Tempered distributions and Fourier transform on the Heisenberg group

Abstract : The final goal of the present work is to extend the Fourier transform on the Heisenberg group $\H^d,$ to tempered distributions. As in the Euclidean setting, the strategy is to first show that the Fourier transform is an isomorphism on the Schwartz space, then to define the extension by duality. The difficulty that is here encountered is that the Fourier transform of an integrable function on $\H^d$ is no longer a function on $\H^d$ : according to the standard definition, it is a family of bounded operators on $L^2(\R^d).$ Following our new approach in\ccite{bcdFHspace}, we here define the Fourier transform of an integrable function to be a mapping on the set~$\wt\H^d=\N^d\times\N^d\times\R\setminus\{0\}$ endowed with a suitable distance $\wh d$. This viewpoint turns out to provide a user friendly description of the range of the Schwartz space on $\H^d$ by the Fourier transform, which makes the extension to the whole set of tempered distributions straightforward. As a first application, we give an explicit formula for the Fourier transform of smooth functions on $\H^d$ that are independent of the vertical variable. We also provide other examples.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-upec-upem.archives-ouvertes.fr/hal-01517927
Contributeur : Raphaël Danchin <>
Soumis le : mercredi 3 mai 2017 - 22:14:29
Dernière modification le : jeudi 11 janvier 2018 - 06:27:10
Document(s) archivé(s) le : vendredi 4 août 2017 - 13:27:32

Fichiers

Fourier_Heisenberg_Soumis.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01517927, version 1
  • ARXIV : 1705.02195

Collections

Citation

Hajer Bahouri, Jean-Yves Chemin, Raphael Danchin. Tempered distributions and Fourier transform on the Heisenberg group. 2017. 〈hal-01517927〉

Partager

Métriques

Consultations de la notice

117

Téléchargements de fichiers

52