain

Different solutions exist for the dynamic displacement

field within a cylindrical domain44,45 using separate varia-

bles. The expression below is given in Eringen and Suhubi44

[Eqs. (8.9.17) and (8.9.18)] where it is shown that the

displacement field is the superposition for integer values of n
of the following partial displacements:

ur ¼
1

r
A1U1 arð Þcos nhe6icpz þ B1U2 brð Þsin nhe6icqz
�
þ C1U3 brð Þcos nhe6icqz�;

uh ¼
1

r
A1V1 arð Þsin nhe6icpz þ B1V2 brð Þcos nhe6icqz
�
þ C1V3 brð Þsin nhe6icqz�;

uz ¼ A1W1ðarÞ cos nhe6icpz þ C1W3ðbrÞ cos nhe6icqz;

for n ¼ 0;…;1, where a ¼ x=cp; b ¼ x=cs are the wave

numbers related to the celerities of compressional and shear

waves given by cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
; cs ¼

ffiffiffiffiffiffiffiffi
l=q

p
, with an

“alternative expression” obtained by replacing the cos terms

by sin ones (and reversely) and the constants A1;B1;C1 by

another set of constants A2;B2;C2.

U1;U2;U3;V1;V2;V3;W1;W3 are functions of r which

are expressed by using Bessel functions.

As shown previously, the displacement field is sought

for acceleration parallel to one of the base vectors ~ej. This

displacement field has the symmetry with respect to the

planes containing two coordinate axes. As a consequence,

the symmetry induces that cp ¼ cq ¼ 0. From the expression

of the radial components, it comes that U3, V3, and W1 are

null. As another consequence of the symmetry, the constants

B1;A2;C2 are null. Finally, replacing A1;B2;C1 by A, B, C, it

comes that the displacement field is given by

ur ¼
1

r
AU1 arð Þcos nhð Þ þ BU2 brð Þcos nhð Þ
� �

¼ u0
r cos nhð Þ;

uh ¼
1

r
AV1 arð Þsin nhð Þ þ BV2 brð Þsin nhð Þ
� �

¼ u0
h sin nhð Þ;

uz ¼ CW3ðbrÞ cosðnhÞ:

The radial dependence is described by the following functions:

U1ðarÞ ¼ arJn�1ðarÞ � nJnðarÞ;

U2ðbrÞ ¼ nJnðbrÞ;

V1ðarÞ ¼ �nJnðarÞ;

V2ðbrÞ ¼ �brJn�1ðbrÞ þ nJnðbrÞ;

W3ðbrÞ ¼ b2JnðbrÞ;

where Jn is the nth order Bessel function of first kind. It can be

seen that this displacement field contains two independent

fields: a first one with components (ur; uh) and a second one

corresponding to uz. The first one corresponds to a transversal

displacement and the second one to a longitudinal displacement.

At this stage, the expression of the displacement field

contains the components related to any value of n. However,

it will be shown now that only a few of them contribute to

the participation factors.
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B. Selection of the modes contributing to the dynamic
mass density

As seen in Sec. II, the participation factors are functions

of the average of the projection of the displacement field

along the direction of the unit vector ~ej. In a first step, this

average projection is studied, because it is important to

select only the modes which contribute to the dynamic mass

density.

1. Transversal motion

It is assumed that the acceleration is transversal, i.e., ~ej

is perpendicular to the axis of the cylinder. Due to the sym-

metry, the direction of ~ej can be chosen as ~ex corresponding

to h¼ 0. The average of the projection of the displacement

field over the section is given by It=S, where S ¼ pa2 and It

is the integral of the projection of the displacement field

onto ~ex given by It ¼
Ð
~u �~exrdrdh; with ~ex ¼ cos h~er

�sin h~eh and ~u � ~ex ¼ u0
r cos nh cos h� u0

h sin nh sin h: The

integral over h is null except for n¼ 1. It implies that only the

contributions corresponding to n¼ 1 must be taken into account

in the computation of the dynamic mass density. Finally, the

transversal displacement field is given by

ur ¼
1

r
AU1 arð Þcos hþ BU2 brð Þcos h
� �

¼ u0
r cos h;

uh ¼
1

r
AV1 arð Þsin hþ BV2 brð Þsin h
� �

¼ u0
h sin h;

with u0
r ¼ ð1=rÞ AU1 arð Þ þ BU2 brð Þ

� �
; and u0

h ¼ ð1=
rÞ AV1 arð Þ þ BV2 brð Þ
� �

and

U1 arð Þ ¼ arJ0 arð Þ � J1 arð Þ ¼ r
dJ1 arð Þ

dr
;

