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Abstract. This paper presents a challenging problem devoted to the probabilistic learning
on manifold for the optimization under uncertainties and a novel idea for solving it. The
methodology belongs to the class of the statistical learning methods and allows for solving
the probabilistic nonconvex constrained optimization with a fixed number of expensive function
evaluations. It is assumed that the expensive function evaluator generates samples (defining
a given dataset) that randomly fluctuate around a ”manifold”. The objective is to develop an
algorithm that uses a number of expensive function evaluations at a level essentially equal to
that of the deterministic problem. The methodology proposed consists in using an algorithm to
generate additional samples in the neighborhood of this manifold from the joint probability dis-
tribution of the design parameters and of the random quantities that defined the objective and
the constraint functions. This is achieved by using the probabilistic learning on manifold from
the given dataset generated by the optimizer without performing additional expensive function
evaluations. A statistical smoothing technique is developed for estimating the mathematical
expectations in the computation of the objective and constraint functions at any point of the ad-
missible set by using only the additional samples. Several numerical illustrations are presented
for validating the proposed approach.
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1 INTRODUCTION

The present paper addresses a novel approach for solving theprobabilistic nonconvex con-
strained optimization by using only a fixed number of the expensive function evaluations. It is
assumed that the expensive function evaluator generates samples that fluctuate around a mani-
fold. An algorithm is then introduced to sample the neighborhood of this manifold from the joint
probability distribution of the random parameters and the design variables of the stochastic com-
putational model. The underlying manifold is learned from adiffusion process on the dataset
that is generated by the optimizer. This paper extends recent work by the authors [1], where
the above sampling on manifolds was first introduced, to the case where the joint probability
distribution of multiple vectors, is constructed and used to evaluate the conditional expectations
that define objective functions and constraints in optimization under uncertainties. The paper is
organized as follows. In Section 2, the problem and novel methodology proposed for solving it
is presented. Section 3 deals with the probabilistic learning on manifold. Section 4 is devoted
to the probabilistic nonconvex constrained optimization to be solved with a fixed number of
function evaluations. A numerical illustration is presented for validating the method proposed.

Notations

A lower case letter such asx, η, oru, is a real deterministic variable.
A boldface lower case letter such asx, η, or u is a real deterministic vector.
An upper case letter such asX,H, orU , is a real random variable.
A boldface upper case letter,X, H, or U, is a real random vector.
A lower case letter between brackets such as[x], [η], or [u]), is a real deterministic matrix.
A boldface upper case letter between brackets such as[X], [H], or [U], is a real random matrix.

N = {0, 1, 2, . . .}: set of all the null and positive integers.
R: set of all the real numbers.
R
n: Euclidean vector space onR of dimensionn.

‖x‖: usual Euclidean norm inRn.
Mn,N : set of all the(n×N) real matrices.
Mν : set of all the square(ν × ν) real matrices.
[x]kj : entry of matrix[x].
[x]T : transpose of matrix[x].
‖[x]‖F : Frobenius norm of matrix[x] such that‖x‖2F = tr{[x]T [x]}.
[Iν ]: identity matrix inMν .
δkk′: Kronecker’s symbol such thatδkk′ = 0 if k 6= k′ and= 1 if k = k′.
1A(a) is the indicator function of setA: 1A(a) = 1 if a ∈ A and= 0 if a /∈ A.
E: Mathematical expectation.
pdf: probability density function.
ISDE: Itô Stochastic Differential Equation.
MCMC: Markov Chain Monte Carlo.

2 PRESENTATION OF THE PROBLEM AND NOVEL METHODOLOGY PROPOSE D
FOR SOLVING IT

Increasingly, the design of engineered systems that eitherinvolve complex interacting pro-
cesses or new composite materials, must rely on computational models that resolve the under-
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lying physics with great detail. The computational burden associated with such a design, in
particular in the presence of model uncertainty or parametric uncertainty, quickly becomes pro-
hibitive as it entails iterating over an already expensive function evaluation. Novel perspectives,
methodologies, and algorithms must be developed to fulfill the promise of model-assisted de-
sign for such complex systems. The probabilistic learning on manifold that is proposed in this
paper is one possible way for solving design optimization problems under uncertainties.

