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Abstract

A novel probabilistic approach is presented for estimating the equivalent static wind loads that pro-
duce a static response of the structure, which is ”equivalent” in a probabilistic sense, to the dynamic
responses due to the pressure random field induced by the wind. This approach has especially been
developed for the case for which a large number of unsteady pressure measurements are carried out on
complex structures (such stadium roofs) in a wind tunnel, the random pressure field is non-Gaussian,
and the quasi-static part of the responses is important with respect to the dynamical part. The proposed
approach is demonstrated with a simple illustrative example.
Keywords: Equivalent static wind loads, Non-Gaussian pressure field, Probabilistic approach, Stochas-
tic dynamics.

INTRODUCTION

Some methodologies and numerical methods have been developed, which allow for computing the
equivalent static wind loads, which induce the extreme values that are used for design [1–14]. In the
case of structures with complex aerodynamic flows such as stadium roofs, for which the pressure field
is non-Gaussian, and for which the dynamical response of the structure cannot be simply described by
using only the first elastic modes (but require a good representation of the quasi-static responses), addi-
tional works must be carried out. It is assumed that the number of unsteady pressure sensors, which are
required for performing experimental measurements of the unsteady pressure field applied to a structure
with complex geometry, is relatively high (about 1,000). Under this hypothesis, the number of time
trajectories measured by the set of sensors over a sufficiently long duration T (about 10 minutes in scale
1) remains limited (about 100). Under these conditions, the measurements do not allow us to construct a
statistically converged estimation of the extreme values of the dynamical responses, what are necessary
for the determination of the equivalent static loads in order to reproduce the wind action on the structure
taking into account the non-Gaussianity of the random pressure field. In this work, a new probabilistic
approach is proposed to estimate the equivalent static forces of wind. Firstly, a generator of realizations
of the non-Gaussian pressure random field is constructed by using the experiments, which allows for
generating additional realizations to those measured in the wind tunnel. Secondly, the reduced-order
dynamical model of the structure includes a quasi-static correction term that allows the convergence of
the stochastic dynamical responses to be obtained by using only a small number of elastic modes.



Finally, the equivalent static forces are estimated by a maximum likelihood principle related to the ran-
dom displacements of the structure, conditioned by the random observations that have to belong to a
domain representing the extreme values of the observations (internal forces, displacement, etc.) in the
structure. At the end of this paper, a simple application is presented in order to illustrate the proposed
method. With respect to the existing methods, the novelties of the approach proposed, consist (1) in
introducing quasi-static correction term for three dimensional structures that exhibit a numerous local
modes interwined with global modes, in order to limit the number of modes in the construction of the
reduced-order model, (2) in taking into account the non-Gaussianity of the pressure field for estimating
the extreme values statistics of the responses, (3) in proposing an advanced non-Gaussian stochastic
model of the pressure field based on its polynomial chaos expansion that is identified with measure-
ments performed in a wind tunnel, in order to generate a large number of additional realizations that are
required for estimating extreme values statistics of the responses, (4) in proposing a novel approach for
estimating the static equivalent forces, based on the use of the maximum likelihood principal, without
introducing classical envelopes that generally yield an increase of the equivalent static forces. The final
objective of this work will be to analyze stadium structures subjected to wind loads for which unsteady
pressure measurements are performed in wind tunnels.

STOCHASTIC MODELING, MODEL REDUCTION, AND STATIONARY STOCHASTIC RES-

PONSE

The stationary response of a weakly damped linear system subjected to external wind forces modeled
by a stationary non-Gaussian stochastic process PPP = {PPP(t), t ∈ R} is analyzed. The frequency band
of analysis is B = [0, ωc]. The centered process of the pressure field PPP is written as PPP(t) = p +
P(t), where p is the constant mean function of PPP and where P is a centered stationary non-Gaussian
process. As the theoretical results on statistics on sample paths of Gaussian processes cannot be used,
and as the stationary stochastic responses are not Gaussian, statistics on sample paths must be estimated
using realizations of the stationary stochastic responses. For that, it is then necessary to construct a
stochastic representation of P, which is identified with the measurements, and to use this representation
for generating additional realizations.