U2ðbrÞ ¼ J1ðbrÞ;

V1ðarÞ ¼ �J1ðarÞ;

V2 brð Þ ¼ �brJ0 brð Þ þ J1 brð Þ ¼ �r
dJ1 brð Þ

dr
:

2. Longitudinal motion

The longitudinal motion is obtained for ~ej ¼~ez. In

this case, the integral of the projection of the displacement

field is given by Il ¼
Ð
~u � ~ezrdrdh ¼

Ð
uzrdrdh: It involves

the integral over h of cos nh which is null except for n¼ 0.

The longitudinal motion is therefore given by uz

¼ CW3ðbrÞ ¼ DJ0ðbrÞ; where D is an undetermined

constant.

C. Computation of the eigenfrequencies

1. Transversal motion

The eigenfrequencies correspond to the displacement

fields which comply with the condition of null displacement

over the boundary of the cylinder (r¼ a) and therefore to the

linear system

AU1ðaaÞ þ BU2ðbaÞ ¼ 0;

AV1ðaaÞ þ BV2ðbaÞ ¼ 0:

This homogeneous system has a solution only when its

determinant is null and finally the eigenfrequencies equation

is given by U1ðaaÞV2ðbaÞ � U2ðbaÞV1ðaaÞ ¼ 0: Using the

expressions of functions Ui, Vi, this relation can be written

by using only the non-dimensional frequency x� ¼ xa=cs

as

�kcx
�J0ðkcx

�ÞJ0ðx�Þ þ kcJ0ðkcx
�ÞJ1ðx�Þ

þ J0ðx�ÞJ1ðkcx
�Þ ¼ 0; (7)

where kc ¼ cs=cp is the ratio between celerities of shear and

compressional waves, which depends only on the Poisson’s

ratio � and is given by kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2�Þ=2ð1� �Þ

p
.

The solutions of this equation in x� are the non-

dimensional eigenfrequencies xp�ðp ¼ 1;…;1Þ related to

the transversal modes. Having computed these

eigenfrequencies, the eigenmodes are obtained by noticing

that A and B must comply with the homogeneous equations

and therefore B ¼ qp � A with qp ¼ �U1 kcxp�ð Þ=U2 xp�ð Þ:
These eigenmodes are thus defined up to the multiplying

constant A.

The expression of the displacement field is no more

valid for the case of an incompressible material, which cor-

responds to kc¼ 0. However, the limit of the equation for

eigenfrequencies when kc tends to 0 can be obtained and

leads to J2ðx�Þ ¼ 0: Therefore, the eigenfrequencies tend to

the zeros of Bessel function J2 when kc tends to 0 (and also �
tends to 0.5).

2. Longitudinal motion

In this case, the non-dimensional eigenfrequencies are

the solutions of J0ðxp�Þ ¼ 0: The non-dimensional eigen-

frequencies xp� are therefore the zeros of Bessel function

J0.

D. Computation of the participation factors

The participation factors Kp
jj are given by averages of

the projection of the displacement field and of its quadratic

norm. These averages involve the integrals of the projection

Ij ¼
Ð
~u �~ejdS and of the square of norm of the displacement

field Mj ¼
Ð
k~uk2dS. Using these quantities, Kp is given by

Kp
jj ¼ I2

j =ðS �MjÞ; where S is the cross section area of the

fiber. The integrals Ij and Mj are given below in a closed

form.

1. Transversal motion

The integrals involved in the transversal motion are

given by

Ix ¼ aAp J1ðkcx
p�Þ þ qpJ1ðxp�Þ½ � (8)
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and

Mx ¼ pA2 Gðkcx
p�Þ þ qp2Gðxp�Þ

�
þ 2qpJ1ðkcx

p�ÞJ1ðxp�Þ�; (9)

where G xð Þ ¼ 1
2
ðx2 � 2
� 	

J2
1 xð Þ þ x2J2

0 xÞð �: A further simpli-

fication can be effected on the participation factors by taking

into account the equation for eigenfrequencies [Eq. (7)].

