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Abstract. This paper presents a challenging problem devoted to thegtistic learning
on manifold for the optimization under uncertainties and avel idea for solving it. The
methodology belongs to the class of the statistical leaymirethods and allows for solving
the probabilistic nonconvex constrained optimizatiorhvatfixed number of expensive function
evaluations. It is assumed that the expensive functioruat@ generates samples (defining
a given dataset) that randomly fluctuate around a "manifol@he objective is to develop an
algorithm that uses a number of expensive function evalnatat a level essentially equal to
that of the deterministic problem. The methodology prog@smsists in using an algorithm to
generate additional samples in the neighborhood of thisifolthfrom the joint probability dis-
tribution of the design parameters and of the random queestithat defined the objective and
the constraint functions. This is achieved by using the g@hdlstic learning on manifold from
the given dataset generated by the optimizer without pemiog additional expensive function
evaluations. A statistical smoothing technique is dewvadofor estimating the mathematical
expectations in the computation of the objective and camgtfunctions at any point of the ad-
missible set by using only the additional samples. Severalemnical illustrations are presented
for validating the proposed approach.
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1 INTRODUCTION

The present paper addresses a novel approach for solviqgdhabilistic nonconvex con-
strained optimization by using only a fixed number of the &gnee function evaluations. It is
assumed that the expensive function evaluator generatgdesathat fluctuate around a mani-
fold. An algorithm is then introduced to sample the neiglhlood of this manifold from the joint
probability distribution of the random parameters and #sgh variables of the stochastic com-
putational model. The underlying manifold is learned fromiffusion process on the dataset
that is generated by the optimizer. This paper extends teeerk by the authors [1], where
the above sampling on manifolds was first introduced, to #se avhere the joint probability
distribution of multiple vectors, is constructed and useevaluate the conditional expectations
that define objective functions and constraints in optitndraunder uncertainties. The paper is
organized as follows. In Sectidn 2, the problem and novehouilogy proposed for solving it
is presented. Sectidn 3 deals with the probabilistic leay@n manifold. Sectionl4 is devoted
to the probabilistic nonconvex constrained optimizatiorbé solved with a fixed number of
function evaluations. A numerical illustration is presshfor validating the method proposed.

Notations

A lower case letter such as n, or u, is a real deterministic variable.

A boldface lower case letter suchxas;, oru is a real deterministic vector.

An upper case letter such &5 H, or U, is a real random variable.

A boldface upper case lettef, H, or U, is a real random vector.

A lower case letter between brackets suclu@sn|, or [u]), is a real deterministic matrix.

A boldface upper case letter between brackets su¢X]afH], or [U], is a real random matrix.

N ={0,1,2,...}: setof all the null and positive integers.

R: set of all the real numbers.

R™: Euclidean vector space dhof dimensionn.

|X||: usual Euclidean norm iR™.

M, ~: setof all the(n x N) real matrices.

M,: set of all the squarg x v) real matrices.

[z];: entry of matrix|x].

[z]T: transpose of matriks].

|[z]||7: Frobenius norm of matrike] such that|x||% = tr{[z]” [z]}.
[1,]: identity matrix ind1,.

Orr: Kronecker's symbol such that,, = 0if £ £ K and=11f &k = k.
1 4(a) is the indicator function of setl: 1 4(a) = 1if a € Aand=0if a ¢ A.
E: Mathematical expectation.

pdf: probability density function.

ISDE: Itd Stochastic Differential Equation.

MCMC: Markov Chain Monte Carlo.

2 PRESENTATION OF THE PROBLEM AND NOVEL METHODOLOGY PROPOSE D
FOR SOLVING IT

Increasingly, the design of engineered systems that ditkielve complex interacting pro-
cesses or new composite materials, must rely on compugtioodels that resolve the under-
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lying physics with great detail. The computational burdesagiated with such a design, in
particular in the presence of model uncertainty or parametrcertainty, quickly becomes pro-
hibitive as it entails iterating over an already expensiwvection evaluation. Novel perspectives,
methodologies, and algorithms must be developed to futidlgromise of model-assisted de-
sign for such complex systems. The probabilistic learnimgnanifold that is proposed in this
paper is one possible way for solving design optimizatiabgms under uncertainties.

