C. Soize and R. Ghanem, Data-driven probability concentration and sampling on manifold, Journal of Computational Physics, vol.321, pp.9242-258, 2016.
DOI : 10.1016/j.jcp.2016.05.044

URL : https://hal.archives-ouvertes.fr/hal-01283842

C. Soize and R. Ghanem, Polynomial chaos representation of databases on manifolds, Journal of Computational Physics, vol.335, 2016.
DOI : 10.1016/j.jcp.2017.01.031

URL : https://hal.archives-ouvertes.fr/hal-01448413

R. Ghanem and C. Soize, Probabilistic nonconvex constrained optimization with fixed number of function evaluations, SIAM Journal on Optimization, 2016.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. C. Spall, Introduction to Stochastic Search and Optimization, 2003.
DOI : 10.1002/0471722138

A. Konak, D. Coit, and A. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliability Engineering & System Safety, vol.91, issue.9, pp.992-1007, 2006.
DOI : 10.1016/j.ress.2005.11.018

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=

C. Coello and A. Carlos, Evolutionary multi-objective optimization: a historical view of the field, IEEE Computational Intelligence Magazine, vol.1, issue.1, pp.28-36, 2006.
DOI : 10.1109/MCI.2006.1597059

D. Jones, M. Schonlau, and W. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan et al., Surrogate-based analysis and optimization, Progress in Aerospace Science, pp.1-28, 2005.
DOI : 10.1016/j.paerosci.2005.02.001

J. Kleijnen, W. Van-beers, and I. Van-nieuwenhuyse, Constrained optimization in expensive simulation: Novel approach, European Journal of Operational Research, vol.202, issue.1, pp.164-174, 2010.
DOI : 10.1016/j.ejor.2009.05.002

Y. Sui, A. Gotovos, J. Burdick, and A. Krause, Safe Exploration for Optimization with Gaussian Processes, Proceedings of the 32 nd International Conference on Machine Learning, 2015.

Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. De-freitas, Bayesian Optimization in a Billion Dimensions via Random Embeddings, Journal of Artificial Intelligence Research, vol.55, pp.361-387, 2016.

R. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, 1991.
DOI : 10.1007/978-1-4612-3094-6

C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, issue.3, pp.277-294, 2000.
DOI : 10.1016/S0266-8920(99)00028-4

URL : https://hal.archives-ouvertes.fr/hal-00686293

C. Soize and R. Ghanem, Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.395-410, 2004.
DOI : 10.1137/S1064827503424505

URL : https://hal.archives-ouvertes.fr/hal-00686211

C. Thimmisetty, A. Khodabakhshnejad, N. Jabbari, F. Aminzadeh, R. Ghanem et al., Multiscale Stochastic Representation in High-Dimensional Data Using Gaussian Processes with Implicit Diffusion Metrics, Lecture Notes in Computer Science, vol.24, issue.2, pp.157-166, 2015.
DOI : 10.1137/S1064827501387826

X. Du and W. Chen, Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design, Journal of Mechanical Design, vol.126, issue.2, pp.225-233, 2004.
DOI : 10.1115/1.1649968

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Eldred, DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS, International Journal for Uncertainty Quantification, vol.1, issue.2, pp.119-146, 2011.
DOI : 10.1615/IntJUncertaintyQuantification.v1.i2.20

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Yao, X. Chen, W. Luo, M. Vantooren, and J. Guo, Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles, Progress in Aerospace Sciences, pp.450-479, 2011.
DOI : 10.1016/j.paerosci.2011.05.001

A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, 1997.

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering, vol.195, issue.4, pp.76-1583, 2008.
DOI : 10.1007/978-3-662-12616-5

URL : https://hal.archives-ouvertes.fr/hal-00684517

M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.13, issue.10, pp.123-214, 2011.
DOI : 10.1162/08997660460734047

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler et al., Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proceedings of the National Academy of Sciences, vol.102, issue.21, pp.102-7426, 2005.
DOI : 10.1073/pnas.0500896102

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions, World Scientific, vol.17, 1994.
DOI : 10.1142/2347

URL : https://hal.archives-ouvertes.fr/hal-00770411