Finally, the participation factors are given by

Kp
xx ¼

2a�b�J2 a�ð ÞJ2 b�ð Þ
J1 a�ð ÞJ1 b�ð Þ a�2 þ b�2


 	
� a�b� J1 b�ð Þb�J0 a�ð Þ þ J1 a�ð Þa�J0 b�ð Þ

� � ; (10)

where a� ¼ kcxp� and b� ¼ xp�.
It is noteworthy that, in the case of incompressibility, the

participation factors tend to 0, because their numerators contain

J2ðb�Þ which tends to zero with kc as observed previously.

2. Longitudinal motion

In the same way, the participation factors for the longi-

tudinal motion are given by

Iz ¼
2pDa2

b2
J1 xp�ð Þ; (11)

Mz ¼ pD2a2 J2
0ðxp�Þ þ J2

1ðxp�Þ
� �

; (12)

Kp
zz ¼

4J2
1 xp�ð Þ

xp�2 J2
0 xp�ð Þ þ J2

1 xp�ð Þ
� � : (13)

Taking into account the properties of eigenfrequencies

finally leads to Kp
zz ¼ 4=b�2:

E. Synthesis of the results for cylindrical inclusions

The dynamic mass density [Eq. (2)] for cylindrical

inclusions of radius a is characterized by two sets of

eigenfrequencies.

(i) The set of eigenfrequencies for transversal motion

that are solutions of

�kcx
�J0ðkcx

�ÞJ0ðx�Þ þ kcJ0ðkcx
�ÞJ1ðx�Þ

þ J0ðx�ÞJ1ðkcx
�Þ ¼ 0; (14)

where x� is the non-dimensional frequency given by

x� ¼ xa=cs, kc is given by kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�=2ð1� �Þ

p
,

and J0, J1 are Bessel functions.

(ii) The set of eigenfrequencies for longitudinal motion,

solutions of J0ðxp�Þ ¼ 0:

The participation factors Kp
xx ¼ Kp

yy;K
p
zz for the transversal

motion which enter the expression of the dynamic density

through Eqs. (2), (5), and (6) are given

(iii) for transversal motion by

Kp
xx ¼

2kcJ2 kcxp�ð ÞJ2 xp�ð Þ
J1 kcxp�ð ÞJ1 xp�ð Þ 1þ k2

c


 	
� kcxp� J1 xp�ð ÞJ0 kcxp�ð Þ þ kcJ1 kcxp�ð ÞJ0 xp�ð Þ

� � ; (15)

(iv) for longitudinal motion by Kp
zz ¼ 4= xp�ð Þ2:

IV. DYNAMIC MASS DENSITY FOR SPHERICAL
INCLUSIONS

We consider now a composite containing spherical

inclusions having a radius a. Similar to Sec. III, it is neces-

sary to compute the eigenmodes related to null displacement

at the boundary of the inclusions. Numerous papers dealt

with eigenfrequencies in the case of free boundary, but the

case of fixed boundary is less frequently seen. This problem

was studied earlier by Debye46 for the estimation of the pho-

non contribution to the specific heat of solids. Some eigen-

frequencies for the fixed boundary problem were obtained

also by Schafbuch and Rizzo.47 However, to our knowledge,

the computation of the participation factors and of the

dynamic mass density has never been produced.

Taking into account the symmetry of the problem, the

components of the dynamic mass density are the same for any

orientation of the acceleration of the solid. Therefore, the par-

ticipation factors Kp
ij are the components of an isotropic tensor

with Kp
ij ¼ kpdij, where dij is the Kronecker symbol.

A. Displacement field within a sphere

The displacement field within a sphere is given in classi-

cal books. The solution proposed in Eringen and Suhubi44

[Eqs. (8.13.14) and (8.13.15)] for a harmonic motion leads

to the following expression of the partial components of the

displacement field in spherical coordinates:
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ur ¼
1

r
AU1 arð Þ þ CU3 brð Þ
� �

Pm
n cos hð Þexp i muð Þ;

uh ¼
1

r

�
AV1ðar½ Þ þ CV3 brð Þ� n � coth � Pm

n cos hð Þ � nþ m

sin h
Pm

n�1 cos hð Þ
� �

þBV2 brð Þ im

sin h
Pm

n cos hð Þ
�

exp i muð Þ;

uu ¼
1

r

�
½AV1ðarÞ þ CV3 brð Þ�: im

sin h
Pm

n cos hð Þ

�rBV2 brð Þ n � coth � Pm
n cos hð Þ � nþ m

sin h
Pm

n�1 cos hð Þ
� ��

exp i muð Þ; (16)

where A, B, and C are constants, Pm
n are associated

Legendre polynomials and the radial dependence is given

by

U1ðarÞ ¼ njnðarÞ � arjnþ1ðarÞ;