2.1 What is the problem that is considered?

In order to properly define the problem that is analyzed in theframework of this paper, we
first detail what we mean by the ”probabilistic learning on manifold from a dataset” and what
we mean by the ”optimization under uncertainties”.

Meaning of ”probabilistic learning on manifold from a dataset”

In the framework of this paper, ”probabilistic learning on manifold from a dataset” is related to
the novel methodology that is proposed in [1, 2]

• for identifying, from a database made up ofN samplesηℓ = (ηℓ1, . . . , η
ℓ
ν) in R

ν with ℓ =
1, . . . , N of aR

ν-valued random variableH = (H1, . . . , Hν), its non-Gaussian probability
distribution that is unknown and that is concentrated on an unknown subsetSν of R

ν .

• for generating additional samples that follow the unknown probability distribution in pre-
serving the concentration onSν and consequently, by avoiding the scattering of the gen-
erated samples.

(i) What is a dataset generated by a probability distribution that is concentrated on a subsetSν

of Rν? In Figure 1, the three figures are related to a subsetSν of R
ν with ν = 3 andN samples

ηℓ = (ηℓ1, η
ℓ
2, η

ℓ
3). In the left figure, the statistical mean line of the dataset can easily be identified

as a helical. In the central figure, the statistical mean surface of the dataset is concentrated
around a surface with a complex geometry as shown in the rightfigure. For instance, for such
examples, the general method proposed in this paper will allow for estimating the statistics
of the real-valued random variableH3(η1, η2) by using only dataset{ηℓ}ℓ=1,...,N . It will be
not assumed thatN ′

s ≫ 1 pointsηℓ,ℓ
′

3 are available forℓ′ = 1, . . . , N ′
s, and consequently, the

classical empirical estimation

E{H3(η
ℓ
1, η

ℓ
2)} ≃ 1

N ′

s

∑N ′

s

ℓ′=1 η
ℓ,ℓ′

3 ,

cannot be used. In addition, we want to estimate the statistics ofH3(η1, η2) at any point
(η1, η2) and not only at the points{(ηℓ1, η

ℓ
2), ℓ = 1, . . . N} of the dataset.

(ii) What is the scattering of the generated samples if a classical generator is used?Using the
nonparametric statistics for estimating the probability distribution of random vectorH with the
dataset made up ofN = 400 samples that are plotted in Figure 2 (left figure) and if a MCMC
generator is used for generating8,000 additional samples plotted in Figure 2 (right figure), then
it can be seen that a scattering of the generated samples is obtained and the concentration around
the statistical mean helical line is lost.

Meaning of ”optimization under uncertainties” in the framework of this paper

The terminology ”Optimization Under Uncertainties” (OUU)refers to as optimization algo-
rithms with underlying stochastic operators and stochastic constraints. An efficient exploration
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Figure 1: Data set withN = 400 for which the statistical mean line of this dataset can easily be identified as a
helical (left figure). Data set withN = 900 (central figure) for which the statistical mean surface of this dataset
has a complex geometry (right figure).
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Figure 2: Data set for which theN = 400 samples are concentrated around a statistical mean helicalline (left
figure). Generation with a MCMC generator of8,000 additional samples that are scattered (right figure) and
consequently, that are not concentrated around the statistical mean helical line.

of the admissible set of the design parameters is crucial to the optimization of a problem with
expensive functions (nonconvex objective function and nonlinear constraint function). The de-
velopment of mathematical and algorithmic constructs thatpromote learning with successive
optimization steps continues to be a key challenge in that regard. In the framework of this
paper, ”optimization under uncertainties” is related to the novel methodology that is proposed
in [3]

• for solving a probabilistic nonconvex constrained optimization (an OUU),

• by using a dataset made up of a small number of points generated by the optimizer for
which only a small number of expensive function evaluationsis carried out.