2.1 Whatis the problem that is considered?

In order to properly define the problem that is analyzed inftamework of this paper, we
first detail what we mean by the "probabilistic learning onnifigld from a dataset” and what
we mean by the "optimization under uncertainties”.

Meaning of "probabilistic learning on manifold from a datast”

In the framework of this paper, "probabilistic learning oamifold from a dataset” is related to
the novel methodology that is proposediin[1, 2]

o for identifying, from a database made upMdfsamples;’ = (n¢,...,7"%) in RV with ¢ =
1,..., N ofaR”-valued random variabld = (Hy, ..., H,), its non-Gaussian probability
distribution that is unknown and that is concentrated onrdgmawn subses, of R”.

¢ for generating additional samples that follow the unknowsbgbility distribution in pre-
serving the concentration @), and consequently, by avoiding the scattering of the gen-
erated samples.

(i) What is a dataset generated by a probability distribattbat is concentrated on a subset

of R”? In Figure 1, the three figures are related to a suSsetf R” with » = 3 and N samples
n' = (n{,n%,n5). Inthe left figure, the statistical mean line of the dataseteasily be identified
as a helical. In the central figure, the statistical meanaserof the dataset is concentrated
around a surface with a complex geometry as shown in the fignte. For instance, for such
examples, the general method proposed in this paper wilalbr estimating the statistics
of the real-valued random variablé; (7, 72) by using only datase{né}gzl 77777 ~. It will be
not assumed tha¥V’ > 1 pointsy%’ are available fo¢’ = 1,..., N’, and consequently, the
classical empirical estimation

N, ol
E{Hs(nf,nﬁ) ZN% e=1"M3 >

cannot be used. In addition, we want to estimate the stisfi H3(n,,7:) at any point
(m,m2) and not only at the point§(n{, %), ¢ = 1,... N} of the dataset.

(i) What is the scattering of the generated samples if asstad generator is used®sing the
nonparametric statistics for estimating the probabilistribution of random vectad with the
dataset made up ¥ = 400 samples that are plotted in Figure 2 (left figure) and if a MCMC
generator is used for generati®g00 additional samples plotted in Figure 2 (right figure), then
it can be seen that a scattering of the generated sampletsis@iband the concentration around
the statistical mean helical line is lost.

Meaning of "optimization under uncertainties” in the frameork of this paper

The terminology "Optimization Under Uncertainties” (OUtBfers to as optimization algo-
rithms with underlying stochastic operators and stocbhastnstraints. An efficient exploration
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Dataset for random vector H=(H,,H,.H,)
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Figure 1: Data set witllv = 400 for which the statistical mean line of this dataset can gd®l identified as a
helical (left figure). Data set wittv = 900 (central figure) for which the statistical mean surface &f thataset

has a complex geometry (right figure).
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Figure 2: Data set for which th® = 400 samples are concentrated around a statistical mean higtiegleft
figure). Generation with a MCMC generator 000 additional samples that are scattered (right figure) and
consequently, that are not concentrated around the &tatistean helical line.

of the admissible set of the design parameters is cruciddmptimization of a problem with
expensive functions (nonconvex objective function andinear constraint function). The de-
velopment of mathematical and algorithmic constructs gnatnote learning with successive
optimization steps continues to be a key challenge in thgdrce In the framework of this
paper, "optimization under uncertainties” is related te tlovel methodology that is proposed

in [3]
e for solving a probabilistic nonconvex constrained optiatian (an OUU),

e by using a dataset made up of a small number of points gedebgtéhe optimizer for
which only a small number of expensive function evaluatisrearried out.