U3ðbrÞ ¼ nðnþ 1ÞjnðbrÞ;

V1ðarÞ ¼ jnðarÞ;

V2ðbrÞ ¼ jnðbrÞ;

V3ðbrÞ ¼ ðnþ 1ÞjnðbrÞ � brjnþ1ðbrÞ: (17)

These functions are expressed using spherical Bessel func-

tions48 jn given by jn krð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p=2kr

p
Jnþ1=2 krð Þ: The compu-

tation of these spherical Bessel functions can be significantly

alleviated, because these functions can be obtained by using

trigonometric functions as follows: j1 zð Þ ¼ sin z=z2

� cos z=z; and j2 zð Þ ¼ 3=z3 � 1=z

 	

sin z� 3 cos z=z2: The

dynamic mass density does not depend on the direction of

the matrix acceleration. It is convenient to choose this direc-

tion along axis z. As for the case of cylindrical inclusions,

the integral of ~u �~ez over the volume of the sphere must be

different from zero for the components which contribute to

the dynamic density. The computation of these integrals has

been performed, leading to the result that the only contribu-

tions of the partial solutions correspond to m ¼ 0; n ¼ 1. All

other components do not contribute to the dynamic mass

density.

Finally, the dynamic displacement field is given by

ur ¼
1

r
AU1 arð Þ þ CU3 brð Þ
� �

cos h;

uh ¼
�1

r
AV1 arð Þ þ CV3 brð Þ
� �

sin h½ �;

with

U1ðarÞ ¼ j1ðarÞ � arj2ðarÞ;

U3ðbrÞ ¼ 2j1ðbrÞ;

V1ðarÞ ¼ j1ðarÞ;

V3ðbrÞ ¼ 2j1ðbrÞ � brj2ðbrÞ:

It is noteworthy that the structure of the displacement

field presents strong similarities with the transversal

displacement field within the cylinder, but involves

spherical Bessel functions instead of usual Bessel

functions.

B. Resonance frequencies

The non-dimensional resonance frequencies are

obtained again by the determinant of the homogeneous sys-

tem corresponding to a null displacement at r¼ a. It leads to

the equation in x� ¼ x � a=cs,

kcx
�j2ðkcx

�Þj2ðx�Þ � j1ðkcx
�Þj2ðx�Þ

� 2kcj1ðx�Þj2ðkcx
�Þ ¼ 0: (18)

Having solved this equation and obtained the eigenfrequencies

xp�, the boundary condition leads also to the ratio qp ¼ C=A
for each eigenfrequency, with

qp ¼ C

A
¼ �U1 kcxp�ð Þ

U3 xp�ð Þ ¼ �
V1 kcxp�ð Þ
V3 xp�ð Þ

¼ kcxp�j2 kcxp�ð Þ � j1 kcxp�ð Þ
2j1 xp�ð Þ :

As for the case of cylindrical inclusions, it is useful to study

the case of incompressibility when kc tends to 0. In this case,

the eigenfrequencies equation becomes j2ðx�Þ ¼ 0; and the

eigenfrequencies are the zeros of spherical Bessel function

j2.

C. Participation factors

The participation factors are computed from the inte-

grals I and M with I ¼
Ð
~u �~ezdV; and M ¼

Ð
k~uk2dV: These

quantities are given by

I ¼ 4pAa2

3
j1 kcx

p�ð Þ þ 2qpj1 xp�ð Þ
� �

and

M ¼
ð
kupk2 ¼ 4paA2

3
Q11 kcx

p�ð Þ þ 4qpj1 kcx
p�ð Þ



� j1 xp�ð Þ þ qpð Þ2Q33 xp�ð Þg;
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where

Q11 xð Þ ¼ j2
1 �

5

2
xj1j2 þ

x2

2
j21 þ j2

2


 	
;