A few words about optimization under uncertainties

For solving optimization problems under uncertainties, the methods have progressed along
many directions, including gradient-based learning, adapted to convex problems [4, 5], and
global search algorithms including stochastic, genetic, and evolutionary algorithms [6, 7]. Sta-
tistical learning methods, whereby a deterministic problem is construed as the representative
from a class of stochastic problems have also been developedwith the benefit of enabling statis-
tical learning [8]. The learning process is typically manifested in the form of a surrogate model
from which approximations of the expensive function can be readily evaluated [9]. The resulting
error and its repercussions on the attained optimal solution distinguish the various algorithms.
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The global character of the surrogate is typically achievedeither through a deterministic interpo-
lation process, or a stochastic model whereby biases induced by complex dependencies between
model outputs and design parameters are captured through statistical correlations over parame-
ter space. Although Gaussian process models are most commonly used in this context [10, 11],
more robust alternatives based on Bayesian optimization [8, 12] have also proven useful. Re-
cent research in the field of uncertainty quantification [13,14, 15, 16, 17] has underscored the
need for optimization algorithms with underlying stochastic operators and constraints. In these
situations, that we have previously referred to as OUU, the challenge is magnified since for
each design point along the optimization path, a sufficiently large statistical sample of function
outputs must be computed to evaluate the required expectations. In essence, the function output
must be characterized as a stochastic process over the set ofdesign variables in order to facili-
tate such evaluations. For expensive function evaluationsexhibiting uncertainty, computational
challenges remain currently significant enough to require simplifying assumptions in the form
of surrogate models for the stochastic function itself or approximations to relevant probabilities
[18, 19, 20].

2.2 What is the novel methodology proposed for solving the problem that is considered?

Class of the methodology, fundamental hypothesis, and objective

The methodology belongs to the class of the statistical learning methods. It allows for solving
a probabilistic nonconvex constrained optimization with afixed number of expensive function
evaluations. It is assumed that the expensive function evaluator generates samples (the given
dataset) that randomly fluctuate around a ”manifold”. The objective is to develop an algorithm
that uses a number of expensive function evaluations at a level essentially equal to that of the
deterministic problem.

Principle of the methodology proposed

The methodology proposed [3] consists

• in using an algorithm to generate additional samples in the neighborhood of this manifold
from the joint probability distribution of the design parameters and of the random quan-
tities that defined the objective and the constraint functions. This is achieved by using
the probabilistic learning on manifold without performingadditional expensive function
evaluations.

• in developing a statistical smoothing technique for estimating the mathematical expec-
tations in the computation of the objective and constraint functions at any point of the
admissible set, by using only the given dataset and the additional samples.

3 PROBABILISTIC LEARNING ON MANIFOLD

3.1 Short summary of the methodology and algorithm for a concentrated probability
distribution

In this Section, we summarize the methodology and the algorithm for generating additional
samples from a given dataset whose points are the samples of arandom vector that follows an
unknown concentrated probability distribution, which allows for avoiding the scattering of the
generated samples. The details of this approach can be foundin [1, 2].
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Defining the random matrix[X] and the dataset[xd] as its given sample

LetX = (X1, . . . , Xn) be aRn-valued random variable defined on a probability space(Θ, T ,P).
Let pX be the pdf ofX, which is unknown and concentrated on an unknown subsetSn of R

n.
Thedatasetis defined byN given points that are the vectorsxd,1, . . . , xd,N in R

n, which corre-
spond toN independent samples of random vectorX, and which is represented by the(n×N)
real matrix[xd] such that

[xd] = [xd,1 . . . xd,N ] ∈ Mn,N .

We define the random matrix[X] on (Θ, T ,P) with values inMn,N such that

[X] = [X1 . . .XN ] ,

in which the columns columns areN independent copiesX1, . . . ,XN of random vectorX.
Consequently, the dataset represented by matrix[xd] is a sample of[X].

Reduced normalized random matrix[H] and its sample[ηd] constructed by the principal com-
ponent analysis

Forν ≤ n, the normalized random matrix[H] = [H1, . . . ,HN ] with values inMν,N for which the
columns areN independent copies of a random vectorH = (H1, . . .Hν) defined on(Θ, T ,P)
with values inR

ν , is defined by the following equation that corresponds to a principal compo-
nent analysis,

[X] = [x] + [ϕ] [λ]1/2 [H] ,

in which [λ] is the(ν×ν) diagonal matrix of theν positive eigenvalues of the empirical estimate
[cov] ∈ Mn of the covariance matrix ofX (computed with the dataset), where[ϕ] is the(n× ν)
matrix of the associated eigenvectors such[ϕ]T [ϕ] = [Iν ], and where[x] is the matrix inMn,N

with identical columns, each equal to the empirical estimate x ∈ R
n of the mean value of

random vectorX (computed with the dataset). The sample

[ηd] = [ηd,1 . . .ηd,N ] ∈ Mν,N

of [H] (associated with the sample[xd] of [X]) is computed by

[ηd] = [λ]−1/2[ϕ]T ([xd]− [x]) .