Computational model of the linear structural dynamics in the time domain

The structure is fixed (no rigid body displacement) and its computational linear dynamical model has
m degrees of freedom (DOF). Let Y(t) = (Y1(t), . . . , Ym(t)) be the displacement vector (translations
and/or rotations) and let F(t) = (F1(t), . . . , Fm(t)) be the vector of external wind forces (forces and/or
bending moments) applied to the structure, which is written as F(t) = [Ac]PPP(t) in which [Ac] is the
(m×mexp) controllability matrix and where PPP(t) = (P1(t), . . . ,Pmexp(t)) is the vector that corresponds
to the wind tunnel pressure measurements in mexp points of the structure (see for instance [15, 16]). An
observation UUU(t) = (U1(t), . . . ,Umu(t)) in the structure can be displacements, internal forces, stresses
or strains. For a given duration T and a given domain D of values of UUU, the equivalent static forces
(associated with UUU, T , and D) are constructed in order to maximize the probability that UUU(T ) belongs
to D . The observation is written as UUU(t) = [Ao] Y(t) in which [Ao] is the observation matrix. Let UUUmax

(or UUUmin) be the maximum (or the minimum) of UUU(t) on [0, T ], where [0, T ] is the time window for
the signal processing. For several observations, these equivalent static forces are merged in order to
construct a set of algebraically independent equivalent static forces.

Reduced-order model in time domain

The non usual modal analysis including a quasi-static term [17] is used for constructing a reduced-order
model consideringN elastic modes (the quasi-static term is added in order to accelerate the convergence



with respect to N ). The response Y(t) can be written as Y(t) = y + X(t), where the static response y is
such that [K] y = f with f = [Ac] p, and where [K] is the (m ×m) stiffness matrix. The displacement
vector X(t) = (X1(t), . . . , Xm(t)) is the non-Gaussian stationary centered process that is written, for
all t, as

X(t) = [S c
N ] P(t) + [ϕN ] Q(t) , (1)

Q̈(t) + [DN ] Q̇(t) + [λN ] Q(t) = PPPc
N(t) , (2)

in which PPPc
N(t) = [φcN ] P(t), and where Q(t) = (Q1(t), . . . , QN(t)) is a non-Gaussian stationary

centered process verifying Eq. (2) for all t, [ϕN ] is the (m×N) matrix of the elastic modes, [λN ] is the
(N × N) diagonal matrix of the square of the eigenfrequencies, [DN ]αβ = 2ξαωαδαβ is the (N × N)
generalized damping matrix depending on the damping rates ξα, [φcN ] = [ϕN ]T [Ac], and the (m×mexp)
matrix [S c

N ] represents the quasi-static terms. Using Eqs. (1) and (2), observation UUU(t) can be written
as

UUU(t) = u + U(t) with U(t) = [U oc
N ] P(t) + [φoN ] Q(t) , (3)

in which [U oc
N ] = [Ao][S c

N ], [φoN ] = [Ao] [ϕN ], and u = [Ao] y. At time t, the equivalent force FFFe(t) =
(Fe1(t), . . . ,Fem(t)), which is defined by FFFe(t) = [K] Y(t), is written as

FFFe(t) = f + Fe(t) with Fe(t) = [K] X(t) . (4)

Substituting X(t) by its approximation defined by Eqs. (1) and (2) yields,

Fe(t) = [F c
N ] P(t) + [FQ

N ]Q(t) , (5)

in which [FQ
N ] = [K] [ϕN ] and where [F c

N ] = [K] [S c
N ]. The time response Q(t) for t ∈ [0, T ], is com-

puted at the sampling points t1, . . . , tnp by using its discrete Fourier transform Q̂(ωq) = [ĥN(ωq)]P̂PP
c

N(ωq),
in which q = 1, . . . , np, and where ω1, . . . , ωnp are the corresponding sampling frequencies, and [ĥN(ω)]αβ

= δαβ(−ω2 + 2iωξαωα + ω2
α)−1. For q = 1, . . . , np, P̂PP

c

N(ωq) is computed by using the Fast Fourier
Transform, and for k = 1, . . . , np, Q(tk) is deduced by the Inverse Fast Fourier Transform. The values
of Q(T ) = Q(np) can then be deduced.