Q33ðxÞ ¼ 4j21 � 5xj1j2 þ x2ðj2
1 þ j2

2Þ;

with j1 ¼ j1ðxÞ; j2 ¼ j2ðxÞ.
As previously mentioned, the participation factors are

finally given by introducing the averages I=V;M=V over the

volume V ¼ ð4=3Þpa3 of the sphere by

kp¼ I2

VM

¼ j1 kcxp�ð Þþ2qpj1 xp�ð Þ
� �2

Q11 kcxp�ð Þþ4qpj1 kcxp�ð Þj1 xp�ð Þþqp2Q33 xp�ð Þ
 �:

(19)

Introducing the values of the factors qp and taking into

account the equation for eigenfrequencies leads finally

to

kp ¼ 2a�b�j2 a�ð Þj2 b�ð Þ
a�b� b�j1 b�ð Þj2 a�ð Þ þ a�j1 a�ð Þj2 b�ð Þ


 	
� j1 a�ð Þj1 b�ð Þ 2a�2 þ b�2


 	 : (20)

When kc tends to zero, the participation factors tend also to 0, because their numerators contain j2ðb�Þ ¼ j2ðxp�Þ which tends

to 0 with kc, as observed previously.

D. Synthesis of the results for spherical inclusions

The dynamic mass density [Eq. (2)] for spherical inclusions of radius a is characterized by the eigenfrequencies that are

solutions of

kcx
�j2ðkcx

�Þj2ðx�Þ � j1ðkcx
�Þj2ðx�Þ � 2kcj1ðx�Þj2ðkcx

�Þ ¼ 0; (21)

where j1, j2 are spherical Bessel functions.

The participation factors which enter the expression of the dynamic density through Eqs. (4) and (5) are given for each

solution xp� of the previous equation by Kp
xx ¼ Kp

yy ¼ Kp
zz ¼ kp, where kp is given by

kp ¼ 2kcj2 kcxp�ð Þj2 xp�ð Þ
kcxp� j1 xp�ð Þj2 kcxp�ð Þ þ kcj1 kcxp�ð Þj2 xp�ð Þ


 	
� j1 kcxp�ð Þj1 xp�ð Þ 1þ 2k2

c


 	 : (22)

V. APPLICATIONS

A. Cylindrical inclusions

As seen in Secs. III and IV, the resonance frequencies and

participation factors depend only on the non-dimensional fre-

quency x� ¼ x � a=cs. However, the coefficients appearing in

the equation giving x� for the transversal motion depend on the

ratio kc ¼ cs=cp, which itself depends only on Poisson’s ratio �.

Figure 1 displays the non-dimensional resonance fre-

quencies for the transversal motion related to the first six

modes as a function of the Poisson’s ratio. The part near �
¼ 0:5 has been enhanced on the right part of the figure. The

resonance frequencies increase moderately with � for any

mode, except when the Poisson’s ratio is nearing � ¼ 0:5

where higher modes display a significant increase near this

value of �. In all cases, the value of the eigenfrequency for

� ¼ 0:5 has been computed by using the zeros of J2, con-

firming the limit of the eigenfrequencies when � tends to

0.5. All curves display a plateau near � ¼ 0:5, which is very

short for the sixth resonance frequency, but is clear on the

enhanced figure at the right.

The participation factors related to these first six

modes have been displayed in Fig. 2. The left part corre-

sponds to all values of Poisson’s ratios and the right part

to � between 0.45 and 0.5. It shows that the first mode

contains the main participation to the dynamic mass den-

sity with a participation factor being near to 0.7 for small

values of the Poisson’s ratio. However, when the

Poisson’s ratio increases, the first participation factor

decreases, the highest participation factor being succes-

sively the one related to increasing ranks of modes, as

show the values corresponding to � nearing 0.5.

All participation factors tend to 0 for � reaching 0.5, as

expected from the expression of the participation factors.

These results show therefore that the use of nearly incom-

pressible materials leads to a prediction of the dynamic mass

density which is very sensitive to the value of the Poisson’s

ratio.

B. Spherical inclusions

The non-dimensional eigenfrequencies for spherical

inclusions are reported in Fig. 3 and show values of
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eigenfrequencies that are higher than the ones for cylindrical

inclusions with a trend being overall very similar to the one

observed in the case of cylindrical inclusions.

