E. B. Arkilic, M. A. Schmidt, and K. S. Breuer, Gaseous slip flow in long microchannels, Journal of Microelectromechanical Systems, vol.6, issue.2, pp.167-178, 1997.
DOI : 10.1109/84.585795

C. Cai, Q. Sun, and B. I. , Gas flows in microchannels and microtubes, Journal of Fluid Mechanics, vol.6, pp.305-314, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2005.05.041

A. Demsis, B. Verma, S. V. Prabhu, and A. Agrawal, Experimental determination of heat transfer coefficient in the slip regime and its anomalously low value, Physical Review E, vol.84, issue.1, p.16311, 2009.
DOI : 10.1080/10407780601149847

A. Demsis, B. Verma, S. V. Prabhu, and A. Agrawal, Heat transfer coefficient of gas flowing in a circular tube under rarefied condition, International Journal of Thermal Sciences, vol.49, issue.10, pp.1994-1999, 2010.
DOI : 10.1016/j.ijthermalsci.2010.05.018

M. Gad-el-hak, The Fluid Mechanics of Microdevices?The Freeman Scholar Lecture, Journal of Fluids Engineering, vol.121, issue.1, pp.5-33, 1999.
DOI : 10.1115/1.2822013

N. K. Gupta, S. An, and Y. B. Gianchandani, A Si-micromachined 48-stage Knudsen pump for on-chip vacuum, Journal of Micromechanics and Microengineering, vol.22, issue.10, 2012.
DOI : 10.1088/0960-1317/22/10/105026

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/98610/1/0960-1317_22_10_105026.pdf

C. Hong and Y. Asako, Some considerations on thermal boundary condition of slip flow, International Journal of Heat and Mass Transfer, vol.53, issue.15-16, pp.15-16, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2010.03.020

D. A. Lockerby, J. M. Reese, and G. M. , The usefulness of higher-order constitutive relations for describing the Knudsen layer, Physics of Fluids, vol.136, issue.10, 2005.
DOI : 10.1063/1.1597472

W. F. Louisos and D. L. Hitt, Influence of Wall Heat Transfer on Supersonic MicroNozzle Performance, Journal of Spacecraft and Rockets, vol.437, issue.29, pp.450-460, 2012.
DOI : 10.1088/0964-1726/10/6/305

S. H. Maslen, On heat transfer in slip flow, J. Aeronautical Sciences, vol.25, pp.400-401, 1958.

F. Sharipov, Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface, Journal of Physical and Chemical Reference Data, vol.108, issue.2, 2011.
DOI : 10.1016/S0042-207X(97)00031-6

E. M. Sparrow and L. S. , Laminar Heat Transfer in Tubes Under Slip-Flow Conditions, Journal of Heat Transfer, vol.84, issue.4, pp.363-369, 1962.
DOI : 10.1115/1.3684399

C. Tchekiken, Modélisation et simulations numériques d'écoulements compressibles dans des micro-conduites planes, 2014.

C. Tchekiken, E. Chénier, X. Nicolas, and G. Lauriat, A propos de la modélisation numérique de la convection de gaz en micro conduites, 2014.

C. Tchekiken, E. Chénier, X. Nicolas, and G. Lauriat, On the numerical modeling of compressible forced convection of gases in micro-channels, 5th International Conference on « Heat Transfer and Fluid Flow in Microscale», HTFFM-V, pp.128-146, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01006205

C. Tchekiken, X. Nicolas, L. Baudey-laubier, and G. Lauriat, Simulation numérique d'écoulements anisothermes de gaz en micro canal : effets de compressibilité et de glissement, 2013.

Y. Yang, G. L. Morini, and J. J. Brandner, Experimental analysis of the influence of wall axial conduction on gas-to-gas micro heat exchanger effectiveness, International Journal of Heat and Mass Transfer, vol.69, pp.17-25, 2014.
DOI : 10.1016/j.ijheatmasstransfer.2013.10.008

W. Zhang, G. Meng, and W. X. , A review on slip models for gas microflows, Microfluidics and Nanofluidics, vol.31, issue.3, pp.845-882, 2012.
DOI : 10.2514/3.11726