GENERATOR OF REALIZATIONS OF THE NON-GAUSSIAN PROCESS P

It is assumed that nr independent realizations of the vector-valued stochastic process P have been mea-
sures in the wind tunnel. Generally, this number nr of realizations is not sufficient to estimate the
extreme values statistics that will be used to compute the equivalent static forces. It is then necessary
to generate additional realizations of the pressure field from the nr measurements. The generator is
obtained by constructing a polynomial chaos representation of process P, which is identified using the
experimental measurements. The methodology consists in performing a Karhunen-Loeve (KL) statis-
tical reduction [18, 19] of the non-Gaussian process P and then in identifying a representation of the
random vector constituted by the coordinates of such a KL reduction by a finite polynomial chaos ex-
pansion [20]. The coefficients of the polynomial chaos expansion are estimated from the experimental
measurements using the maximum likelihood principle [21–23]. This optimization problem is solved
either by using a random search algorithm or by using a deterministic optimization such as the ”interior
points” method [24].



ESTIMATION OF THE EQUIVALENT STATIC FORCES

Taking into account Eq. (4), the equivalent static force fffe,s = (fe,s1 , . . . , fe,sm ) associated with observation
UUU(t) defined by Eq. (3), is written as fffe,s = f + fe,s. For t = T , Eq. (5) is written as,

Fe(T ) = [F c
N ] P(T ) + [FQ

N ]Q(T ) . (6)

As the dimension mexp of the random vector P(T ) is much larger (for instance 700 to 1,000) than the
dimension of Q(T ) and U(T ), a Principal Component Analysis (PCA) of the random vector P(T ) is
introduced in order to reduce the dimension and to normalize the random quantities,

P(T ) ' p
T

+

NPCA∑
j=1

√
Λj Hj aj , (7)

in which NPCA is the reduction order such that NPCA ≤ mexp, p
T

is the empirical mean of P(T ),
(a1, . . . , aNPCA) are the eigenvectors associated with the NPCA largest eigenvalues Λ1 ≥ Λ2 ≥ . . . ≥
ΛNPCA of the covariance matrix [CP(T )] of P(T ), and H = (H1, . . . , HNPCA) is the random coordinates of
the PCA. The equivalent static force fe,s can then be computed by

fe,s = [F c
N ] pMV + [FQ

N ] qMV with pMV ' p
T

+

NPCA∑
j=1

√
Λj η

MV
j aj , (8)

in which the vectors ηMV = (ηMV
1 , . . . , ηMV

NPCA
) and qMV = (qMV

1 , . . . , qMV
N ) are such that

(ηMV,qMV) = arg{max
(η,q)

∫
Dc

pH,Q(T ),U(T )(η,q,u) du} , (9)

where pH,Q(T ),U(T )(η,q,u) is the joint probability density function of random vectors H, Q(T ), U(T ),
and where D c is the centered domain associated with U, which is such that Proba{UUU(T ) ∈ D} =
Proba{U(T ) ∈ D c}. It is assumed that D c can be written as D c = Πmu

j=1D
c
j with D c

j = (D c
inf,j,D

c
sup,j).

The bounds D c
inf,j and D c

sup,j are defined with respect to the sign of the mean observation uj , for j =
1, . . . ,mu, as follows

si uj ≥ 0 , D c
inf,j = Umax,j , D c

sup,j = αUmax,j ,

si uj < 0 , D c
inf,j = αUmin,j , D c

sup,j = Umin,j ,
(10)

where Umax,j (resp. Umin,j) is the mean value of the maximum (resp. the minimum) of Uj on [0, T ], and
where α is a positive constant (for instance α = 1000). In Eq. (9), the non-Gaussian probability density
function is estimated using the Gaussian kernel method of the non-parametric statistics [25, 26] and the
integration over set D c is explicitly (algebraically) calculated. The optimization problem defined by
Eq. (9), which is non-convex, is solved using the ”active set” algorithm without constraints [27].