The values of the related participation factors displayed

in Fig. 4 are also very similar to the ones observed in the

case of cylindrical inclusions, the value for the first mode

being however lower than for cylindrical inclusions, at low

values of �. The results also show a trend similar when the

Poisson’s ratio is nearing 0.5, the highest participation fac-

tors being related to higher modes. It is noteworthy that the

participation factors are closed form expressions of the

eigenfrequencies. However, the eigenfrequencies are more

difficult to obtain. So, in order to make easier a further use

of this work, precise values of nondimensional eigenfrequen-

cies have been reported in Appendix B.

An example of dynamic mass density has been reported

in Fig. 5 for the case of a composite containing a matrix

made of alumina (Young modulus Ea ¼ 350 MPa; �a ¼ 0:25;
qa ¼ 3950 kgm3) and spherical inclusions made of polysty-

rene (Ep ¼ 2 MPa; �p ¼ 0:11; qp ¼ 900 kg=m3) with a con-

centration of 0.5 and a radius of 2 mm. The frequency range

has been chosen to display the dynamic mass density qeff

around the first two eigenfrequencies, showing the ranges

where qeff is negative (highlighted by a bold line along the

axis qeff ¼ 0). The frequency range of practical interest where

qeff is negative could be enlarged by using reinforced polysty-

rene containing inner inclusions with a material of higher den-

sity, which would increase significantly the density of the

inclusion material and as a consequence the dynamic part of

the density.

FIG. 1. Cylindrical inclusions. First six non-dimensional resonance frequen-

cies for the transversal motion as functions of the Poisson’s ratio. Right:

elargement for Poisson’s ratio between 0.45 and 0.5.

FIG. 2. Cylindrical inclusions. First six participation factors for the transver-

sal motion as functions of the Poisson’s ratio. Right: enlargement for

Poisson’s ratio between 0.45 and 0.5.

FIG. 3. Spherical inclusions. First six non-dimensional resonance frequen-

cies vs Poisson’s ratio.

FIG. 4. Spherical inclusions. First six participation factors vs Poisson’s

ratio.
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VI. CONCLUSION

In this paper, the basic results obtained from the

homogenization theory using asymptotic expansions have

been summarized for composite elastic metamaterials with

homogeneous inclusions displaying inner resonance with

negligible scattering. These results show, under specific

conditions corresponding to very soft inclusions with a

relatively high density, that the dynamic behaviour of the

composite displays a frequency-dependent and tensorial

dynamic mass density. This dynamic mass density can be

computed knowing the resonance frequencies of the inclu-

sions for the condition of null value at the surface of the
inclusion of the relative displacement between matrix and
inclusion. This greatly simplifies the computation of the

dynamic mass density. In addition, it shows that all reso-

nators are independent.

The resonance frequencies of these resonators have

been computed successfully in the case of long cylindrical

fibers or spherical inclusions. Having obtained these reso-

nance frequencies, the participation factors related to the

different modes are given by simple closed-form expres-

sions. The results show that the participation factors

decrease with increasing ranks of resonance frequencies at

moderate values of the Poisson’s ratio. In this case, the

first modes constitute the main contribution to the

dynamic mass density. When the material is nearly

incompressible, the contribution of modes related to

higher frequencies become more important and the

dynamic mass density is very sensitive to the exact value

of the Poisson’s ratio of the inclusions.

It can be noticed that the dynamic mass density tends to

infinity at the resonance frequencies, because the results

have been obtained for a perfect elastic material. However,

these results can be extended to viscoelastic materials in

order to account for physical damping, leading to a finite

dynamic mass density by using an asymptotic solution for a

slight damping.28 Such an extension will be the subject of a

further paper.

APPENDIX A: THE CELL PROBLEM WITHIN THE
INCLUSION

The cell problem over the inclusion can be obtained25,26 by

using a homogenization method based on double scale asymp-

totic expansion,27 whose main aspects are recalled thereafter.

The microscopic structure is assumed periodic with a peri-

odic cell X, split into Xm and Xi for matrix and inclusion, sepa-

rated by the interface C between matrix and inclusion. One

considers that the ordering is such that Xm is connected over all

the domain, while Xi is made of separate inclusion domains.

The double scale method can be described as follows:

the position of a point at the macroscopic scale is determined

by using the so-called “slow position vector” ~x, while the

position of a point at the microscopic scale (i.e., inside the

periodic cell) is determined by the “fast position vector”

~y ¼~x=�, leading to an amplification of the fluctuation of

physical variables when looking at the microscopic scale.

