Discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3 : a discrete Lawson correspondence

Abstract : The main result of this paper is a discrete Lawson correspondence between discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3. This is a correspondence between two discrete isothermic surfaces. We show that this correspondence is an isometry in the following sense: it preserves the metric coefficients introduced previously by Bobenko and Suris for isothermic nets. Exactly as in the smooth case, this is a correspondence between nets with the same Lax matrices, and the immersion formulas also coincide with the smooth case.
Type de document :
Article dans une revue
Journal of Integrable Systems, 2017, 2 (1), pp.1-18. 〈10.1093/integr/xyx010〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01517411
Contributeur : Pascal Romon <>
Soumis le : jeudi 5 octobre 2017 - 11:03:01
Dernière modification le : mercredi 11 octobre 2017 - 09:08:35

Fichier

Discrete CMC surfaces in R3 an...
Fichiers éditeurs autorisés sur une archive ouverte

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Alexander Bobenko, Pascal Romon. Discrete CMC surfaces in R^3 and discrete minimal surfaces in S^3 : a discrete Lawson correspondence. Journal of Integrable Systems, 2017, 2 (1), pp.1-18. 〈10.1093/integr/xyx010〉. 〈hal-01517411v2〉

Partager

Métriques

Consultations de la notice

26

Téléchargements de fichiers

10