APPLICATION

The application considered is a model of the Maine-Montparnasse Tower in Paris, for which measure-
ments have been carried out [28, 29]. The aim of this application is to present a validation of the
proposed theory on a simple structure. The origin o of the orthonormal reference frame oxyz is located
at the base (the foundation level) of the Tower, the x-axis is perpendicular to the largest faces of the
Tower while the y-axis is perpendicular to the smallest ones, and the z-axis is vertical (see Fig. 1). We
are interested in the bending of the Tower in the plane xoz. The computational model [29] is made up of



FIGURE 1 - Finite element model of the Maine-Montparnasse Tower .

a linear Timoshenko-beam finite element model with variable inertia. This 2D beam is discretized into
20 Timoshenko-beam finite elements. There are 21 nodes over the whole structure, with 3 degrees of
freedom by node (63 DOFs over the whole structure): x-displacement, z-displacement, and y-rotation
(rotation around oy). At node 1 (the foundation level that is the base), the DOFs x and z are locked,
and the flexibility of the foundations is accounted for by an elastic connection following y-rotation. The
following quantities have experimentally been measured [28, 29]: the total static flexibility at the node
21 along x-axis is 0.267 × 10−7 m/N; the first bending eigenfrequency in the xoz plane is 0.20 Hz and
the second one is 0.92 Hz; the damping rate of the first bending mode is 0.0083. The finite element
model as been updated using these measured quantities and yields the experimental measures for the
total static deflection and the first two bending modes. The reduced-order model is constructed with
the quasi-static term and with the first two bending elastic modes (N = 2). The damping rates for the
two first modes are chosen as 0.0083. This application is used for experimentally validating the method
and also for carrying out a sensitivity analysis with respect to the non-Gaussianity of the pressure field.
Consequently, three models of the pressure field are constructed and correspond to a local transforma-
tion of the Gaussian longitudinal fluctuations, noted V , of the wind velocity. Since the experimental
measurements of the pressure field are not available, the pressure field is generated as a transformation
of V whose realizations are numerically simulated. The Harris power spectral density function [30]
and the extended Davenport model [31–33] for the cross-spectral density function of V are used in a
Gaussian random field model for which the realizations are constructed by using [34, 35].

• Model 1. This model does not correspond to the experiments. The pressure field is a linear
function of V . Consequently, the pressure field is Gaussian.

• Model 2. This model corresponds to the experiments for which the measured reference wind
velocity is V R = 17 m/s. For the experimental validation, the pressure field is generated by using
a quadratic function of V . Consequently, the pressure field is non-Gaussian. It should be noted
that the non-Gaussianity rate is relatively small for the considered value of V R.

• Model 3. Again, this model does not correspond to the experiments. The pressure field is con-
structed as a nonlinear empirical function of V , specially introduced to analyze the non-Gaussian
effects.

Experimental validation using model 2

Let U1
d(t) = Y62(t) − Y3(t) × H be the relative x-displacement of node 21 (top of the Tower) in the

relative frame attached to the base (the raft) that is in y-rotation. The displacement Y62(t) is the absolute



FIGURE 2 - Graph f 7→ SU1
d
(2πf) of observation process U1

d (left fig.). Graph u 7→ pU1
d
(u) of U1

d (black line, central
curve), u 7→ pU1

d,max
(u) of U1

d,max (blue line, right curve), and u 7→ pU1
d,min

(u) of U1
d,min (red line, left curve)(right fig.).

x-displacement of node 21 in the reference frame and Y3(t) is the rotation of the raft around oy at node 1.
The height of the Tower is H = 221.34 m. The observation U1

d(t) is written as U1
d(t) = u1d + U1

d (t)
in which mu = 1 and where u1d is the mean value. Model 2 is used for generating the pressure field
from the velocity field V . The mean of the extreme values of U1

d(t) has been measured (see [28, 29])
and is used for the experimental validation. The method presented before is used to generate 1,000
independent realizations of {P(t), t ∈ [0 , T ]} with T = 748 s. Fig. 2 (left) shows the power spectral
density function f 7→ SU1

d
(2πf) of the centered observation U1

d (t). This figure shows that there is a non
negligible quasi-static contribution in the band [0 , 0.12] Hz. For this observation, the mean value u1d is
positive, then the worst case of the observation is the maximum case. For the experimental comparison,
the numerical values gives U1