The empirical estimates of the mean value and of the covariance matrix of random vectorH are
therefore0ν and[Iν ].

Methodology of the mathematical formulation

The methodology of the proposed mathematical formulation that is detailed in [1] can be sum-
marized by the five following steps.

Step 1. A multidimensional kernel-density estimation [21] of thepdf [η] 7→ p[H]([η]) of random
matrix [H] is constructed by using the normalized dataset representedby matrix[ηd].

Step 2. A Markov chain Monte Carlo (MCMC) generator for random matrix [H] is constructed
by using [22], which belongs to the class of Hamiltonian Monte Carlo methods [22, 23, 24]. The
samples are obtained by solving an Itô stochastic differential equation (ISDE) corresponding to
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a stochastic nonlinear dissipative Hamiltonian dynamicalsystem, for whichpH(η) dη is the
unique invariant measure.

Step 3. A diffusion-map approach [25] is used to discover and to characterize the local geometry
structure of the normalized dataset concentrated in the neighborhood of the unknown subsetSν

of R
ν . The method consists in introducing the transition matrix[P] in MN such that

[P] = [b]−1 [K] , [b]ij = δij

N
∑

j′=1

[K]ij′ , [K]ij′ = exp(−
1

4ε
‖ηd,i − ηd,j′‖2) ,

in which ε > 0 is a real smoothing parameter. Letψ1, . . . ,ψm be the right eigenvectors as-
sociated with them positive eigenvalues1 = Λ1 > . . . ≥ Λm of the eigenvalue problem
[P]ψα = Λαψ

α. The eigenvectors are normalized such that[ψ]T [b] [ψ] = [Im]. A reduced
order diffusion-maps basis ofRN , of orderm < N , is defined by

[g] = [g1 . . .gm] ∈ MN,m .

in which g1, . . . , gm are the vectors inRν that are associated with the firstm eigenvalues of
transition matrix[P] relative to the local geometric structure of the given normalized dataset,
and that are written as

gα = Λζ
αψ

α ∈ R
N , α = 1, . . . , m ,

in which ζ is a given positive integer. Form = N , {g1, . . . , gN} is an algebraic basis ofRN .

Step 4. The following reduced-order representation of random matrix H,

[H] = [Z] [g]T ,

is constructed on the manifold in which[Z] is a random matrix with values inMν,m. The value of
m is chosen as explained in [1]. Asm < N , this equation defines a statistical reduction of ran-
dom matrix[H] with respect to data dimensionN , which allows for keeping the concentration
in Sν ⊂ R

ν and consequently, for avoiding the scattering of the generated samples.

Step 5. A reduced-order ISDE is constructed for generating additional samples concentrated in
subsetSν without scattering of the generated samples. This MCMC generator on the manifold
is obtained by projecting the ISDE introduced in Step 2 onto the diffusion manifold by using the
reduced-order diffusion-maps basis represented by matrix[g]T . The constructed reduced-order
ISDE is then used for generatingnMC additional samples,

[z1ar], . . . , [z
nMC
ar ] ∈ Mν,m

of random matrix[Z], and therefore, for deducing thenMC additional samples

[η1ar], . . . , [η
nMC
ar ] ∈ Mν,N

of random matrix[H], such that[ηℓar] = [zℓar] [g]
T for ℓ = 1, . . . , nMC. Let {([Z(r)], [Y(r)]),

r ∈ R
+} be the unique asymptotic (forr → +∞) stationary and ergodic diffusion stochastic

process with values inMν,m × Mν,m, of the following reduced-order ISDE (stochastic nonlinear
second-order dissipative Hamiltonian dynamical system [26, 22]), forr > 0,

d[Z(r)] = [Y(r)] dr , (1)

d[Y(r)] = [L([Z(r)])] dr −
1

2
f0 [Y(r)] dr +

√

f0 [dW(r)] ,

with appropriate initial conditions forr = 0, and where
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• [L([Z(r)])] = [L([Z(r)] [g]T )] [a] in which [η] 7→ [L(η)] is a nonlinear function from
Mν,N into Mν,N , which is expressed as a function of pdfp[H],

