X. Xu, Z. An, P. Liu, Q. Lu, and Y. , Advances on Digital Television and Wireless Multimedia Communications, Communications in Computer and Information Science, vol.331

S. Bahrampour, Comparative study of caffe, neon, theano, and torch for deep learning, 2016.

G. J. Alred, C. T. Brusaw, and W. E. Oliu, Handbook of Technical Writing, St. Martin's, p.2015

U. Durjoy-sen-maitra, . Bhattacharya, K. Swapan, and . Parui, CNN Based Common Approach to Handwritten Character Recognition of Multiple Scripts,Document Analysis and Recognition (ICDAR), 13th International Conference on, 2015.

F. Schwenker, Three learning phases for radial-basis-function networks, Neural Networks, vol.14, issue.4-5, 2000.
DOI : 10.1016/S0893-6080(01)00027-2

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Yangqing, Caffe: Convolutional Architecture for Fast Feature Embedding, arXiv preprint, 2014.

D. Development and T. , Deeplearning4j: Open-source distributed deep learning for the JVM, Apache Software Foundation License 2.0

M. Abadi, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

R. Collobert, S. Bengio, and J. Marithoz, Torch: a modular machine learning software library, 2002.

M. Pariseau, Le perceptron multicouche et son algorithme de rtropropagation des erreurs, 2004.

L. C. Perelman, J. Paradis, and E. Barrett, Mayfield Handbook of Technical and Scientific Writing, Mountain View, 1997.

M. Soua, R. Kachouri, and M. Akil, Efficient multiscale and multifont optical character recognition system based on robust feature description, 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA), p.2015
DOI : 10.1109/IPTA.2015.7367214

URL : https://hal.archives-ouvertes.fr/hal-01309987

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel distributed processing: explorations in the microstructure of cognition, pp.318-362, 1986.

M. Steven, E. C. Beitzel, D. A. Jensen, and . Grossman, Retrieving OCR Text: A Survey of Current Approaches, 2003.

T. E. De-campos, B. R. Babu, and M. Varma, Character recognition in natural images, Proceedings of the International Conference on Computer Vision Theory and Applications, 2009.

. Vasilache, Fast convolutional nets with fbfft: A gpu performance evaluation, 2014.

C. Szegedy, Going Deeper with Convolutions, Computer Vision and Pattern Recognition, 2014.

G. Cybenko, Approximation by superpositions of sigmoidal function Mathematics of control, signal and systems, pp.303-314, 1989.

P. Vincent, Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.1096-1103, 2008.
DOI : 10.1145/1390156.1390294

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. E. Hinton, S. Osindero, and Y. Teh, A Fast Learning Algorithm for Deep Belief Nets, Neural Computation, vol.18, issue.7, pp.1527-1554, 2006.
DOI : 10.1162/jmlr.2003.4.7-8.1235

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Salakhutdinov and G. E. Hinton, Deep boltzmann machines, AISTATS, p.3, 2009.

K. Funahashi and Y. Nakamura, Approximation of dynamical systems by continuous time recurrent neural networks, Neural Networks, vol.6, issue.6, p.801806, 1993.
DOI : 10.1016/S0893-6080(05)80125-X

X. Hu, Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud, Remote sensing, 2016.
DOI : 10.3390/rs8090730

URL : http://doi.org/10.3390/rs8090730

J. Hocking and M. Puttkammer, Optical character recognition for South African languages, 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 2016.
DOI : 10.1109/RoboMech.2016.7813139