A few words about optimization under uncertainties

For solving optimization problems under uncertaintie® thethods have progressed along
many directions, including gradient-based learning, ssthjpo convex problems [4, 5], and
global search algorithms including stochastic, genetid, @/olutionary algorithms [6, 7]. Sta-
tistical learning methods, whereby a deterministic proble construed as the representative
from a class of stochastic problems have also been develaiffethe benefit of enabling statis-
tical learning[8]. The learning process is typically masifed in the form of a surrogate model
from which approximations of the expensive function candaalily evaluated [9]. The resulting
error and its repercussions on the attained optimal selutistinguish the various algorithms.
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The global character of the surrogate is typically achiaitter through a deterministic interpo-
lation process, or a stochastic model whereby biases indnceomplex dependencies between
model outputs and design parameters are captured throatigtisal correlations over parame-
ter space. Although Gaussian process models are most cashosad in this contexi [10, 11],
more robust alternatives based on Bayesian optimizatichZBhave also proven useful. Re-
cent research in the field of uncertainty quantification [i48/15, 16| 1/7] has underscored the
need for optimization algorithms with underlying stocl@asperators and constraints. In these
situations, that we have previously referred to as OUU, tiedlenge is magnified since for
each design point along the optimization path, a sufficydatige statistical sample of function
outputs must be computed to evaluate the required expatsatin essence, the function output
must be characterized as a stochastic process over thedegigh variables in order to facili-
tate such evaluations. For expensive function evaluagahgiting uncertainty, computational
challenges remain currently significant enough to requimpkfying assumptions in the form
of surrogate models for the stochastic function itself grragimations to relevant probabilities
[18,/19,20].

2.2 What is the novel methodology proposed for solving the blem that is considered?
Class of the methodology, fundamental hypothesis, and obye

The methodology belongs to the class of the statisticahlagrmethods. It allows for solving
a probabilistic nonconvex constrained optimization witlixad number of expensive function
evaluations. It is assumed that the expensive functioruat@ generates samples (the given
dataset) that randomly fluctuate around a "manifold”. Thedctive is to develop an algorithm
that uses a number of expensive function evaluations ateh ésgentially equal to that of the
deterministic problem.

Principle of the methodology proposed
The methodology proposed [3] consists

¢ in using an algorithm to generate additional samples in gightborhood of this manifold
from the joint probability distribution of the design paratars and of the random quan-
tities that defined the objective and the constraint fumstioThis is achieved by using
the probabilistic learning on manifold without performiadditional expensive function
evaluations.

¢ in developing a statistical smoothing technique for estiingathe mathematical expec-
tations in the computation of the objective and constrainctions at any point of the
admissible set, by using only the given dataset and theiadditsamples.

3 PROBABILISTIC LEARNING ON MANIFOLD

3.1 Short summary of the methodology and algorithm for a conentrated probability
distribution

In this Section, we summarize the methodology and the dlgarior generating additional
samples from a given dataset whose points are the samplesonflam vector that follows an
unknown concentrated probability distribution, whichoalk for avoiding the scattering of the
generated samples. The details of this approach can be fo{id].



C. Soize and R. Ghanem

Defining the random matrix|X| and the datasefz,] as its given sample

LetX = (X;,..., X,) beaR"-valued random variable defined on a probability sg&zer, P).
Let px be the pdf ofX, which is unknown and concentrated on an unknown sufisetff R".

Thedatasetis defined byN given points that are the vectoré', ..., x%" in R®, which corre-
spond toN independent samples of random vectoiand which is represented by the x V)

real matrix[x,] such that

d,1

XN

[zq] = X € Myn.

We define the random matriX] on (©, 7, P) with values inl,, ; such that

in which the columns columns a®¥ independent copieX®, ..., X" of random vectorX.
Consequently, the dataset represented by matgjxs a sample ofX].