• [dW(r)] = [dW(r)] [a] where[dW(r)] is the normalized Wiener process with values in
Mν,N ,

• the matrix[a] belongs toMN,m and is such that[a] = [g] ([g]T [g])−1,

• the free parameterf0 > 0 allows the dissipation term of the nonlinear second-order dy-
namical system (dissipative Hamiltonian system) to be controlled in order to kill the tran-
sient part induced by the initial conditions.

We then have

[Z] = lim
r→+∞

[Z(r)] in probability distribution,,

which allows for generating the additional samples,[z1ar], . . . , [z
nMC
ar ].

Remark on the methodology proposed

The stochastic germ of the reduced-order ISDE that is used for generating the samples of[Z],
lives on the ”manifold” that is identified by the diffusion maps, that is to say, lives on a subset
of the setMν,m, which has a small dimension becausem ≪ N . The samples of[Z] are directly
generated by the reduced-order ISDE on the ”manifold”, which is the subset ofMν,m with a
small dimension.

3.2 Numerical illustration

As the numerical illustration, we present the simple one introduced in Section 2 for which
n = ν = 3 with N = 400 given points in the dataset. Another one, corresponding to a
petro-physics data base of experiments for whichn = 35, ν = 32, andN = 13, 056 given
points in the dataset, can be found in [1]. Figure 3 displays the dataset that is made up of
400 given points{ηℓ}ℓ concentrated around a statistical mean helical line (left figure), and the
eigenvaluesΛαα=1,...,20. The convergence analysis leads us a reduction orderm = 4. Figure 4
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Figure 3: Dataset of 400 given pointsηℓ concentrated around a statistical mean helical line (left figure). Eigenval-
ues inlog10-scale of the transition matrix[P] (right figure).

(left) shows the400 given points of the dataset and the8, 000 additional realizations generated
by using the reduced-order ISDE withm = 4. It can be seen that the concentration of the
additional samples is kept. Figure 4 (right) displays8, 000 additional realizations generated
by the MCMC generator without using the reduced diffusion-maps basis. In such a case the
samples are scattered and the concentration is lost.
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Figure 4: Left figure:400 given points of the dataset (blue symbols) and the8, 000 additional realizations (red
symbols) generated by using the reduced-order ISDE withm = 4. Right figure: 8, 000 additional realizations
generated by the MCMC generator without using the reduced diffusion-maps basis.

4 PROBABILISTIC NONCONVEX CONSTRAINED OPTIMIZATION TO BE S OLVED
WITH FIXED NUMBER OF FUNCTION EVALUATIONS

4.1 Definition of a probabilistic nonconvex constrained optimization problem

Algebraic form of the optimization problem

Let w ∈ Cw ⊂ R
mw be the admissible set of the vector of the design parameters.The noncon-

vex objective function is defined by the functionw 7→ f(w) from Cw into R. The nonlinear
constraints are represented by the functionw 7→ c(w) from Cw into R

mc . The Probabilistic
Nonconvex Optimization Problem with nonlinear constraints (PNOP) is written as

wopt = arg min
w∈Cw , c(w)<0

f(w) .

Probabilistic aspects of the optimization problem

The objective function and the constraint function are assumed to be written as

f(w) = E{Q(w)} , c(w) = E{B(w)} .

The stochastic process{Q(w),w ∈ Cw} and{B(w) = (B1(w), . . . ,Bmc
(w)),w ∈ Cw} are

defined on a probability space(Θ, T ,P), are indexed byCw, are with values inR and R
mc

respectively, are statistically dependent, are second-order stochastic processes. Consequently,
for all w fixed inCw, the real-valued random variableQ(w) : θ 7→ Q(w; θ) and theRmc-valued
random variableB(w) : θ 7→ B(w; θ) are such that

E{Q(w)2} =

∫

Θ

Q(w; θ)2 dP(θ) < +∞ ,

E{‖B(w)‖2} =

∫

Θ

‖B(w; θ)‖2 dP(θ) < +∞ .