d,max/u
1
d = (4.64 × 10−2)/(2.20 × 10−2) = 2.11, which matches with

the experimental value given in [28, 29] and which allows us to validate the proposed approach for the
presented application. It should be noted that the corresponding gust loading factor is g+,1d = 2.93 while
the use of a Gaussian approximation would yield g1d,gauss = 3.27. Fig. 2 (right) shows the probability
density functions of the random variables U1

d , U1
d,max = maxt∈[0,T ] U

1
d (t), and U1

d,min = mint∈[0,T ] U
1
d (t).

It can be seen that these are not symmetric (non-Gaussianity of the pressure field).

Validation of the method for computing the equivalent static forces and convergence analysis with
respect to the number of realizations

In this section, Model 2 is used. Let U1 and U2 be the shear force and the bending moment in the beam
section at node 1, and U3 and U4 be the shear force and the bending moment in the beam section at node
13. For i = 1, 2, 3, 4, we write Ui = ui + U i in which ui is the mean value. It should be noted that,
for U1 and U2, the mean values of the shear force and the bending moment (induced by the mean value
of the pressure field) are maximum, and for U4, the bending moment associated with the second elastic
mode is maximal and U3 is the associated shear force.

Illustration of the equivalent static forces computation. Let fff2,e,s be the equivalent static force com-
puted for the observation U2. The components of the equivalent static forces along z-axis are zeros.
For 1,000 realizations, Fig. 3 shows the equivalent force along x-axis and the moment around y-axis. It
should be noted that the moment at node 1 (see Fig. 3 (right)) corresponds to the reaction of the elastic
connection for the rotation around oy. Note also that the exterior moments are zeros for the other DOFs.
Fig. 3 (left) shows that the amplitude of the component x of the equivalent forces at node 21 is smaller
than the amplitude at node 20. This is due to the fact the wind effects surface associated with the node
21 has an area smaller than the area associated with the node 20.

Validation of the method for computing the equivalent static forces. To validate the approach pro-



FIGURE 3 - Graph of the x-component of fff2,e,s (left figure) and graph of the y-moment component of fff2,e,s (right figure).

TABLE 1 - Numerical values of the variables related to u2,e,s and u4,e,s.

ui Ui
min ui,e,s D i

sup

U2(N.m) −3.15× 108 −6.52× 108 −6.52× 108 −6.52× 108

U4(N.m) −7.39× 107 −1.62× 108 −1.62× 108 −1.62× 108

posed to compute the equivalent static forces, the equivalent static observation ue,s (calculated in the
previous paragraph) is recomputed with the static problem ue,s = [Ao] xe,s in which xe,s is the equiv-
alent static displacement such that [K] xe,s = fe,s. For i = 2 and i = 4, let ui,e,s = ui + ui,e,s be the
equivalent static observation corresponding to Ui. The numerical values corresponding to U2 and U4

are given in Table 1. The mean values u2 and u4 are negative, then the worst case of the observation
will be the minimum case. The value of ui,e,s is equal to Ui

min for i = 2 and i = 4 and consequently,
the computation of the equivalent static forces is validated for the hypotheses chosen. Note that the op-
timizer finds the mean Ui

min as an optimal value because the input upper bound is D i
sup = Ui

min and the
probability density function for which the maximum likelihood is searched, presents its maximum for
a value slightly higher than D i

sup, because of the dissymmetry of the non-Gaussian probability density
function.

Analysis of the convergence with respect to the number of realizations. To analyze the convergence
as a function of the number ν of realizations, four cases are studied, for which 100 ”experimental”
realizations (nr = 100) are used with ν = 1000, 10000, 100000. Fig. 4 shows the probability density
functions of U2, U2

max, and U2
min for these four cases. These figures show that the convergence is reached

for about 1,000 realizations, which matches with the results obtained from the convergence analysis of
the extreme values. This means that the probability density functions of the extreme values can correctly
be estimated with 1,000 realizations.