Reduced normalized random matri¥] and its samplér,| constructed by the principal com-
ponent analysis

Forv < n, the normalized random matrjid] = [H', ..., H"] with values in, v for which the
columns areV independent copies of a random vedtbe= (H, ... H,) defined on©, T, P)
with values inR”, is defined by the following equation that corresponds toircgal compo-
nent analysis,

[X] = [z] + [] (N2 [H],

in which [\] is the(v x v) diagonal matrix of the positive eigenvalues of the empirical estimate
[cov] € IM,, of the covariance matrix oX (computed with the dataset), whétsg is the(n x v)
matrix of the associated eigenvectors s{ig [¢] = [1,], and wherdz] is the matrix inM,,
with identical columns, each equal to the empirical esteanatc R" of the mean value of
random vectoX (computed with the dataset). The sample

gl = ™ ...n*N] € Mon

of [H] (associated with the sample,] of [X]) is computed by

[l = IN~[e)" ([wa] = [])-

The empirical estimates of the mean value and of the covaiaratrix of random vectdd are
thereforeo, and|7,].

Methodology of the mathematical formulation

The methodology of the proposed mathematical formulatian is detailed in[[1] can be sum-
marized by the five following steps.

Step 1 A multidimensional kernel-density estimation [21] of thef [] — p([n]) of random
matrix [H] is constructed by using the normalized dataset represegtethtrix [7,].

Step 2 A Markov chain Monte Carlo (MCMC) generator for random mafH] is constructed
by using [22], which belongs to the class of Hamiltonian Mo@arlo methods [22, 23, 24]. The
samples are obtained by solving an Itd stochastic diftexkaquation (ISDE) corresponding to



C. Soize and R. Ghanem

a stochastic nonlinear dissipative Hamiltonian dynamssaitem, for whichpy(n) dn is the
unique invariant measure.

Step 3 Adiffusion-map approach [25] is used to discover and toatigrize the local geometry
structure of the normalized dataset concentrated in thghberhood of the unknown subsgt
of R”. The method consists in introducing the transition mdffixn My such that

N
_ 1 ; y
[P] = [b] ! K], [bly =0y (Kl [Kliy = eXP(—Zand’ - nd’] ”2),
j'=1
in whiche > 0 is a real smoothing parameter. L#t, ... ™ be the right eigenvectors as-
sociated with then positive eigenvalues = A; > ... > A,, of the eigenvalue problem

[P]¢* = A,%". The eigenvectors are normalized such that [b] [¢] = [I,,]. A reduced
order diffusion-maps basis &, of orderm < N, is defined by

gl =19 ...9"] € Mnm .

in which ¢!, ..., g™ are the vectors ifk” that are associated with the first eigenvalues of
transition matrix|P] relative to the local geometric structure of the given ndized dataset,
and that are written as

1

g*=Av*ecRY | a=1,...,m,
in which ¢ is a given positive integer. For = N, {g',...,g" } is an algebraic basis 6" .
Step 4 The following reduced-order representation of randonrixat,

[H] =[Z][g]"
is constructed on the manifold in whi¢h] is a random matrix with values vi, ,,,. The value of
m IS chosen as explained in [1]. As < N, this equation defines a statistical reduction of ran-
dom matrix[H] with respect to data dimensia¥, which allows for keeping the concentration
in S, C R” and consequently, for avoiding the scattering of the geedrsamples.

Step 5 Areduced-order ISDE is constructed for generating aolii samples concentrated in
subsetS, without scattering of the generated samples. This MCMC geoeon the manifold
is obtained by projecting the ISDE introduced in Step 2 onéxdiffusion manifold by using the
reduced-order diffusion-maps basis represented by natfix The constructed reduced-order
ISDE is then used for generatimg. additional samples,

zads - ] € Mum
of random matriXZ|, and therefore, for deducing the. additional samples

[n;r]a DK [nngc] € MVJV

of random matrix{H], such thatn’] = [z][g]” for ¢ = 1,... nye. Let {([Z(r)], [Y(1)]),

r € R™} be the unique asymptotic (fer — +oo) stationary and ergodic diffusion stochastic
process with values ir,, ,,, x M, ,,,, of the following reduced-order ISDE (stochastic nonlinea
second-order dissipative Hamiltonian dynamical systedn22]), forr > 0,

AZ(r) = ()] dr ®
AV )] = (L2 dr — & fo W) dr+F WG],

with appropriate initial conditions far = 0, and where
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L(Z(M)])] = [LZ(r)][9]")] [a] in which 7] — [L(n)] is a nonlinear function from
M, ~ into M, n, Which is expressed as a function of pgfj,

[dW(r)] = [dW(r)] [a] where[dW (r)] is the normalized Wiener process with values in
l}/IV,N;

the matrix[a] belongs td"y ,,, and is such that] = [g] ([g]* [g]) ',

the free parametef, > 0 allows the dissipation term of the nonlinear second-orger d
namical system (dissipative Hamiltonian system) to berodiet] in order to kill the tran-
sient part induced by the initial conditions.