4.2 Framework and objective

Framework

Forw given inCw, f(w) andc(w) are calculated by using the Stochastic Computational Model
(SCM) in which a probabilistic model of uncertainties is implemented. It is assumed that the
PNOP defined before has a unique solutionwopt in Cw.
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Objective

The objective is the development of a formulation that permits to solve the PNOP by using
a small number of numerical evaluations off(w) andc(w) in order to limit the calls to the
expensive SCM.

4.3 Methodology

Ingredients

The first ingredient is the probabilistic learning on manifold that has been presented in Section 3,
which allows for generating additional samples concentrated on the manifold that has been
identified by using the dataset [1, 2], without performing additional function evaluations by the
use of the SCM. The second ingredient is a smoothing technique that allows for estimating the
mathematical expectations in the computation off(w0) andc(w0) at any pointw0 in Cw, by
using only the given dataset and the additional samples [3].

What would be the consequences of the use of the classical procedure?

Let us assume that the PNOP requiresN evaluationsf(wℓ) andc(wℓ) at pointswℓ for ℓ =
1, . . . , N . For a givenwℓ, the use of the classical estimation would lead us to computethe
samplesQ(wℓ; θℓ′) andB(wℓ; θℓ′) for ℓ′ = 1, . . . , N ′

s with the SCM. ForN ′
s sufficiently large,

the following empirical estimations would be performed,

f(wℓ) ≃
1

N ′
s

N ′

s
∑

ℓ′=1

Q(wℓ; θℓ′) , c(wℓ) ≃
1

N ′
s

N ′

s
∑

ℓ′=1

B(wℓ; θℓ′) .

With such a classical approach, the SCM would be calledN ′
s× N times, which would be

prohibitive for expensive function calls.

Method proposed for avoidingN ′
s×N evaluations with the SCM and based on the use of only

N evaluations

Step 1: Construction of the dataset by using only a fixed number N of evaluations. For ℓ =
1, . . . , N (with N fixed), let wℓ be theN values ofw, which correspond either to a training
procedure applied tow or are some values ofw generated by an optimizer as it explores the
admissible domain. Letqℓ = Q(wℓ, θℓ) andbℓ = B(wℓ, θℓ) be theN corresponding samples
that are computed by using the SCM (therefore, there are onlyN evaluations). The dataset is
made up of theN data pointsx1, . . . , xN in R

n such that,

xℓ = (wℓ, qℓ, bℓ) , ℓ = 1, . . . , N ,

with n = mw + 1 +mc.

Step 2: Construction of the diffusion-maps basis and generating additional samples with the
reduced ISDE. We introduce the random variableX = (W, Q,B) with values inR

n such that
xℓ = (wℓ, qℓ, bℓ) areN independent samples. The diffusion-maps basis is constructed by using
{xℓ}ℓ=1,...,N . We can then generateνsim ≫ N additional samples such that,

xℓ
ar = (wℓ

ar, q
ℓ
ar, b

ℓ
ar) , ℓ = 1, . . . , νsim ,

without performing additional function evaluations.
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Step 3: Introduction of a smoothing technique by using a nonparametric statistical estimation
and solving the PNOP. A smoothing technique has been developed and is written as

f(w0) ≃ E{Q |W = w0} , c(w0) ≃ E{B |W = w0} ,

in which the conditional mathematical expectations are estimated by using the kernel density
estimation method with the additional samples{xℓ

ar = (wℓ
ar, q

ℓ
ar, b

ℓ
ar)}ℓ=1,...,νsim. It should be noted

that an explicit numerical formula exists forf(w0) and forc(w0) for any value of dimensions
mw andmc. The probabilistic nonconvex optimization problem with nonlinear constraints is
therefore solved,

wopt = arg min
w0 ∈Cw , c(w0)< 0

f(w0) .

4.4 Numerical illustration

Description

The design parameterw = (w1, w2) is with values inR2 (mw = 2). The nonconvex objective
functionw 7→ f(w) = E{Q(w)} with values inR is defined on a subsetCw = [0 , 1.1]× [0 , 1.1]
of R

2. The constraint function is an affine functionw 7→ c(w) = E{B(w)} defined onCw with
values inR4 (mc = 4). Consequently, we haven = mw + 1 +mc = 7.