The components of the displacement field are assumed to be

functions of fast and slow variables by ~u ¼ ~uð~x;~yÞ and their

dependence in~y is periodic. Elasticity parameters and densi-

ties are also periodic functions of ~y, by construction of the

composite material.

The displacement field is searched by using an

asymptotic expansion of the form ~uð~x;~yÞ ¼ ~uð0Þð~x;~yÞ
þ �~uð1Þð~x;~yÞ þ � � �: Finally, the spatial derivatives @=@xj

within local dynamic equations are replaced by “double

scale spatial derivatives” @=@xj þ ð1=�Þð@=@yjÞ. The factor

in front of the second derivative accounts for the enhance-

ment of the fluctuations at the local scale.

The asymptotic expansion of the displacement field

can be introduced into the dynamic equations (within

matrix and inclusion) and continuity equations of dis-

placement and traction over C. Using the double scale

derivatives, it produces a set of cell problems that can be

solved sequentially to obtain the displacement fields over

matrix and inclusion.

The displacement field within the matrix is found to

be25,26 ~uðmÞð~x;~yÞ ¼ ~U
ðmÞð~xÞ þ �~uðmÞð1Þ ð~x;~yÞ; where ~u

ðmÞ
ð1Þ is the

solution of the cell problem corresponding to the static

homogenization within the matrix for a macroscopic strain

tensor computed from ~U
ðmÞð~xÞ, with null traction over C:

Indeed, at this stage, due to the large wavelength within the

matrix, the inertia term does not contribute to the localiza-

tion problem within the matrix.

The first order components u
ðiÞ
jð0Þ of the displacement

field ~u
ðiÞ
ð0Þ within the inclusions are then obtained by solving

the first order cell problem for~u
ðiÞ
ð0Þ,

@

@yk
k ið Þe ið Þ

ll 0ð Þ yð Þdjk þ l lð Þe ið Þ
ik 0ð Þ yð Þ

� �
þ q lð Þx2u ið Þ

j 0ð Þ ¼ 0;

u
ðiÞ
jð0Þð~x;~yÞ ¼ ~U

ðmÞð~xÞ; ~y 2 C;

where eðiÞikð0ÞðyÞ stands for the components of the strain tensor

within the inclusion computed from ~u
ðiÞ
ð0Þ by using y-

derivatives.

Equation (3) is then obtained by making the change of

variable ~w ¼ ~uðiÞð0Þ � ~U
ðmÞð~xÞ.

FIG. 5. Effective dynamic mass density vs frequency for a material matrix

containing spherical inclusions of polystyrene.

J. Acoust. Soc. Am. 142 (2), August 2017 Guy Bonnet and Vincent Monchiet 899



APPENDIX B: DETAILED VALUES OF
EIGENFREQUENCIES

Values of non-dimensional eigenfrequencies for trans-

versal motion of cylindrical inclusions.

Frequency rank! 1 2 3 4 5 6 7 8

#Poisson’s ratio

0 2.9345 5.334 7.519 8.561 11.670 12.106 14.861 16.554

0.1 3.050 5.346 7.944 8.590 11.694 12.812 14.865 17.545

0.2 3.230 5.364 8.408 8.828 11.704 13.930 14.876 18.009

0.3 3.553 5.403 8.511 9.981 11.718 14.851 15.977 18.019

0.4 4.277 5.588 8.548 11.678 13.069 14.877 18.013 20.865

0.5 5.136 8.417 11.620 14.796 17.960 21.117 24.270 27.421

Values of non-dimensional eigenfrequencies for spheri-

cal inclusions.

Frequency rank! 1 2 3 4 5 6 7 8

#Poisson’s ratio

0 3.607 6.129 8.357 9.365 12.444 13.057 15.642 17.538

0.1 3.709 6.148 8.800 9.425 12.472 13.815 15.650 18.553

0.2 3.870 6.178 9.193 9.813 12.488 15.000 15.678 18.789

0.3 4.157 6.241 9.291 11.101 12.518 15.632 17.223 18.807

0.4 4.798 6.494 9.354 12.461 14.521 15.690 18.797 21.908

0.5 5.763 9.095 12.323 15.515 18.689 21.854 25.013 28.168
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