We then have

[Z] = lim [Z(r)] in probability distribution,

r—-+00

which allows for generating the additional sampleg], . . ., [z2ve].

Remark on the methodology proposed

The stochastic germ of the reduced-order ISDE that is usegefioerating the samples (],
lives on the "manifold” that is identified by the diffusion & that is to say, lives on a subset
of the set, ,,,, which has a small dimension because< N. The samples oiZ] are directly
generated by the reduced-order ISDE on the "manifold”, Whscthe subset of1, ,,, with a
small dimension.

3.2 Numerical illustration

As the numerical illustration, we present the simple oneothiced in Sectioh]2 for which
n = v = 3 with N = 400 given points in the dataset. Another one, corresponding to a
petro-physics data base of experiments for whick 35, v = 32, and N = 13,056 given
points in the dataset, can be found lin [1]. Figure 3 displégsdataset that is made up of
400 given points{n‘}, concentrated around a statistical mean helical line (lgftr&), and the
eigenvalues\,,—; . The convergence analysis leads us a reduction ender4. Figure 4

77777

Eigenvalues of the transition matrix
Data for random vector X for random vector H

=
o
©

Eigenvalue
=
o
[N

i
o
S

20

0 5 10 15 20
-20 -20 Coordinate x, Rank of the eigenvalue

Figure 3: Dataset of 400 given poingé concentrated around a statistical mean helical line (lgiiré). Eigenval-
ues inlog,,-scale of the transition matrif] (right figure).

(left) shows thel00 given points of the dataset and tRe&00 additional realizations generated

by using the reduced-order ISDE with = 4. It can be seen that the concentration of the
additional samples is kept. Figure 4 (right) displ&y900 additional realizations generated

by the MCMC generator without using the reduced diffusiompsibasis. In such a case the
samples are scattered and the concentration is lost.
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Data and 8000 additional simulated Data and 8000 additional simulated
realizations for random vector X realizations for random vector X

-20 -20 Coordinate x,

Figure 4: Left figure:400 given points of the dataset (blue symbols) and&h@)0 additional realizations (red
symbols) generated by using the reduced-order ISDE wmitk= 4. Right figure: 8,000 additional realizations
generated by the MCMC generator without using the redud@asibin-maps basis.

4 PROBABILISTIC NONCONVEX CONSTRAINED OPTIMIZATIONTOBES OLVED
WITH FIXED NUMBER OF FUNCTION EVALUATIONS

4.1 Definition of a probabilistic nonconvex constrained ogtmization problem
Algebraic form of the optimization problem

Letw € C, C R™ be the admissible set of the vector of the design parameflesnoncon-
vex objective function is defined by the functien— f(w) from C, into R. The nonlinear
constraints are represented by the function— c(w) from C, into R™<. The Probabilistic
Nonconvex Optimization Problem with nonlinear constraif@NOP) is written as

WPt = i w).
are WECVEI} tl:gv)<0 ( )
Probabilistic aspects of the optimization problem

The objective function and the constraint function are as=iito be written as
fw) =E{Qw)} , c(w)=E{B(Ww)}.

The stochastic procedQ(w),w € Cy} and{B(w) = (By(W),..., B, (W)),w € Cy} are
defined on a probability spad®, 7, P), are indexed by,,, are with values irR and R
respectively, are statistically dependent, are secoddr@tochastic processes. Consequently,
for all w fixed inCy, the real-valued random variab@w) : 6 — Q(w; #) and theR"<-valued
random variabld(w) : 6 — B(w; 0) are such that

E{Q(W)z}:/@Q(W;H)QdP(H) < 400,
E{|Bw)|?} = /@ |B(w;6)[2 dP(8) < +oo.