Analysis of the non-Gaussianity and the convergence with respect to the realizations number

The analysis of the non-Gaussianity is made using 1,000 realizations. For the three models of the
pressure field defined before, Table 2 presents the gust loading factors ggauss computed with the usual
Gaussian formula [36], and g+ and g− computed with the realizations of the observations without in-
troducing any hypotheses or approximations. The analysis of the results given in this table shows that,
even though model 1 be Gaussian, the values of ggauss are different from the values of g+ ' g−. This
difference comes from the fact that the usual Gaussian formula is obtained by using a Poisonian hypoth-
esis of the crossing time series for the maximum values. In our case, such a usual Gaussian formula
seems to give an overestimation with respect to the statistical estimation directly constructed from the
realizations. These differences also remain for models 2 and 3 in spite of the fact that the latter are
non-Gaussian.



FIGURE 4 - Graphs of the probability density function of U2 (black line, central curve), U2
max (blue line, right curve) and

U2
min (red line, left curve) for nr = 100 (upper left), ν = 1000 (upper right), ν = 10000 (lower left) and ν = 100000 (lower

right).

TABLE 2 - The gust loading factors.

Model 1 Model 2 Model 3
ggauss g+ ' g− ggauss g+ g− ggauss g+ g−

U1 3.20 2.928 3.320 2.871 2.876 3.391 2.953 3.080
U2 3.264 2.941 3.265 2.883 2.887 3.283 2.617 2.672
U3 3.273 2.961 3.274 2.952 2.950 3.001 2.732 2.763
U4 3.316 3.034 3.316 3.017 3.006 3.389 2.809 2.841

CONCLUSION

In this paper, a generator of realizations of the non-Gaussian random pressure field is constructed on the
base of a polynomial chaos expansion for which the coefficients are estimated by using a set of available
realizations (coming from measurements in a wind tunnel). This generator allows the non-Gaussian
property of the unsteady pressure field to be reproduced and a large number of independent realizations
to be generated in order to be able to estimate the probability density functions of the extreme values of
the structural responses. A in time-domain reduced-order model with the quasi-static acceleration term
is constructed, which allows us to accelerate the convergence of the structural responses with respect to
the retained small number of the elastic modes of the structure. Finally, a new probabilistic method is
proposed for the computation of the equivalent static forces induced by the quasi-static and dynamical
effects of the wind on structures, preserving the non-Gaussian property and without introducing the
concept of response envelopes. An application to a simple structure has been made in order to validate
the proposed methodology and an application to a complex structure such a stadium roof is in progress.
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tique et Mouvement Brownien, Paris. Gauthier Villars.

[20] Ghanem R, Spanos PD, 1991. Stochastic Finite Elements: a Spectral Approach. Springer-Verlag,
New York. See also the revised edition (2003), Dover Publications, New York.

[21] Desceliers C, Ghanem R, Soize C, 2006. Maximum likelihood estimation of stochastic chaos
representations from experimental data. Int. J. Numer. Meth. Eng., 66(6):978–1001.

[22] Perrin G, Soize C, Duhamel D, Funfschilling C, 2012. Identification of polynomial chaos represen-
tations in high dimension from a set of realizations. SIAM J. Sci. Comput., 34(6):A2917–A2945.

[23] Soize C, 2017. Uncertainty quantification. An Accelerated Course with Advanced Applications in
Computational Engineering. Springer, New York.

[24] Byrd RH, Hribar ME, Nocedal J, 1999. An interior point algorithm for large-scale nonlinear
programming. SIAM J. Optimiz., 9(4):877–900.

[25] Givens GH, Hoeting JA, 2013. Computational Statistics. Wiley, New York, second edition.

[26] Horova I, Kolacek J, Zelinka J, 2012. Kernel Smoothing in Matlab. World Scientific, Singapor.

[27] Gill PE, Murray W, Wright MH, 1981. Pratical Optimization. Academic Press, London.

[28] CEBTP (Center for Research and Studies for Buildings and Public Works),15 June 1978. Effets
du vent sur la Tour Maine-Montparnasse. Technical report. Comlpementary report 1st October
1978.

[29] Krée P, Soize C, 1986. Mathematics of Random Phenomena. Reidel, New York. French version:
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