Solution of reference

The solution of reference is computed by using the classicalprocedure with a Cartesian grid
of 3,600 points uniformly distributed inCw and for whichN ′

s = 10,000 samples. The optimal
solution iswopt

r,1 = 0.74,wopt
r,2 = 0.49, f(wopt

r ) = −0.123 for which the4 constraints are active. In
Fig. 6, the six figures show the reference solution. Figure 5-(a) displays the graph of objective
function w 7→ f(w) while Figure 5-(b) corresponds to its contour plot in which the white
lozenge marks the location of the optimal solution. Figures5-(c) to 5-(f) correspond to the
graphs of the four components of constraint functionw 7→ c(w).
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(b)    Reference f(w) (contour plot)
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Figure 5: Reference solution: Graph ofw 7→ f(w) (up left figure), contour plot ofw 7→ f(w) (b-figure), graphs
of w 7→ c1(w) (c-figure),c2(w) (d-figure),c3(w) (e-figure), andc4(w) (f-figure). In b-figure, the white lozenge
marks the location of the optimal solution.
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Dataset generated by the optimizer

The number of numerical evaluations of the objective functionf and of the constraint function
c by using the SCM isN = 900. We thus have computedxℓ = (wℓ, qℓ, bℓ) for ℓ = 1, . . . , N
with qℓ = Q(wℓ; θℓ) andbℓ = B(wℓ; θℓ). Figure 6 (left) shows theN = 900 given/computed
data pointsqℓ = Q(wℓ; θℓ) generated by the optimizer for estimating the objective function.
Figure 6 (right) gives a view of the statistical fluctuationsof these900 given/computed data
points around the surface corresponding to the objective function,w 7→ f(w) = E{Q(w)}.
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Figure 6: Left figure:N = 900 given/computed data pointsqℓ = Q(wℓ; θℓ) generated by the optimizer for
estimating the objective function. Right figure: View of thestatistical fluctuations of these900 given/computed
data points around the surface corresponding to the objective function,w 7→ f(w) = E{Q(w)}.

Solution given by the proposed probabilistic learning and data smoothing

The same grid of3,600 points is used for the computation. Figure 7 displays the contour plot
of the graph of objective functionw 7→ f(w) constructed with theN = 900 given/computed
data points (Figure 7-(left)), withνsim = 9,000 additional samples (Figure 7-(central)), and
with νsim = 90,000 additional samples (Figure 7-(right)). In these figures, the white lozenge
marks the location of the reference solution while the whitecircle marks the location of the
optimal solution computed withN = 900 given/computed data points,νsim = 9,000 addi-
tional samples, andνsim = 90,000 additional samples. Forνsim = 9,000 additional samples
{xℓ

ar = (wℓ
ar, q

ℓ
ar, b

ℓ
ar)}ℓ=1,...,νsim (Figure 7-(central)), we obtain a good approximationwopt

1 = 0.70,
wopt

2 = 0.49, f(wopt) = −0.112 of the reference solution, which is confirmed forνsim = 90,000.
It should be noted that the image of the contour plot of the objective function is really well
represented forνsim = 9,000 and forνsim = 90,000 when comparing these two figures to Fig-
ure 5-(b).

(a)   f(w) estimated with 900 data points
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(d)   f(w) estimated with 90 000 additional samples
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Figure 7: Contour plot of the objective function computed withN = 900 given/computed data points (left figure),
with νsim = 9,000 additional samples (central figure), and withνsim = 90,000 additional samples (right figure).
The white lozenge marks the location of the reference solution while the white circle marks the location of the
optimal solution computed in each case.
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5 CONCLUSIONS

A novel methodology has been presented for generating samples of anR
n-valued random

vector from a dataset of lengthN , for which the probability distribution is unknown and is con-
centrated on an unknown subsetSn of Rn. The method is robust and efficient for high dimension
n and for a big dataset of lengthN . A new perspective on optimization under uncertainty is
given for a nonconvex objective function with a nonlinear constraints function that are viewed
as the average of data concentrated around a manifold. For such a case, standard procedures
typically require a very large number of function evaluations at each design point. With the
method proposed, only a limited number of expensive function evaluations is used.
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