4.2 Framework and objective
Framework

Forw given inCy, f(w) andc(w) are calculated by using the Stochastic Computational Model
(SCM) in which a probabilistic model of uncertainties is igpented. It is assumed that the
PNOP defined before has a unique solutidf in C,,.
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Objective

The objective is the development of a formulation that p&srto solve the PNOP by using
a small number of numerical evaluations ffw) andc(w) in order to limit the calls to the
expensive SCM.

4.3 Methodology
Ingredients

The firstingredient is the probabilistic learning on maldfihat has been presented in Section 3,
which allows for generating additional samples conceeattain the manifold that has been
identified by using the dataseét [1, 2], without performingli#idnal function evaluations by the
use of the SCM. The second ingredient is a smoothing teckriltat allows for estimating the
mathematical expectations in the computatiory 6f°) andc(w®) at any pointw® in C,, by
using only the given dataset and the additional samples [3].

What would be the consequences of the use of the classicat@dare?

Let us assume that the PNOP requirésevaluationsf(w,) andc(w,) at pointsw’ for ¢ =
1,...,N. For a givenw’, the use of the classical estimation would lead us to comhee
samplesQ(w¢; ) and B(w*; 0,) for ¢/ = 1,..., N/ with the SCM. ForN! sufficiently large,
the following empirical estimations would be performed,

N/ N/
[ 1 <«
W) =< ST QW0 olwy) = < > BW6).

S pr—=1 S pr—=1

With such a classical approach, the SCM would be calédk N times, which would be
prohibitive for expensive function calls.

Method proposed for avoidingV. x N evaluations with the SCM and based on the use of only
N evaluations

Step 1: Construction of the dataset by using only a fixed numbef evaluations For /¢ =
1,...,N (with N fixed), letw’ be theN values ofw, which correspond either to a training
procedure applied ta or are some values af generated by an optimizer as it explores the
admissible domain. Lef’ = Q(w’,4,) andb® = B(w’,§,) be theN corresponding samples
that are computed by using the SCM (therefore, there are Sndyaluations). The dataset is
made up of theV data point!, ..., x" in R" such that,

xt=w ¢ b , ¢=1,...,N,
withn = m, + 1 + m..

Step 2: Construction of the diffusion-maps basis and gemgyadditional samples with the
reduced ISDEWe introduce the random variab¥e = (W, @, B) with values inR" such that
x! = (W, ¢’, b*) are N independent samples. The diffusion-maps basis is conettiny using
{x*},=1...n. We can then generatg,, > N additional samples such that,

-----

4 0 V4 V4
Xar = (Wah Gar bar) ) = 17 <+« Vsim,

without performing additional function evaluations.
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Step 3: Introduction of a smoothing technique by using a acapetric statistical estimation
and solving the PNOPA smoothing technique has been developed and is written as

fW0) = E{QIW =w"} | (W)= E{B|W =w'},

in which the conditional mathematical expectations aremeged by using the kernel density
estimation method with the additional sampf&§ = (W, ¢%, b5)}e=1. ... It Should be noted
that an explicit numerical formula exists fgfw®) and forc(w®) for any value of dimensions
m,, andm,.. The probabilistic nonconvex optimization problem withnfinear constraints is
therefore solved,

woP = ar min w?) .
gwoecw,c(w0)<0f )

4.4 Numerical illustration
Description

The design parameter = (w,, w-) is with values inR? (m,, = 2). The nonconvex objective
functionw — f(w) = E{Q(w)} with values inR is defined on a subsé}, = [0, 1.1] x [0, 1.1]
of R?. The constraint function is an affine function— c(w) = E{B(w)} defined orC,, with
values inR* (m, = 4). Consequently, we have= m,, + 1 + m. = 7.

Solution of reference

The solution of reference is computed by using the clasgicadedure with a Cartesian grid
of 3,600 points uniformly distributed i€, and for which/N, = 10,000 samples. The optimal
solution isw?} = 0.74, w = 0.49, f(W) = —0.123 for which the4 constraints are active. In
Fig. 6, the six figures show the reference solution. Figufa)®isplays the graph of objective
functionw — f(w) while Figure 5-(b) corresponds to its contour plot in whitie white
lozenge marks the location of the optimal solution. Figus€g) to 5-(f) correspond to the
graphs of the four components of constraint functior> c(w).

Dataset for random vector H =(H, H, H.)

Coordinate 1,

0 o

(@)  Reference c,(w)

Figure 5: Reference solution: Graphwf— f(w) (up left figure), contour plot ofv — f(w) (b-figure), graphs
of w — ¢1(w) (c-figure),ca(w) (d-figure),cs(w) (e-figure), and:4(w) (f-figure). In b-figure, the white lozenge
marks the location of the optimal solution.
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Dataset generated by the optimizer

The number of numerical evaluations of the objective fuorcji and of the constraint function
¢ by using the SCM isV = 900. We thus have computed = (w’, ¢, b") for¢ =1,...,N
with ¢* = Q(w’; 6,) andb® = B(w'; 4,). Figure 6 (left) shows thé&/ = 900 given/computed
data points; = Q(w*; 6,) generated by the optimizer for estimating the objectivecfiom.
Figure 6 (right) gives a view of the statistical fluctuatiarfsthese900 given/computed data
points around the surface corresponding to the objectivetion,w — f(w) = E{Q(w)}.

Dataset for random vector H =(H ,H,H,) Dataset for random vector H =(H,,H,H,)

Coordinate 1,
Coordinate 1,

05
Coordinate n Coordinate 1y

Coordinate 1, 0, 05

Figure 6: Left figure: N = 900 given/computed data pointg = Q(w’;6,) generated by the optimizer for
estimating the objective function. Right figure: View of thiatistical fluctuations of thes#0 given/computed
data points around the surface corresponding to the obgefttnctionw — f(w) = E{Q(w)}.

Solution given by the proposed probabilistic learning anetd smoothing

The same grid 08,600 points is used for the computation. Figure 7 displays theaarplot

of the graph of objective functiow — f(w) constructed with theV = 900 given/computed
data points (Figure 7-(left)), withy,, = 9,000 additional samples (Figure 7-(central)), and
with v, = 90,000 additional samples (Figure 7-(right)). In these figures, Wwhite lozenge
marks the location of the reference solution while the whitele marks the location of the
optimal solution computed witlv. = 900 given/computed data points;,, = 9,000 addi-
tional samples, and;,, = 90,000 additional samples. Far;, = 9,000 additional samples
{x4 = (W, g4, BE) Yem1.. e, (Figure 7-(central)), we obtain a good approximatigff = 0.70,
wi = 0.49, f(w°) = —0.112 of the reference solution, which is confirmed faf, = 90,000.

It should be noted that the image of the contour plot of theectbje function is really well
represented forg,, = 9,000 and forvg, = 90,000 when comparing these two figures to Fig-
ure 5-(b).

1
() f(w) estimated with 90 000 additional samples

i
(a) f(w) estimated with 900 data points

Figure 7: Contour plot of the objective function computethwV = 900 given/computed data points (left figure),
with vgim = 9,000 additional samples (central figure), and witl}, = 90,000 additional samples (right figure).
The white lozenge marks the location of the reference solutihile the white circle marks the location of the
optimal solution computed in each case.
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5 CONCLUSIONS

A novel methodology has been presented for generating ssngplanR™-valued random
vector from a dataset of lengfi, for which the probability distribution is unknown and iszo
centrated on an unknown subsgtof R". The method is robust and efficient for high dimension
n and for a big dataset of lengthi. A new perspective on optimization under uncertainty is
given for a nonconvex objective function with a nonlineansiwaints function that are viewed
as the average of data concentrated around a manifold. Ebrasuase, standard procedures
typically require a very large number of function evaluataat each design point. With the
method proposed, only a limited number of expensive funatvaluations is used.
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